summaryrefslogtreecommitdiff
path: root/html/encyclopedia/mathematics/trigonometry.html
blob: b3c75136fe48ba14401053f788a3b8e5a64a2341 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<!DOCTYPE html>
<html lang="da">
	<!--#include virtual="/include/head.shtml"-->
	<head>
		<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
		<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
	</head>
	<body>
		<!--#include virtual="/include/pghdr.shtml"-->
		<div class="content">
			<p class="pagePath"><a href="/html/encyclopedia.html">encyclopedia</a> / <a href="/html/encyclopedia.html#mathematics">mathematics</a> / <a href="/html/encyclopedia/mathematics/trigonometry.html">conjugation</a></p>
			<p class="pageTitle">Leksikon</p>
			<div class="section">
				<p class="math">\(modliggende_{\angle A} = hosliggende_{\angle B} = a\)</p>
				<p class="math">\(hosliggende_{\angle A} = modliggende_{\angle B} = b\)</p>
				<p class="math">\(hypotenuse = modliggende_{\angle C} = c\)</p>
				<br />
				<p>Forkortelser:</p>
				<p class="math">\(sin_{sinus}\)</p>
				<p class="math">\(cos_{cosinus}\)</p>
				<p class="math">\(tan_{tangens}\)</p>
				<p class="math">\(cot_{cotangens}\)</p>
				<p class="math">\(csc_{cosekant}\)</p>
				<p class="math">\(sec_{sekant}\)</p>
				<br />
				<p class="math">\(sin(\theta) = \frac{modliggende}{hypotenuse}\)</p>
				<p class="math">\(cos(\theta) = \frac{hosliggende}{hypotenuse}\)</p>
				<p class="math">\(tan(\theta) = \frac{modliggende}{hosliggende}\)</p>
				<p class="math">\(cot(\theta) = \frac{hosliggende}{modliggende}\)</p>
				<p class="math">\(csc(\theta) = \frac{hypotenuse}{modliggende}\)</p>
				<p class="math">\(sec(\theta) = \frac{hypotenuse}{hosliggende}\)</p>
				<br />
				<p class="math">\(x = f ^ {-1} (f(x))\)</p>
				<p class="math">\(sin ^ {-1} (\frac{modliggende}{hypotenuse}) = \theta\)</p>
				<p class="math">\(cos ^ {-1} (\frac{hosliggende}{hypotenuse}) = \theta\)</p>
				<p class="math">\(tan ^ {-1} (\frac{modliggende}{hosliggende}) = \theta\)</p>
				<p class="math">\(cot ^ {-1} (\frac{hosliggende}{modliggende}) = \theta\)</p>
				<p class="math">\(csc ^ {-1} (\frac{hypotenuse}{modliggende}) = \theta\)</p>
				<p class="math">\(sec ^ {-1} (\frac{hypotenuse}{hosliggende}) = \theta\)</p>
				<br />
				<p class="math">\(arcsin = sin ^ {-1}\)</p>
				<p class="math">\(arccos = cos ^ {-1}\)</p>
				<p class="math">\(arctan = tan ^ {-1}\)</p>
				<p class="math">\(arccot = cot ^ {-1}\)</p>
				<p class="math">\(arcsec = sec ^ {-1}\)</p>
				<p class="math">\(arccsc = csc ^ {-1}\)</p>
				<br />
				<p class="math">\(deg(rad) = \frac{x}{\frac{\pi}{180}}\)</p>
				<p class="math">\(rad(deg) = \frac{x}{\frac{180}{\pi}}\)</p>
				<br />
				<p class="math">\(vinkelsum(x) = \pi(x - 2)\)</p>
				<p class="math">\(vinkelsum(3) = \pi(3 - 2) = \pi(1) = \pi\)</p>
				<br />
				<p class="math">\(\angle A = sin ^ {-1} (\frac{a}{c}) = cos ^ {-1} (\frac{b}{c}) = tan ^ {-1} (\frac{a}{b}) = vinkelsum(3) - \angle B - \angle C\)</p>
				<p class="math">\(\angle B = sin ^ {-1} (\frac{b}{c}) = cos ^ {-1} (\frac{a}{c}) = tan ^ {-1} (\frac{b}{a}) = vinkelsum(3) - \angle A - \angle C\)</p>
				<p class="math">\(\angle C = vinkelsum(3) - \angle A - \angle B\)</p>
				<p>I en regulær trekant:</p>
				<p class="math">\(\angle A = \angle B = \angle C\)</p>
				<p>I en retvinklet trekant:</p>
				<p class="math">\(\angle C = \frac{\pi}{2}\)</p>
				<br />
				<p class="math">\(a = c ⋅ sin(\angle A) = c ⋅ cos(\angle B) = b ⋅ tan(\angle A) = b ⋅ cot(\angle B)\)</p>
				<p class="math">\(b = c ⋅ sin(\angle B) = c ⋅ cos(\angle A) = a ⋅ tan(\angle B) = a ⋅ cot(\angle A)\)</p>
				<p class="math">\(c = a ⋅ csc(\angle A) = b ⋅ csc(\angle B) = a ⋅ sec(\angle B) = b ⋅ sec(\angle A)\)</p>
				<p>I en regulær trekant:</p>
				<p class="math">\(a = b = c\)</p>
				<p>I en retvinklet trekant:</p>
				<p class="math">\(c = \sqrt[2]{a ^ 2 + b ^ 2}\)</p>
				<p>I en retvinklet trekant, hvori kateterne har samme længde:</p>
				<p class="math">\(a = b = \sqrt[2]{\frac{c ^ 2}{2}}\)</p>
				<br />
				<p class="math">\(O = a + b + c\)</p>
				<p class="math">\(A = \frac{b ⋅ h}{2}\)</p>
				<p>Mellem to ligedannet trekanter:</p>
				<p class="math">\(\angle A_{1} = \angle A_{0}\)</p>
				<p class="math">\(\angle B_{1} = \angle B_{0}\)</p>
				<p class="math">\(\angle C_{1} = \angle C_{0}\)</p>
				<p class="math">\(k = \frac{a_{1}}{a_{0}} = \frac{b_{1}}{b_{0}} = \frac{c_{1}}{c_{0}}\)</p>
				<p class="math">\(a_{1} = a_{0} k\)</p>
				<p class="math">\(b_{1} = b_{0} k\)</p>
				<p class="math">\(c_{1} = c_{0} k\)</p>
				<p class="math">\(O_{1} = O_{0} k\)</p>
				<p class="math">\(A_{1} = A_{0} k ^ 2\)</p>
			</div>
		</div>
		<!--#include virtual="/include/pgftr.shtml"-->
	</body>
</html>