diff options
Diffstat (limited to 'html/encyclopedia')
-rw-r--r-- | html/encyclopedia/chemistry.html | 26 | ||||
-rw-r--r-- | html/encyclopedia/mathematics.html | 232 | ||||
-rw-r--r-- | html/encyclopedia/physics.html | 105 | ||||
-rw-r--r-- | html/encyclopedia/social-science.html | 14 |
4 files changed, 219 insertions, 158 deletions
diff --git a/html/encyclopedia/chemistry.html b/html/encyclopedia/chemistry.html index 6763862..67d9853 100644 --- a/html/encyclopedia/chemistry.html +++ b/html/encyclopedia/chemistry.html @@ -31,14 +31,14 @@ <th colspan="4">Afledte Mål</th> </tr> <tr> - <td>molar masse</td> + <td>molarmasse</td> <td class="math">\(M\)</td> <td>kilogram pr. mol</td> <td class="math">\(\frac{kg}{mol}\)</td> </tr> </table> <p class="graphicText">Evt. se <a href="/html/encyclopedia/physics.html#measures-and-units">fysikkens enheder</a>.</p> - <p>Yderligere mål:</p> + <p>Variante mål:</p> <table> <tr> <th>Mål</th> @@ -46,7 +46,7 @@ <th>Afledt af</th> </tr> <tr> - <td>atom masse</td> + <td>atommasse</td> <td class="math">\(A_r\)</td> <td>masse</td> </tr> @@ -54,14 +54,11 @@ </div> <div class="section" id="formulas"> <p class="large">Formler</p> - <p class="math">\(A_r = \frac{M}{M_u}\)</p> + <p class="math">\(m=Mn\)</p> <br /> - <p class="math">\(m = Mn\)</p> + <p class="math">\(M=\frac{m}{n}\)</p> <br /> - <p class="math">\(M = A_rM_u\)</p> - <p class="math">\(M = \frac{m}{n}\)</p> - <br /> - <p class="math">\(n = \frac{m}{M}\)</p> + <p class="math">\(n=\frac{m}{M}\)</p> </div> <div class="section" id="constants"> <p class="large">Konstanter</p> @@ -71,11 +68,11 @@ <th>Symbol</th> </tr> <tr> - <td>molar masse konstanten</td> + <td>molarmasse konstanten</td> <td class="math">\(M_u\)</td> </tr> <tr> - <td>atom masse konstanten</td> + <td>atommasse konstanten</td> <td class="math">\(m_u\)</td> </tr> <tr> @@ -83,9 +80,10 @@ <td class="math">\(N_A\)</td> </tr> </table> - <p class="math">\(M_u = m_uN_a \approx \frac{999\ 999\ 999\ 65}{10^{14}}\ \frac{kg}{mol}\)</p> - <p class="math">\(m_u = \frac{m(_6^{12}C)}{12} \approx \frac{16\ 605\ 390\ 666}{10^{37}}\ kg\)</p> - <p class="math">\(N_A = 602\ 214\ 076 \cdot 10^{15}\ mol^{-1}\)</p> + <p class="math">\(M_u=\frac{M(_6^{12}C)}{12}=m_uN_a \approx \frac{999\ 999\ 999\ 65}{10^{14}}\ \frac{kg}{mol}\)</p> + <p class="math">\(m_u=\frac{m(_6^{12}C)}{12} \approx \frac{16\ 605\ 390\ 666}{10^{37}}\ kg=1\ u\)</p> + <p class="math">\(N_A=602\ 214\ 076 \cdot 10^{15}\ mol^{-1}\)</p> + <p></p> </div> </div> <!--#include virtual="/include/pgftr.shtml"--> diff --git a/html/encyclopedia/mathematics.html b/html/encyclopedia/mathematics.html index 948183e..888361f 100644 --- a/html/encyclopedia/mathematics.html +++ b/html/encyclopedia/mathematics.html @@ -11,147 +11,147 @@ <p class="pageTitle">Leksikon<sub> Matematik</sub></p> <div class="section" id="rules"> <p class="large">Regneregler</p> - <p class="math">\(x + y = z\)</p> - <p class="math">\(z - y = x\)</p> - <p class="math">\(z - x = y\)</p> - <br /> - <p class="math">\(xy = z\)</p> - <p class="math">\(\frac{z}{y} = x\)</p> - <p class="math">\(\frac{z}{x} = y\)</p> - <br /> - <p class="math">\(\frac{x}{y} = z\)</p> - <p class="math">\(zy = x\)</p> - <p class="math">\(\frac{x}{z} = y\)</p> - <br /> - <p class="math">\(x^y = z\)</p> - <p class="math">\(\sqrt[y]{z} = x\)</p> - <p class="math">\(log_{x}(z) = y\)</p> - <br /> - <p class="math">\(x^n = \frac{1}{x^{-n}}, x \lt 0\)</p> - <p class="math">\(x^0 = 1\)</p> - <p class="math">\(x^{\frac{a}{b}} = \sqrt[b]{x^a}\)</p> - <br /> - <p class="math">\(\frac{x}{y} = x\frac{1}{y}\)</p> - <p class="math">\(\frac{x}{y} + n = \frac{x + n y}{y}\)</p> - <p class="math">\(\frac{x}{y} + \frac{a}{b} = \frac{x b + ay}{yb}\)</p> - <p class="math">\(\frac{x}{y}n = \frac{xn}{y}\)</p> - <p class="math">\(\frac{x}{y}\frac{a}{b} = \frac{x a}{y b}\)</p> - <p class="math">\(\frac{x}{\frac{a}{b}} = \frac{xb}{a}\)</p> - <p class="math">\(\frac{\frac{x}{y}}{z} = \frac{x}{yz}\)</p> - <p class="math">\(\frac{\frac{x}{y}}{\frac{a}{b}} = \frac{xb}{ya}\)</p> - <br /> - <p class="math">\(x^ax^b = x^{a + b}\)</p> - <p class="math">\(\frac{x^a}{x^b} = x^{a - b}\)</p> - <p class="math">\(x^ay^a = (xy)^a\)</p> - <p class="math">\(\frac{x^a}{y^a} = (\frac{x}{y})^a\)</p> - <p class="math">\((x^a)^b = x^{ab}\)</p> + <p class="math">\(x+y=z\)</p> + <p class="math">\(z-y=x\)</p> + <p class="math">\(z-x=y\)</p> + <br /> + <p class="math">\(xy=z\)</p> + <p class="math">\(\frac{z}{y}=x\)</p> + <p class="math">\(\frac{z}{x}=y\)</p> + <br /> + <p class="math">\(\frac{x}{y}=z\)</p> + <p class="math">\(zy=x\)</p> + <p class="math">\(\frac{x}{z}=y\)</p> + <br /> + <p class="math">\(x^y=z\)</p> + <p class="math">\(\sqrt[y]{z}=x\)</p> + <p class="math">\(log_{x}(z)=y\)</p> + <br /> + <p class="math">\(x^n=\frac{1}{x^{-n}}, x \lt 0\)</p> + <p class="math">\(x^0=1\)</p> + <p class="math">\(x^{\frac{a}{b}}=\sqrt[b]{x^a}\)</p> + <br /> + <p class="math">\(\frac{x}{y}=x\frac{1}{y}\)</p> + <p class="math">\(\frac{x}{y}+n=\frac{x+n y}{y}\)</p> + <p class="math">\(\frac{x}{y}+\frac{a}{b}=\frac{x b+ay}{yb}\)</p> + <p class="math">\(\frac{x}{y}n=\frac{xn}{y}\)</p> + <p class="math">\(\frac{x}{y}\frac{a}{b}=\frac{x a}{y b}\)</p> + <p class="math">\(\frac{x}{\frac{a}{b}}=\frac{xb}{a}\)</p> + <p class="math">\(\frac{\frac{x}{y}}{z}=\frac{x}{yz}\)</p> + <p class="math">\(\frac{\frac{x}{y}}{\frac{a}{b}}=\frac{xb}{ya}\)</p> + <br /> + <p class="math">\(x^ax^b=x^{a+b}\)</p> + <p class="math">\(\frac{x^a}{x^b}=x^{a-b}\)</p> + <p class="math">\(x^ay^a=(xy)^a\)</p> + <p class="math">\(\frac{x^a}{y^a}=(\frac{x}{y})^a\)</p> + <p class="math">\((x^a)^b=x^{ab}\)</p> </div> <div class="section" id="equations"> <p class="large">Ligninger</p> <p>Andengrads:</p> - <p class="math">\(ax^2 + bx + c = 0\)</p> - <p class="math">\(x = \frac{-b \pm \sqrt[2]{d}}{2a}\)</p> - <p class="math">\(d = b^2 - 4ac\)</p> + <p class="math">\(ax^2+bx+c=0\)</p> + <p class="math">\(x=\frac{-b \pm \sqrt[2]{d}}{2a}\)</p> + <p class="math">\(d=b^2-4ac\)</p> </div> <div class="section" id="functions"> <p class="large">Funktioner</p> - <p class="math">\(y = f(x)\)</p> - <p class="math">\(x = f^{-1}(y)\)</p> + <p class="math">\(y=f(x)\)</p> + <p class="math">\(x=f^{-1}(y)\)</p> <br /> <p>Lineær:</p> - <p class="math">\(f(x) = ax + b\)</p> - <p class="math">\(a = \frac{y_1 - y_0}{x_1 - x_0}\)</p> - <p class="math">\(b = y - ax\)</p> - <p class="math">\(f(0) = b\)</p> + <p class="math">\(f(x)=ax+b\)</p> + <p class="math">\(a=\frac{y_1-y_0}{x_1-x_0}\)</p> + <p class="math">\(b=y-ax\)</p> + <p class="math">\(f(0)=b\)</p> <br /> <p>Eksponentiel:</p> - <p class="math">\(f(x) = ba^x\)</p> - <p class="math">\(a = \sqrt[x_1 - x_0]{\frac{y_1}{y_{0}}}\)</p> - <p class="math">\(b = \frac{y}{a^x}\)</p> - <p class="math">\(f(0) = b\)</p> + <p class="math">\(f(x)=ba^x\)</p> + <p class="math">\(a=\sqrt[x_1-x_0]{\frac{y_1}{y_{0}}}\)</p> + <p class="math">\(b=\frac{y}{a^x}\)</p> + <p class="math">\(f(0)=b\)</p> <br /> <p>Potens:</p> - <p class="math">\(f(x) = bx^a\)</p> - <p class="math">\(a = \frac{log_n(y_1) - log_n(y_0)}{log_n(x_1) - log_n(x_1)}\)</p> - <p class="math">\(b = \frac{y}{x^a}\)</p> - <p class="math">\(f(0) = 0\)</p> - <p class="math">\(f(1) = b\)</p> + <p class="math">\(f(x)=bx^a\)</p> + <p class="math">\(a=\frac{log_n(y_1)-log_n(y_0)}{log_n(x_1)-log_n(x_1)}\)</p> + <p class="math">\(b=\frac{y}{x^a}\)</p> + <p class="math">\(f(0)=0\)</p> + <p class="math">\(f(1)=b\)</p> <br /> <p>Andengrads:</p> - <p class="math">\(f(x) = ax^2 + bx + c\)</p> + <p class="math">\(f(x)=ax^2+bx+c\)</p> </div> <div class="section" id="trigonometry"> <p class="large">Trigonometri</p> - <p class="math">\(modliggende_{\angle A} = hosliggende_{\angle B} = a\)</p> - <p class="math">\(hosliggende_{\angle A} = modliggende_{\angle B} = b\)</p> - <p class="math">\(hypotenuse = modliggende_{\angle C} = c\)</p> - <br /> - <p class="math">\(sin(\theta) = \frac{modliggende}{hypotenuse}\)</p> - <p class="math">\(cos(\theta) = \frac{hosliggende}{hypotenuse}\)</p> - <p class="math">\(tan(\theta) = \frac{modliggende}{hosliggende}\)</p> - <p class="math">\(cot(\theta) = \frac{hosliggende}{modliggende}\)</p> - <p class="math">\(csc(\theta) = \frac{hypotenuse}{modliggende}\)</p> - <p class="math">\(sec(\theta) = \frac{hypotenuse}{hosliggende}\)</p> - <br /> - <p class="math">\(sin^{-1} (\frac{modliggende}{hypotenuse}) = \theta\)</p> - <p class="math">\(cos^{-1} (\frac{hosliggende}{hypotenuse}) = \theta\)</p> - <p class="math">\(tan^{-1} (\frac{modliggende}{hosliggende}) = \theta\)</p> - <p class="math">\(cot^{-1} (\frac{hosliggende}{modliggende}) = \theta\)</p> - <p class="math">\(csc^{-1} (\frac{hypotenuse}{modliggende}) = \theta\)</p> - <p class="math">\(sec^{-1} (\frac{hypotenuse}{hosliggende}) = \theta\)</p> + <p class="math">\(modliggende_{\angle A}=hosliggende_{\angle B}=a\)</p> + <p class="math">\(hosliggende_{\angle A}=modliggende_{\angle B}=b\)</p> + <p class="math">\(hypotenuse=modliggende_{\angle C}=c\)</p> + <br /> + <p class="math">\(sin(\theta)=\frac{modliggende}{hypotenuse}\)</p> + <p class="math">\(cos(\theta)=\frac{hosliggende}{hypotenuse}\)</p> + <p class="math">\(tan(\theta)=\frac{modliggende}{hosliggende}\)</p> + <p class="math">\(cot(\theta)=\frac{hosliggende}{modliggende}\)</p> + <p class="math">\(csc(\theta)=\frac{hypotenuse}{modliggende}\)</p> + <p class="math">\(sec(\theta)=\frac{hypotenuse}{hosliggende}\)</p> + <br /> + <p class="math">\(sin^{-1}(\frac{modliggende}{hypotenuse})=\theta\)</p> + <p class="math">\(cos^{-1}(\frac{hosliggende}{hypotenuse})=\theta\)</p> + <p class="math">\(tan^{-1}(\frac{modliggende}{hosliggende})=\theta\)</p> + <p class="math">\(cot^{-1}(\frac{hosliggende}{modliggende})=\theta\)</p> + <p class="math">\(csc^{-1}(\frac{hypotenuse}{modliggende})=\theta\)</p> + <p class="math">\(sec^{-1}(\frac{hypotenuse}{hosliggende})=\theta\)</p> <br /> <p>Forkortelser:</p> - <p class="math">\(sin = sinus\)</p> - <p class="math">\(cos = cosinus\)</p> - <p class="math">\(tan = tangens\)</p> - <p class="math">\(cot = cotangens\)</p> - <p class="math">\(csc = cosekant\)</p> - <p class="math">\(sec = sekant\)</p> - <p class="math">\(arcsin = sin^{-1}\)</p> - <p class="math">\(arccos = cos^{-1}\)</p> - <p class="math">\(arctan = tan^{-1}\)</p> - <p class="math">\(arccot = cot^{-1}\)</p> - <p class="math">\(arcsec = sec^{-1}\)</p> - <p class="math">\(arccsc = csc^{-1}\)</p> - <br /> - <p class="math">\(deg(rad) = \frac{rad\pi}{180}\)</p> - <p class="math">\(rad(deg) = \frac{deg180}{\pi}\)</p> - <br /> - <p class="math">\(vinkelsum(x) = (x - 2)\pi\)</p> - <p class="math">\(vinkelsum(3) = (3 - 2)\pi = \pi\)</p> - <br /> - <p class="math">\(\angle A = sin^{-1} (\frac{a}{c}) = cos^{-1} (\frac{b}{c}) = tan^{-1} (\frac{a}{b}) = vinkelsum(3) - \angle B - \angle C\)</p> - <p class="math">\(\angle B = sin^{-1} (\frac{b}{c}) = cos^{-1} (\frac{a}{c}) = tan^{-1} (\frac{b}{a}) = vinkelsum(3) - \angle A - \angle C\)</p> - <p class="math">\(\angle C = vinkelsum(3) - \angle A - \angle B\)</p> + <p class="math">\(sin=sinus\)</p> + <p class="math">\(cos=cosinus\)</p> + <p class="math">\(tan=tangens\)</p> + <p class="math">\(cot=cotangens\)</p> + <p class="math">\(csc=cosekant\)</p> + <p class="math">\(sec=sekant\)</p> + <p class="math">\(arcsin=sin^{-1}\)</p> + <p class="math">\(arccos=cos^{-1}\)</p> + <p class="math">\(arctan=tan^{-1}\)</p> + <p class="math">\(arccot=cot^{-1}\)</p> + <p class="math">\(arcsec=sec^{-1}\)</p> + <p class="math">\(arccsc=csc^{-1}\)</p> + <br /> + <p class="math">\(deg(rad)=\frac{rad \cdot 180}{\pi}\)</p> + <p class="math">\(rad(deg)=\frac{deg \cdot \pi}{180}\)</p> + <br /> + <p class="math">\(vinkelsum(x)=(x-2)\pi\)</p> + <p class="math">\(vinkelsum(3)=(3-2)\pi=\pi\)</p> + <br /> + <p class="math">\(\angle A=sin^{-1}(\frac{a}{c})=cos^{-1}(\frac{b}{c})=tan^{-1}(\frac{a}{b})=vinkelsum(3)-\angle B-\angle C\)</p> + <p class="math">\(\angle B=sin^{-1}(\frac{b}{c})=cos^{-1}(\frac{a}{c})=tan^{-1}(\frac{b}{a})=vinkelsum(3)-\angle A-\angle C\)</p> + <p class="math">\(\angle C=vinkelsum(3)-\angle A-\angle B\)</p> <p>I en regulær trekant:</p> - <p class="math">\(\angle A = \angle B = \angle C\)</p> + <p class="math">\(\angle A=\angle B=\angle C\)</p> <p>I en retvinklet trekant:</p> - <p class="math">\(\angle C = \frac{\pi}{2}\)</p> + <p class="math">\(\angle C=\frac{\pi}{2}\)</p> <br /> - <p class="math">\(a = c \cdot sin(\angle A) = c \cdot cos(\angle B) = b \cdot tan(\angle A) = b \cdot cot(\angle B)\)</p> - <p class="math">\(b = c \cdot sin(\angle B) = c \cdot cos(\angle A) = a \cdot tan(\angle B) = a \cdot cot(\angle A)\)</p> - <p class="math">\(c = a \cdot csc(\angle A) = b \cdot csc(\angle B) = a \cdot sec(\angle B) = b \cdot sec(\angle A)\)</p> + <p class="math">\(a=c \cdot sin(\angle A)=c \cdot cos(\angle B)=b \cdot tan(\angle A)=b \cdot cot(\angle B)\)</p> + <p class="math">\(b=c \cdot sin(\angle B)=c \cdot cos(\angle A)=a \cdot tan(\angle B)=a \cdot cot(\angle A)\)</p> + <p class="math">\(c=a \cdot csc(\angle A)=b \cdot csc(\angle B)=a \cdot sec(\angle B)=b \cdot sec(\angle A)\)</p> <p>I en regulær trekant:</p> - <p class="math">\(a = b = c\)</p> + <p class="math">\(a=b=c\)</p> <p>I en retvinklet trekant:</p> - <p class="math">\(a = \sqrt[2]{c - b^2}\)</p> - <p class="math">\(b = \sqrt[2]{c - a^2}\)</p> - <p class="math">\(c = \sqrt[2]{a^2 + b^2}\)</p> + <p class="math">\(a=\sqrt[2]{c-b^2}\)</p> + <p class="math">\(b=\sqrt[2]{c-a^2}\)</p> + <p class="math">\(c=\sqrt[2]{a^2+b^2}\)</p> <p>I en retvinklet trekant, hvori kateterne har samme længde:</p> - <p class="math">\(a = b = \sqrt[2]{\frac{c^2}{2}}\)</p> + <p class="math">\(a=b=\sqrt[2]{\frac{c^2}{2}}\)</p> <br /> - <p class="math">\(O = a + b + c\)</p> - <p class="math">\(A = \frac{b h}{2}\)</p> + <p class="math">\(O=a+b+c\)</p> + <p class="math">\(A=\frac{b h}{2}\)</p> <p>Mellem to ligedannede trekanter:</p> - <p class="math">\(\angle A_1 = \angle A_0\)</p> - <p class="math">\(\angle B_1 = \angle B_0\)</p> - <p class="math">\(\angle C_1 = \angle C_0\)</p> - <p class="math">\(k = \frac{a_1}{a_0} = \frac{b_1}{b_0} = \frac{c_1}{c_0}\)</p> - <p class="math">\(a_1 = a_0 k\)</p> - <p class="math">\(b_1 = b_0 k\)</p> - <p class="math">\(c_1 = c_0 k\)</p> - <p class="math">\(O_1 = O_0 k\)</p> - <p class="math">\(A_1 = A_0 k^2\)</p> + <p class="math">\(\angle A_1=\angle A_0\)</p> + <p class="math">\(\angle B_1=\angle B_0\)</p> + <p class="math">\(\angle C_1=\angle C_0\)</p> + <p class="math">\(k=\frac{a_1}{a_0}=\frac{b_1}{b_0}=\frac{c_1}{c_0}\)</p> + <p class="math">\(a_1=a_0 k\)</p> + <p class="math">\(b_1=b_0 k\)</p> + <p class="math">\(c_1=c_0 k\)</p> + <p class="math">\(O_1=O_0 k\)</p> + <p class="math">\(A_1=A_0 k^2\)</p> </div> <div class="section" id="constants"> <p class="large">Konstanter</p> @@ -187,10 +187,10 @@ </table> <p class="math">\(\sqrt[2]{2} \approx \frac{1\ 414\ 213\ 562}{10^9}\)</p> <p class="math">\(\sqrt[2]{3} \approx \frac{1\ 732\ 050\ 808}{10^9}\)</p> - <p class="math">\(e = \sum_{n = 0}^\infty \frac{1}{n!} \approx \frac{2\ 718\ 281\ 828}{10^9}\)</p> - <p class="math">\(i = \sqrt[2]{-1}\)</p> + <p class="math">\(e=\sum_{n=0}^\infty \frac{1}{n!} \approx \frac{2\ 718\ 281\ 828}{10^9}\)</p> + <p class="math">\(i=\sqrt[2]{-1}\)</p> <p class="math">\(\pi \approx \frac{3\ 141\ 592\ 654}{10^9}\)</p> - <p class="math">\(\phi = \frac{1 + \sqrt[2]{5}}{2} \approx \frac{1\ 618\ 033\ 989}{10^9}\)</p> + <p class="math">\(\phi=\frac{1+\sqrt[2]{5}}{2} \approx \frac{1\ 618\ 033\ 989}{10^9}\)</p> </div> </div> <!--#include virtual="/include/pgftr.shtml"--> diff --git a/html/encyclopedia/physics.html b/html/encyclopedia/physics.html index 55ce182..394d7b2 100644 --- a/html/encyclopedia/physics.html +++ b/html/encyclopedia/physics.html @@ -34,7 +34,7 @@ <td class="math">\(kg\)</td> </tr> <tr> - <td>distance</td> + <td>afstand</td> <td class="math">\(s\)</td> <td>meter</td> <td class="math">\(m\)</td> @@ -118,12 +118,6 @@ <td class="math">\(\frac{J}{K \cdot kg}\)</td> </tr> <tr> - <td>hastighed</td> - <td class="math">\(v\)</td> - <td>meter pr. sekund</td> - <td class="math">\(\frac{m}{s}\)</td> - </tr> - <tr> <td>volumen</td> <td class="math">\(V\)</td> <td>kubikmeter</td> @@ -142,7 +136,7 @@ <td class="math">\(\frac{kg}{m^3}\)</td> </tr> </table> - <p>Yderligere mål:</p> + <p>Variante mål:</p> <table> <tr> <th>Mål</th> @@ -175,37 +169,92 @@ <td>distance</td> </tr> </table> + <p>Mål med variante enheder:</p> + <table> + <tr> + <th>Mål</th> + <th>Enheder</th> + <th>Symboler<sub> af enheder</sub></th> + </tr> + <tr> + <td rowspan="2">masse</td> + <td>dalton</td> + <td class="math">\(u\)</td> + </tr> + <tr> + <td>gram</td> + <td class="math">\(g\)</td> + </tr> + <tr> + <td rowspan="4">afstand</td> + <td>astronomisk enhed</td> + <td class="math">\(au\)</td> + </tr> + <tr> + <td>lyssekund</td> + <td class="math">\(ls\)</td> + </tr> + <tr> + <td>lysår</td> + <td class="math">\(ly\)</td> + </tr> + <tr> + <td>parsec</td> + <td class="math">\(pc\)</td> + </tr> + <tr> + <td>temperatur</td> + <td>grader celsius</td> + <td class="math">\({}^{\circ}C\)</td> + </tr> + <tr> + <td>hastighed</td> + <td>kilometer pr. time</td> + <td class="math">\(\frac{km}{h}\)</td> + </tr> + </table> + <p class="math">\(1\ g=\frac{1}{1000}\ kg\)</p> + <p class="math">\(1\ u=m_u\)</p> + <br /> + <p class="math">\(1\ au=149\ 597\ 870\ 700\ m\)</p> + <p class="math">\(1\ ls=c \cdot 1\ s=299\ 792\ 458\ m\)</p> + <p class="math">\(1\ ly=c \cdot 31\ 557\ 600\ s=9\ 460\ 730\ 472\ 580\ 800\ m\)</p> + <p class="math">\(1\ pc=1\ au \cdot cot(1^{\prime \prime})=30\ 856\ 775\ 814\ 671\ 916\ m\)</p> + <br /> + <p class="math">\(1\ {}^{\circ}C=\frac{5463}{20}\ K\)</p> + <br /> + <p class="math">\(1\ \frac{km}{h}=\frac{5}{18}\ \frac{m}{s}\)</p> </div> <div class="section" id="formulas"> <p class="large">Formler</p> - <p class="math">\(a = \frac{F}{m}\)</p> + <p class="math">\(a=\frac{F}{m}\)</p> <p>På en planet:</p> - <p class="math">\(g = \frac{Gm}{r^{2}}\)</p> + <p class="math">\(g=\frac{Gm}{r^{2}}\)</p> <p>... hvori <i>r</i> er afstanden til planetens kerne.</p> - <p class="math">\(g = \frac{981}{100} \frac{m}{s^2}\)</p> + <p class="math">\(g=\frac{981}{100}\ \frac{m}{s^2}\)</p> <p>... er standard på Jorden.</p> <br /> - <p class="math">\(E = Fs\)</p> - <p class="math">\(E = Pt\)</p> - <p class="math">\(K = \frac{mv^{2}}{2}\)</p> - <p class="math">\(Q = CT = cmT\)</p> + <p class="math">\(E=Fs\)</p> + <p class="math">\(E=Pt\)</p> + <p class="math">\(K=\frac{mv^{2}}{2}\)</p> + <p class="math">\(Q=CT=cmT\)</p> <p>Gravitation:</p> - <p class="math">\(U = Fs = mgs\)</p> + <p class="math">\(U=Fs=mgs\)</p> <p>... hvori <i>F</i> er tyngdekraften og <i>g</i> er den lokale tyngeacceleration.</p> <br /> - <p class="math">\(F = ma\)</p> - <p class="math">\(F = \frac{E}{s}\)</p> + <p class="math">\(F=ma\)</p> + <p class="math">\(F=\frac{E}{s}\)</p> <p>Gravtitation mellem to objekter:</p> - <p class="math">\(F = \frac{Gm_{0}m_{1}}{r^{2}}\)</p> + <p class="math">\(F=\frac{Gm_{0}m_{1}}{r^{2}}\)</p> <p>... <i>m_0</i> og <i>m_1</i> er masserne af objekterne og <i>r</i> er distancen mellem centrene af de to objekter.</p> <br /> - <p class="math">\(P = \frac{E}{t}\)</p> + <p class="math">\(P=\frac{E}{t}\)</p> <br /> - <p class="math">\(p = \frac{F}{A}\)</p> + <p class="math">\(p=\frac{F}{A}\)</p> <br /> - <p class="math">\(\lambda = \frac{v}{f}\)</p> + <p class="math">\(\lambda=\frac{v}{f}\)</p> <br /> - <p class="math">\(\rho = \frac{m}{V}\)</p> + <p class="math">\(\rho=\frac{m}{V}\)</p> </div> <div class="section" id="constants"> <p class="large">Konstanter</p> @@ -240,12 +289,12 @@ </tr> </table> <p class="graphicText">Evt. se <a href="/html/encyclopedia/mathematics.html#constants">matematikkens konstanter</a>.</p> - <p class="math">\(c = 299\ 792\ 458\ \frac{m}{s}\)</p> - <p class="math">\(e = \frac{1\ 602\ 176\ 634}{10^{28}}\ C\)</p> + <p class="math">\(c=299\ 792\ 458\ \frac{m}{s}\)</p> + <p class="math">\(e=\frac{1\ 602\ 176\ 634}{10^{28}}\ C\)</p> <p class="math">\(G \approx \frac{66\ 743}{10^{15}}\ \frac{m^3}{kg \cdot s^2}\)</p> - <p class="math">\(h = \frac{662\ 607\ 015}{10^{42}}\ \frac{J}{Hz}\)</p> - <p class="math">\(k_B = \frac{1\ 380\ 649}{10^{29}}\ \frac{J}{K}\)</p> - <p class="math">\(\sigma = \frac{2\pi^5k_B^4}{15h^3c^2} \approx \frac{5\ 670\ 374\ 419}{10^{17}}\ \frac{W}{m^2K^4}\)</p> + <p class="math">\(h=\frac{662\ 607\ 015}{10^{42}}\ \frac{J}{Hz}\)</p> + <p class="math">\(k_B=\frac{1\ 380\ 649}{10^{29}}\ \frac{J}{K}\)</p> + <p class="math">\(\sigma=\frac{2\pi^5k_B^4}{15h^3c^2} \approx \frac{5\ 670\ 374\ 419}{10^{17}}\ \frac{W}{m^2K^4}\)</p> </div> </div> <!--#include virtual="/include/pgftr.shtml"--> diff --git a/html/encyclopedia/social-science.html b/html/encyclopedia/social-science.html new file mode 100644 index 0000000..f00dd72 --- /dev/null +++ b/html/encyclopedia/social-science.html @@ -0,0 +1,14 @@ +<!DOCTYPE html> +<html lang="da"> + <!--#include virtual="/include/head.shtml"--> + <body> + <!--#include virtual="/include/pghdr.shtml"--> + <div class="content"> + <p class="pageTitle">Leksikon<sub> Samfundsfag</sub></p> + <div class="section"> + <p>Kommer senere.</p> + </div> + </div> + <!--#include virtual="/include/pgftr.shtml"--> + </body> +</html> |