90 lines
3.7 KiB
Rust
90 lines
3.7 KiB
Rust
use crate::constructor::{Constructor, SplitConstructorSet};
|
|
use crate::pat::{DeconstructedPat, PatOrWild};
|
|
use crate::{MatchArm, PatCx};
|
|
|
|
/// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that
|
|
/// inspect the same subvalue/place".
|
|
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
|
|
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
|
|
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
|
|
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
|
|
///
|
|
/// This is not used in the usefulness algorithm; only in lints.
|
|
#[derive(Debug)]
|
|
pub struct PatternColumn<'p, Cx: PatCx> {
|
|
/// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
|
|
patterns: Vec<&'p DeconstructedPat<Cx>>,
|
|
}
|
|
|
|
impl<'p, Cx: PatCx> PatternColumn<'p, Cx> {
|
|
pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
|
|
let patterns = Vec::with_capacity(arms.len());
|
|
let mut column = PatternColumn { patterns };
|
|
for arm in arms {
|
|
column.expand_and_push(PatOrWild::Pat(arm.pat));
|
|
}
|
|
column
|
|
}
|
|
/// Pushes a pattern onto the column, expanding any or-patterns into its subpatterns.
|
|
/// Internal method, prefer [`PatternColumn::new`].
|
|
fn expand_and_push(&mut self, pat: PatOrWild<'p, Cx>) {
|
|
// We flatten or-patterns and skip algorithm-generated wildcards.
|
|
if pat.is_or_pat() {
|
|
self.patterns.extend(
|
|
pat.flatten_or_pat().into_iter().filter_map(|pat_or_wild| pat_or_wild.as_pat()),
|
|
)
|
|
} else if let Some(pat) = pat.as_pat() {
|
|
self.patterns.push(pat)
|
|
}
|
|
}
|
|
|
|
pub fn head_ty(&self) -> Option<&Cx::Ty> {
|
|
self.patterns.first().map(|pat| pat.ty())
|
|
}
|
|
pub fn iter(&self) -> impl Iterator<Item = &'p DeconstructedPat<Cx>> {
|
|
self.patterns.iter().copied()
|
|
}
|
|
|
|
/// Do constructor splitting on the constructors of the column.
|
|
pub fn analyze_ctors(
|
|
&self,
|
|
cx: &Cx,
|
|
ty: &Cx::Ty,
|
|
) -> Result<SplitConstructorSet<Cx>, Cx::Error> {
|
|
let column_ctors = self.patterns.iter().map(|p| p.ctor());
|
|
let ctors_for_ty = cx.ctors_for_ty(ty)?;
|
|
Ok(ctors_for_ty.split(column_ctors))
|
|
}
|
|
|
|
/// Does specialization: given a constructor, this takes the patterns from the column that match
|
|
/// the constructor, and outputs their fields.
|
|
/// This returns one column per field of the constructor. They usually all have the same length
|
|
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
|
|
/// which may change the lengths.
|
|
pub fn specialize(
|
|
&self,
|
|
cx: &Cx,
|
|
ty: &Cx::Ty,
|
|
ctor: &Constructor<Cx>,
|
|
) -> Vec<PatternColumn<'p, Cx>> {
|
|
let arity = ctor.arity(cx, ty);
|
|
if arity == 0 {
|
|
return Vec::new();
|
|
}
|
|
|
|
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
|
|
// columns may have different lengths in the presence of or-patterns (this is why we can't
|
|
// reuse `Matrix`).
|
|
let mut specialized_columns: Vec<_> =
|
|
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
|
|
let relevant_patterns =
|
|
self.patterns.iter().filter(|pat| ctor.is_covered_by(cx, pat.ctor()).unwrap_or(false));
|
|
for pat in relevant_patterns {
|
|
let specialized = pat.specialize(ctor, arity);
|
|
for (subpat, column) in specialized.into_iter().zip(&mut specialized_columns) {
|
|
column.expand_and_push(subpat);
|
|
}
|
|
}
|
|
specialized_columns
|
|
}
|
|
}
|