Use Backtrace::force_capture instead of Backtrace::capture in rustc_log
After https://github.com/rust-lang/rust/pull/125063, the compiler and custom drivers won't automatically set the RUST_BACKTRACE environment variable anymore, so we have to call `Backtrace::force_capture` instead of `Backtrace::capture` to unconditionally capture a backtrace.
rustc_log handles enabling backtraces via env vars itself, so we don't want RUST_BACKTRACE to make a difference.
Force the inner coroutine of an async closure to `move` if the outer closure is `move` and `FnOnce`
See the detailed comment in `upvar.rs`.
Fixes#124867.
Fixes#124487.
r? oli-obk
reference type safety invariant docs: clarification
The old text could have been read as saying that you can call a function if these requirements are upheld, which is definitely not true as they are an underapproximation of the actual safety invariant.
I removed the part about functions relaxing the requirements via their documentation... this seems incoherent with saying that it may actually be unsound to ever temporarily violate the requirement. Furthermore, a function *cannot* just relax this for its return value, that would in general be unsound. And the part about "unsafe code in a safe function may assume these invariants are ensured of arguments passed by the caller" also interacts with relaxing things: clearly, if the invariant has been relaxed, unsafe code cannot rely on it any more. There may be a place to give general guidance on what kinds of function contracts can exist, but the reference type is definitely not the right place to write that down.
I also took a clarification from https://github.com/rust-lang/rust/pull/121965 that is orthogonal to the rest of that PR.
Cc ```@joshlf``` ```@scottmcm```
Add a footer in FileEncoder and check for it in MemDecoder
We have a few reports of ICEs due to decoding failures, where the fault does not lie with the compiler. The goal of this PR is to add some very lightweight and on-by-default validation to the compiler's outputs. If validation fails, we emit a fatal error for rmeta files in general that mentions the path that didn't load, and for incremental compilation artifacts we emit a verbose warning that tries to explain the situation and treat the artifacts as outdated.
The validation currently implemented here is very crude, and yet I think we have 11 ICE reports currently open (you can find them by searching issues for `1002111927320821928687967599834759150`) which this simple validation would have detected. The structure of the code changes here should permit the addition of further validation code, such as a checksum, if it is merited. I would like to have code to detect corruption such as reported in https://github.com/rust-lang/rust/issues/124719, but I'm not yet sure how to do that efficiently, and this PR is already a good size.
The ICE reports I have in mind that this PR would have smoothed over are:
https://github.com/rust-lang/rust/issues/124469https://github.com/rust-lang/rust/issues/123352https://github.com/rust-lang/rust/issues/123376 [^1]
https://github.com/rust-lang/rust/issues/99763https://github.com/rust-lang/rust/issues/93900.
---
[^1]: This one might be a compiler bug, but even if it is I think the workflow described is pushing the envelope of what we can support. This issue is one of the reasons this warning still asks people to file an issue.
offset: allow zero-byte offset on arbitrary pointers
As per prior `@rust-lang/opsem` [discussion](https://github.com/rust-lang/opsem-team/issues/10) and [FCP](https://github.com/rust-lang/unsafe-code-guidelines/issues/472#issuecomment-1793409130):
- Zero-sized reads and writes are allowed on all sufficiently aligned pointers, including the null pointer
- Inbounds-offset-by-zero is allowed on all pointers, including the null pointer
- `offset_from` on two pointers derived from the same allocation is always allowed when they have the same address
This removes surprising UB (in particular, even C++ allows "nullptr + 0", which we currently disallow), and it brings us one step closer to an important theoretical property for our semantics ("provenance monotonicity": if operations are valid on bytes without provenance, then adding provenance can't make them invalid).
The minimum LLVM we require (v17) includes https://reviews.llvm.org/D154051, so we can finally implement this.
The `offset_from` change is needed to maintain the equivalence with `offset`: if `let ptr2 = ptr1.offset(N)` is well-defined, then `ptr2.offset_from(ptr1)` should be well-defined and return N. Now consider the case where N is 0 and `ptr1` dangles: we want to still allow offset_from here.
I think we should change offset_from further, but that's a separate discussion.
Fixes https://github.com/rust-lang/rust/issues/65108
[Tracking issue](https://github.com/rust-lang/rust/issues/117945) | [T-lang summary](https://github.com/rust-lang/rust/pull/117329#issuecomment-1951981106)
Cc `@nikic`
Make sure that the method resolution matches in `note_source_of_type_mismatch_constraint`
`note_source_of_type_mismatch_constraint` is a pile of hacks that I implemented to cover up another pile of hacks.
It does a bunch of re-confirming methods, but it wasn't previously checking that the methods it was looking (back) up were equal to the methods we previously had. This PR adds those checks.
Fixes#118185
Move `#[do_not_recommend]` to the `#[diagnostic]` namespace
This commit moves the `#[do_not_recommend]` attribute to the `#[diagnostic]` namespace. It still requires
`#![feature(do_not_recommend)]` to work.
r? `@compiler-errors`
Translation of the lint message happens when the actual diagnostic is
created, not when the lint is buffered. Generating the message from
BuiltinLintDiag ensures that all required data to construct the message
is preserved in the LintBuffer, eventually allowing the messages to be
moved to fluent.
Remove the `msg` field from BufferedEarlyLint, it is either generated
from the data in the BuiltinLintDiag or stored inside
BuiltinLintDiag::Normal.
Don't do cc detection for synthetic targets
Fixes https://github.com/rust-lang/rust/issues/125365
Synthetic targets only exist for mir-opt tests, and the mir-opt test suite is in general designed to avoid any use of a C compiler. We don't need to do CC detection. It's unclear to me how this code didn't cause issues before.
add pull request template asking for relevant tracking issues
As mentioned at RustNation, I would like to remind PR authors to link to relevant tracking issues when opening PRs as it is otherwise very easy to forget doing so.
There's a certain amount of conflict between making the template as small as possible while still being clear for new contributors. I am very much open to changes here but really want to try this out.
Also unsure how much formal buy-in we need here. Maybe merge this pinging t-compiler and t-libs, and then ask how people feel about this on zulip in a few weeks?
r? `@davidtwco`
Fix incorrect suggestion for undeclared hrtb lifetimes in where clauses.
For poly-trait-ref like `for<'a> Trait<T>` in `T: for<'a> Trait<T> + 'b { }`.
We should merge the hrtb lifetimes: existed `for<'a>` and suggestion `for<'b>` or will get err: [E0316] nested quantification of lifetimes
fixes#122714
Relax restrictions on multiple sanitizers
Most combinations of LLVM sanitizers are legal-enough to enable simultaneously. This change will allow simultaneously enabling ASAN and shadow call stacks on supported platforms.
I used this python script to generate the mutually-exclusive sanitizer combinations:
```python
#!/usr/bin/python3
import subprocess
flags = [
["-fsanitize=address"],
["-fsanitize=leak"],
["-fsanitize=memory"],
["-fsanitize=thread"],
["-fsanitize=hwaddress"],
["-fsanitize=cfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=memtag", "--target=aarch64-linux-android", "-march=armv8a+memtag"],
["-fsanitize=shadow-call-stack"],
["-fsanitize=kcfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=kernel-address"],
["-fsanitize=safe-stack"],
["-fsanitize=dataflow"],
]
for i in range(len(flags)):
for j in range(i):
command = ["clang++"] + flags[i] + flags[j] + ["-o", "main.o", "-c", "main.cpp"]
completed = subprocess.run(command, stderr=subprocess.DEVNULL)
if completed.returncode != 0:
first = flags[i][0][11:].replace('-', '').upper()
second = flags[j][0][11:].replace('-', '').upper()
print(f"(SanitizerSet::{first}, SanitizerSet::{second}),")
```