rust/compiler/rustc_trait_selection/src/solve/trait_goals.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

726 lines
29 KiB
Rust
Raw Normal View History

//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.
use super::assembly::{self, structural_traits};
use super::{EvalCtxt, SolverMode};
use rustc_hir::def_id::DefId;
use rustc_hir::{LangItem, Movability};
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::supertraits;
2023-02-15 02:08:05 +00:00
use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, QueryResult};
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams, TreatProjections};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt};
2023-02-22 02:18:40 +00:00
use rustc_middle::ty::{TraitPredicate, TypeVisitableExt};
use rustc_span::DUMMY_SP;
2022-12-19 07:01:38 +00:00
impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
fn self_ty(self) -> Ty<'tcx> {
self.self_ty()
}
2023-03-21 16:26:23 +01:00
fn trait_ref(self, _: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
self.trait_ref
}
2022-12-19 07:01:38 +00:00
fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
self.with_self_ty(tcx, self_ty)
}
fn trait_def_id(self, _: TyCtxt<'tcx>) -> DefId {
self.def_id()
}
fn consider_impl_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
2022-12-19 07:01:38 +00:00
goal: Goal<'tcx, TraitPredicate<'tcx>>,
impl_def_id: DefId,
) -> QueryResult<'tcx> {
let tcx = ecx.tcx();
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
2023-03-12 00:59:54 +00:00
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::ForLookup };
if !drcx.substs_refs_may_unify(
goal.predicate.trait_ref.substs,
impl_trait_ref.skip_binder().substs,
) {
return Err(NoSolution);
2022-12-19 07:01:38 +00:00
}
2023-03-21 16:26:23 +01:00
let impl_polarity = tcx.impl_polarity(impl_def_id);
// An upper bound of the certainty of this goal, used to lower the certainty
// of reservation impl to ambiguous during coherence.
let maximal_certainty = match impl_polarity {
ty::ImplPolarity::Positive | ty::ImplPolarity::Negative => {
match impl_polarity == goal.predicate.polarity {
true => Certainty::Yes,
false => return Err(NoSolution),
}
}
ty::ImplPolarity::Reservation => match ecx.solver_mode() {
SolverMode::Normal => return Err(NoSolution),
SolverMode::Coherence => Certainty::AMBIGUOUS,
},
};
ecx.probe(|ecx| {
let impl_substs = ecx.fresh_substs_for_item(impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);
2022-12-19 07:01:38 +00:00
ecx.eq(goal.param_env, goal.predicate.trait_ref, impl_trait_ref)?;
let where_clause_bounds = tcx
.predicates_of(impl_def_id)
.instantiate(tcx, impl_substs)
.predicates
.into_iter()
.map(|pred| goal.with(tcx, pred));
ecx.add_goals(where_clause_bounds);
2023-03-21 16:26:23 +01:00
ecx.evaluate_added_goals_and_make_canonical_response(maximal_certainty)
2022-12-19 07:01:38 +00:00
})
}
fn probe_and_match_goal_against_assumption(
2023-01-17 19:50:50 +00:00
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
then: impl FnOnce(&mut EvalCtxt<'_, 'tcx>) -> QueryResult<'tcx>,
) -> QueryResult<'tcx> {
if let Some(poly_trait_pred) = assumption.to_opt_poly_trait_pred()
&& poly_trait_pred.def_id() == goal.predicate.def_id()
2023-04-22 03:54:33 +00:00
&& poly_trait_pred.polarity() == goal.predicate.polarity
{
2023-04-22 03:54:33 +00:00
// FIXME: Constness
ecx.probe(|ecx| {
2023-01-18 14:40:16 +00:00
let assumption_trait_pred =
ecx.instantiate_binder_with_infer(poly_trait_pred);
ecx.eq(
2023-01-17 19:50:50 +00:00
goal.param_env,
2023-01-18 14:40:16 +00:00
goal.predicate.trait_ref,
assumption_trait_pred.trait_ref,
2023-01-17 19:50:50 +00:00
)?;
then(ecx)
})
} else {
Err(NoSolution)
}
}
2023-01-17 20:16:30 +00:00
fn consider_auto_trait_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
if let Some(result) = ecx.disqualify_auto_trait_candidate_due_to_possible_impl(goal) {
return result;
}
ecx.probe_and_evaluate_goal_for_constituent_tys(
goal,
structural_traits::instantiate_constituent_tys_for_auto_trait,
)
2023-01-17 20:16:30 +00:00
}
fn consider_trait_alias_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
2023-01-17 20:16:30 +00:00
let tcx = ecx.tcx();
ecx.probe(|ecx| {
2023-01-17 20:16:30 +00:00
let nested_obligations = tcx
.predicates_of(goal.predicate.def_id())
.instantiate(tcx, goal.predicate.trait_ref.substs);
ecx.add_goals(nested_obligations.predicates.into_iter().map(|p| goal.with(tcx, p)));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
2023-01-17 20:16:30 +00:00
})
}
fn consider_builtin_sized_candidate(
2023-01-17 20:24:58 +00:00
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
2023-01-17 20:16:30 +00:00
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
ecx.probe_and_evaluate_goal_for_constituent_tys(
goal,
structural_traits::instantiate_constituent_tys_for_sized_trait,
)
2023-01-17 20:24:58 +00:00
}
fn consider_builtin_copy_clone_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
ecx.probe_and_evaluate_goal_for_constituent_tys(
goal,
structural_traits::instantiate_constituent_tys_for_copy_clone_trait,
)
2023-01-17 20:16:30 +00:00
}
2023-01-18 23:21:12 +00:00
2023-02-07 18:02:20 +00:00
fn consider_builtin_pointer_like_candidate(
2023-01-18 23:21:12 +00:00
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
// The regions of a type don't affect the size of the type
let tcx = ecx.tcx();
// We should erase regions from both the param-env and type, since both
// may have infer regions. Specifically, after canonicalizing and instantiating,
// early bound regions turn into region vars in both the new and old solver.
let key = tcx.erase_regions(goal.param_env.and(goal.predicate.self_ty()));
// But if there are inference variables, we have to wait until it's resolved.
if key.has_non_region_infer() {
return ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
2023-01-18 23:21:12 +00:00
}
if let Ok(layout) = tcx.layout_of(key)
&& layout.layout.is_pointer_like(&tcx.data_layout)
2023-01-18 23:21:12 +00:00
{
// FIXME: We could make this faster by making a no-constraints response
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
2023-01-18 23:21:12 +00:00
} else {
Err(NoSolution)
}
}
2022-07-20 14:32:58 +02:00
fn consider_builtin_fn_ptr_trait_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
2022-07-20 14:32:58 +02:00
if let ty::FnPtr(..) = goal.predicate.self_ty().kind() {
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
fn consider_builtin_fn_trait_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
goal_kind: ty::ClosureKind,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
let tcx = ecx.tcx();
2023-03-17 14:12:59 +00:00
let tupled_inputs_and_output =
match structural_traits::extract_tupled_inputs_and_output_from_callable(
tcx,
goal.predicate.self_ty(),
goal_kind,
2023-03-17 14:12:59 +00:00
)? {
Some(a) => a,
None => {
return ecx
.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
}
};
let output_is_sized_pred = tupled_inputs_and_output.map_bound(|(_, output)| {
ty::TraitRef::from_lang_item(tcx, LangItem::Sized, DUMMY_SP, [output])
});
2023-02-16 03:04:08 +00:00
let pred = tupled_inputs_and_output
.map_bound(|(inputs, _)| {
ty::TraitRef::new(tcx, goal.predicate.def_id(), [goal.predicate.self_ty(), inputs])
2023-02-16 03:04:08 +00:00
})
.to_predicate(tcx);
// A built-in `Fn` impl only holds if the output is sized.
// (FIXME: technically we only need to check this if the type is a fn ptr...)
Self::consider_implied_clause(ecx, goal, pred, [goal.with(tcx, output_is_sized_pred)])
}
fn consider_builtin_tuple_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
if let ty::Tuple(..) = goal.predicate.self_ty().kind() {
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
2023-01-24 23:24:25 +00:00
fn consider_builtin_pointee_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
2023-04-22 03:54:33 +00:00
goal: Goal<'tcx, Self>,
2023-01-24 23:24:25 +00:00
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
2023-01-24 23:24:25 +00:00
}
2023-01-24 23:38:20 +00:00
fn consider_builtin_future_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
2023-01-24 23:38:20 +00:00
let ty::Generator(def_id, _, _) = *goal.predicate.self_ty().kind() else {
return Err(NoSolution);
};
// Generators are not futures unless they come from `async` desugaring
let tcx = ecx.tcx();
if !tcx.generator_is_async(def_id) {
return Err(NoSolution);
}
// Async generator unconditionally implement `Future`
2023-02-16 03:04:08 +00:00
// Technically, we need to check that the future output type is Sized,
// but that's already proven by the generator being WF.
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
2023-01-24 23:38:20 +00:00
}
fn consider_builtin_generator_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
2023-01-24 23:38:20 +00:00
let self_ty = goal.predicate.self_ty();
let ty::Generator(def_id, substs, _) = *self_ty.kind() else {
return Err(NoSolution);
};
// `async`-desugared generators do not implement the generator trait
let tcx = ecx.tcx();
if tcx.generator_is_async(def_id) {
return Err(NoSolution);
}
let generator = substs.as_generator();
2023-02-16 03:04:08 +00:00
Self::consider_implied_clause(
2023-01-24 23:38:20 +00:00
ecx,
goal,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [self_ty, generator.resume_ty()])
.to_predicate(tcx),
2023-02-16 03:04:08 +00:00
// Technically, we need to check that the generator types are Sized,
// but that's already proven by the generator being WF.
[],
2023-01-24 23:38:20 +00:00
)
}
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
if b_ty.is_ty_var() {
return ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
}
ecx.probe(|ecx| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
2023-01-23 23:56:54 +00:00
(&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
// Dyn upcasting is handled separately, since due to upcasting,
// when there are two supertraits that differ by substs, we
// may return more than one query response.
Err(NoSolution)
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
// Can only unsize to an object-safe type
if data
2023-01-25 17:02:16 +00:00
.principal_def_id()
.is_some_and(|def_id| !tcx.check_is_object_safe(def_id))
{
return Err(NoSolution);
}
let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
return Err(NoSolution);
};
2023-03-17 14:35:12 +00:00
// Check that the type implements all of the predicates of the def-id.
// (i.e. the principal, all of the associated types match, and any auto traits)
ecx.add_goals(
2023-03-17 14:35:12 +00:00
data.iter().map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty))),
);
// The type must be Sized to be unsized.
ecx.add_goal(goal.with(tcx, ty::TraitRef::new(tcx, sized_def_id, [a_ty])));
2023-03-17 14:35:12 +00:00
// The type must outlive the lifetime of the `dyn` we're unsizing into.
ecx.add_goal(
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// `[T; n]` -> `[T]` unsizing
(&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
// We just require that the element type stays the same
ecx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
(&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
if a_def.is_struct() && a_def.did() == b_def.did() =>
{
let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
// We must be unsizing some type parameters. This also implies
// that the struct has a tail field.
if unsizing_params.is_empty() {
return Err(NoSolution);
}
let tail_field = a_def
.non_enum_variant()
.fields
.raw
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.type_of(tail_field.did);
let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
let b_tail_ty = tail_field_ty.subst(tcx, b_substs);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// unrelated type parameters.
Rename many interner functions. (This is a large commit. The changes to `compiler/rustc_middle/src/ty/context.rs` are the most important ones.) The current naming scheme is a mess, with a mix of `_intern_`, `intern_` and `mk_` prefixes, with little consistency. In particular, in many cases it's easy to use an iterator interner when a (preferable) slice interner is available. The guiding principles of the new naming system: - No `_intern_` prefixes. - The `intern_` prefix is for internal operations. - The `mk_` prefix is for external operations. - For cases where there is a slice interner and an iterator interner, the former is `mk_foo` and the latter is `mk_foo_from_iter`. Also, `slice_interners!` and `direct_interners!` can now be `pub` or non-`pub`, which helps enforce the internal/external operations division. It's not perfect, but I think it's a clear improvement. The following lists show everything that was renamed. slice_interners - const_list - mk_const_list -> mk_const_list_from_iter - intern_const_list -> mk_const_list - substs - mk_substs -> mk_substs_from_iter - intern_substs -> mk_substs - check_substs -> check_and_mk_substs (this is a weird one) - canonical_var_infos - intern_canonical_var_infos -> mk_canonical_var_infos - poly_existential_predicates - mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter - intern_poly_existential_predicates -> mk_poly_existential_predicates - _intern_poly_existential_predicates -> intern_poly_existential_predicates - predicates - mk_predicates -> mk_predicates_from_iter - intern_predicates -> mk_predicates - _intern_predicates -> intern_predicates - projs - intern_projs -> mk_projs - place_elems - mk_place_elems -> mk_place_elems_from_iter - intern_place_elems -> mk_place_elems - bound_variable_kinds - mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter - intern_bound_variable_kinds -> mk_bound_variable_kinds direct_interners - region - intern_region (unchanged) - const - mk_const_internal -> intern_const - const_allocation - intern_const_alloc -> mk_const_alloc - layout - intern_layout -> mk_layout - adt_def - intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid) - alloc_adt_def(!) -> mk_adt_def - external_constraints - intern_external_constraints -> mk_external_constraints Other - type_list - mk_type_list -> mk_type_list_from_iter - intern_type_list -> mk_type_list - tup - mk_tup -> mk_tup_from_iter - intern_tup -> mk_tup
2023-02-17 14:33:08 +11:00
let new_a_substs =
tcx.mk_substs_from_iter(a_substs.iter().enumerate().map(|(i, a)| {
if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
}));
let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
// types.
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
(&ty::Tuple(a_tys), &ty::Tuple(b_tys))
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
{
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
Rename many interner functions. (This is a large commit. The changes to `compiler/rustc_middle/src/ty/context.rs` are the most important ones.) The current naming scheme is a mess, with a mix of `_intern_`, `intern_` and `mk_` prefixes, with little consistency. In particular, in many cases it's easy to use an iterator interner when a (preferable) slice interner is available. The guiding principles of the new naming system: - No `_intern_` prefixes. - The `intern_` prefix is for internal operations. - The `mk_` prefix is for external operations. - For cases where there is a slice interner and an iterator interner, the former is `mk_foo` and the latter is `mk_foo_from_iter`. Also, `slice_interners!` and `direct_interners!` can now be `pub` or non-`pub`, which helps enforce the internal/external operations division. It's not perfect, but I think it's a clear improvement. The following lists show everything that was renamed. slice_interners - const_list - mk_const_list -> mk_const_list_from_iter - intern_const_list -> mk_const_list - substs - mk_substs -> mk_substs_from_iter - intern_substs -> mk_substs - check_substs -> check_and_mk_substs (this is a weird one) - canonical_var_infos - intern_canonical_var_infos -> mk_canonical_var_infos - poly_existential_predicates - mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter - intern_poly_existential_predicates -> mk_poly_existential_predicates - _intern_poly_existential_predicates -> intern_poly_existential_predicates - predicates - mk_predicates -> mk_predicates_from_iter - intern_predicates -> mk_predicates - _intern_predicates -> intern_predicates - projs - intern_projs -> mk_projs - place_elems - mk_place_elems -> mk_place_elems_from_iter - intern_place_elems -> mk_place_elems - bound_variable_kinds - mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter - intern_bound_variable_kinds -> mk_bound_variable_kinds direct_interners - region - intern_region (unchanged) - const - mk_const_internal -> intern_const - const_allocation - intern_const_alloc -> mk_const_alloc - layout - intern_layout -> mk_layout - adt_def - intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid) - alloc_adt_def(!) -> mk_adt_def - external_constraints - intern_external_constraints -> mk_external_constraints Other - type_list - mk_type_list -> mk_type_list_from_iter - intern_type_list -> mk_type_list - tup - mk_tup -> mk_tup_from_iter - intern_tup -> mk_tup
2023-02-17 14:33:08 +11:00
let unsized_a_ty =
tcx.mk_tup_from_iter(a_rest_tys.iter().chain([b_last_ty]).copied());
ecx.eq(goal.param_env, unsized_a_ty, b_ty)?;
// Similar to ADTs, require that the rest of the fields are equal.
ecx.add_goal(goal.with(
tcx,
ty::TraitRef::new(tcx, goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
_ => Err(NoSolution),
}
})
}
2023-01-23 23:56:54 +00:00
2023-01-25 17:02:16 +00:00
fn consider_builtin_dyn_upcast_candidates(
2023-01-23 23:56:54 +00:00
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return vec![];
}
2023-01-23 23:56:54 +00:00
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
let ty::Dynamic(a_data, a_region, ty::Dyn) = *a_ty.kind() else {
return vec![];
};
let ty::Dynamic(b_data, b_region, ty::Dyn) = *b_ty.kind() else {
return vec![];
};
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible =
b_data.auto_traits().all(|b| a_data.auto_traits().any(|a| a == b));
if !auto_traits_compatible {
return vec![];
}
let mut unsize_dyn_to_principal = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
ecx.probe(|ecx| -> Result<_, NoSolution> {
2023-01-23 23:56:54 +00:00
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = principal
.into_iter()
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait))
.chain(a_data.iter().filter(|a| {
matches!(a.skip_binder(), ty::ExistentialPredicate::Projection(_))
}))
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
Rename many interner functions. (This is a large commit. The changes to `compiler/rustc_middle/src/ty/context.rs` are the most important ones.) The current naming scheme is a mess, with a mix of `_intern_`, `intern_` and `mk_` prefixes, with little consistency. In particular, in many cases it's easy to use an iterator interner when a (preferable) slice interner is available. The guiding principles of the new naming system: - No `_intern_` prefixes. - The `intern_` prefix is for internal operations. - The `mk_` prefix is for external operations. - For cases where there is a slice interner and an iterator interner, the former is `mk_foo` and the latter is `mk_foo_from_iter`. Also, `slice_interners!` and `direct_interners!` can now be `pub` or non-`pub`, which helps enforce the internal/external operations division. It's not perfect, but I think it's a clear improvement. The following lists show everything that was renamed. slice_interners - const_list - mk_const_list -> mk_const_list_from_iter - intern_const_list -> mk_const_list - substs - mk_substs -> mk_substs_from_iter - intern_substs -> mk_substs - check_substs -> check_and_mk_substs (this is a weird one) - canonical_var_infos - intern_canonical_var_infos -> mk_canonical_var_infos - poly_existential_predicates - mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter - intern_poly_existential_predicates -> mk_poly_existential_predicates - _intern_poly_existential_predicates -> intern_poly_existential_predicates - predicates - mk_predicates -> mk_predicates_from_iter - intern_predicates -> mk_predicates - _intern_predicates -> intern_predicates - projs - intern_projs -> mk_projs - place_elems - mk_place_elems -> mk_place_elems_from_iter - intern_place_elems -> mk_place_elems - bound_variable_kinds - mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter - intern_bound_variable_kinds -> mk_bound_variable_kinds direct_interners - region - intern_region (unchanged) - const - mk_const_internal -> intern_const - const_allocation - intern_const_alloc -> mk_const_alloc - layout - intern_layout -> mk_layout - adt_def - intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid) - alloc_adt_def(!) -> mk_adt_def - external_constraints - intern_external_constraints -> mk_external_constraints Other - type_list - mk_type_list -> mk_type_list_from_iter - intern_type_list -> mk_type_list - tup - mk_tup -> mk_tup_from_iter - intern_tup -> mk_tup
2023-02-17 14:33:08 +11:00
let new_a_data = tcx.mk_poly_existential_predicates_from_iter(new_a_data);
2023-01-23 23:56:54 +00:00
let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
ecx.eq(goal.param_env, new_a_ty, b_ty)?;
ecx.add_goal(
2023-01-23 23:56:54 +00:00
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
2023-01-25 17:02:16 +00:00
})
2023-01-23 23:56:54 +00:00
};
2023-01-25 17:02:16 +00:00
let mut responses = vec![];
2023-01-23 23:56:54 +00:00
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
2023-01-25 17:02:16 +00:00
if let Ok(response) = unsize_dyn_to_principal(a_data.principal()) {
responses.push(response);
}
2023-01-23 23:56:54 +00:00
} else if let Some(a_principal) = a_data.principal()
&& let Some(b_principal) = b_data.principal()
{
for super_trait_ref in supertraits(tcx, a_principal.with_self_ty(tcx, a_ty)) {
if super_trait_ref.def_id() != b_principal.def_id() {
continue;
}
let erased_trait_ref = super_trait_ref
.map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
2023-01-25 17:02:16 +00:00
if let Ok(response) = unsize_dyn_to_principal(Some(erased_trait_ref)) {
responses.push(response);
}
2023-01-23 23:56:54 +00:00
}
}
responses
}
fn consider_builtin_discriminant_kind_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
2023-04-22 03:54:33 +00:00
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
// `DiscriminantKind` is automatically implemented for every type.
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
fn consider_builtin_destruct_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
if !goal.param_env.is_const() {
// `Destruct` is automatically implemented for every type in
// non-const environments.
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
// FIXME(-Ztrait-solver=next): Implement this when we get const working in the new solver
Err(NoSolution)
}
}
2023-04-09 00:09:53 +00:00
fn consider_builtin_transmute_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
2023-04-22 03:54:33 +00:00
if goal.predicate.polarity != ty::ImplPolarity::Positive {
return Err(NoSolution);
}
2023-04-09 00:09:53 +00:00
// `rustc_transmute` does not have support for type or const params
if goal.has_non_region_placeholders() {
return Err(NoSolution);
}
// Erase regions because we compute layouts in `rustc_transmute`,
// which will ICE for region vars.
let substs = ecx.tcx().erase_regions(goal.predicate.trait_ref.substs);
let Some(assume) = rustc_transmute::Assume::from_const(
ecx.tcx(),
goal.param_env,
substs.const_at(3),
) else {
return Err(NoSolution);
};
let certainty = ecx.is_transmutable(
rustc_transmute::Types { dst: substs.type_at(0), src: substs.type_at(1) },
substs.type_at(2),
assume,
)?;
ecx.evaluate_added_goals_and_make_canonical_response(certainty)
}
}
2023-01-17 10:21:30 +01:00
impl<'tcx> EvalCtxt<'_, 'tcx> {
// Return `Some` if there is an impl (built-in or user provided) that may
// hold for the self type of the goal, which for coherence and soundness
// purposes must disqualify the built-in auto impl assembled by considering
// the type's constituent types.
fn disqualify_auto_trait_candidate_due_to_possible_impl(
&mut self,
goal: Goal<'tcx, TraitPredicate<'tcx>>,
) -> Option<QueryResult<'tcx>> {
let self_ty = goal.predicate.self_ty();
match *self_ty.kind() {
// Stall int and float vars until they are resolved to a concrete
// numerical type. That's because the check for impls below treats
// int vars as matching any impl. Even if we filtered such impls,
// we probably don't want to treat an `impl !AutoTrait for i32` as
// disqualifying the built-in auto impl for `i64: AutoTrait` either.
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
Some(self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS))
}
// These types cannot be structurally decomposed into constituent
// types, and therefore have no built-in auto impl.
ty::Dynamic(..)
| ty::Param(..)
| ty::Foreign(..)
2023-03-21 01:46:52 +01:00
| ty::Alias(ty::Projection | ty::Inherent, ..)
| ty::Placeholder(..) => Some(Err(NoSolution)),
ty::Infer(_) | ty::Bound(_, _) => bug!("unexpected type `{self_ty}`"),
// Generators have one special built-in candidate, `Unpin`, which
// takes precedence over the structural auto trait candidate being
// assembled.
ty::Generator(_, _, movability)
if Some(goal.predicate.def_id()) == self.tcx().lang_items().unpin_trait() =>
{
match movability {
Movability::Static => Some(Err(NoSolution)),
Movability::Movable => {
Some(self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
}
}
}
// For rigid types, any possible implementation that could apply to
// the type (even if after unification and processing nested goals
// it does not hold) will disqualify the built-in auto impl.
//
// This differs from the current stable behavior and fixes #84857.
// Due to breakage found via crater, we currently instead lint
// patterns which can be used to exploit this unsoundness on stable,
// see #93367 for more details.
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Closure(_, _)
| ty::Generator(_, _, _)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(_, _)
| ty::Never
| ty::Tuple(_)
| ty::Adt(_, _)
// FIXME: Handling opaques here is kinda sus. Especially because we
// simplify them to PlaceholderSimplifiedType.
| ty::Alias(ty::Opaque, _) => {
2023-04-19 01:41:01 +00:00
let mut disqualifying_impl = None;
self.tcx().for_each_relevant_impl_treating_projections(
goal.predicate.def_id(),
goal.predicate.self_ty(),
TreatProjections::NextSolverLookup,
2023-04-19 01:41:01 +00:00
|impl_def_id| {
disqualifying_impl = Some(impl_def_id);
},
);
if let Some(def_id) = disqualifying_impl {
debug!(?def_id, ?goal, "disqualified auto-trait implementation");
// No need to actually consider the candidate here,
// since we do that in `consider_impl_candidate`.
return Some(Err(NoSolution));
} else {
None
}
}
ty::Error(_) => None,
}
}
/// Convenience function for traits that are structural, i.e. that only
/// have nested subgoals that only change the self type. Unlike other
/// evaluate-like helpers, this does a probe, so it doesn't need to be
/// wrapped in one.
fn probe_and_evaluate_goal_for_constituent_tys(
2023-01-17 20:16:30 +00:00
&mut self,
goal: Goal<'tcx, TraitPredicate<'tcx>>,
constituent_tys: impl Fn(&EvalCtxt<'_, 'tcx>, Ty<'tcx>) -> Result<Vec<Ty<'tcx>>, NoSolution>,
2023-01-17 20:16:30 +00:00
) -> QueryResult<'tcx> {
self.probe(|ecx| {
ecx.add_goals(
constituent_tys(ecx, goal.predicate.self_ty())?
.into_iter()
.map(|ty| {
goal.with(
ecx.tcx(),
ty::Binder::dummy(goal.predicate.with_self_ty(ecx.tcx(), ty)),
)
})
.collect::<Vec<_>>(),
);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
2023-01-17 20:16:30 +00:00
}
#[instrument(level = "debug", skip(self))]
pub(super) fn compute_trait_goal(
&mut self,
2023-01-17 10:21:30 +01:00
goal: Goal<'tcx, TraitPredicate<'tcx>>,
) -> QueryResult<'tcx> {
let candidates = self.assemble_and_evaluate_candidates(goal);
2023-03-21 16:26:23 +01:00
self.merge_candidates(candidates)
}
}