rust/compiler/rustc_trait_selection/src/solve/trait_goals.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

283 lines
11 KiB
Rust
Raw Normal View History

//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.
use std::iter;
use super::infcx_ext::InferCtxtExt;
use super::{
fixme_instantiate_canonical_query_response, CanonicalGoal, CanonicalResponse, Certainty,
EvalCtxt, Goal, QueryResult,
};
use rustc_hir::def_id::DefId;
use rustc_infer::infer::canonical::{CanonicalVarValues, OriginalQueryValues};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::infer::{InferCtxt, InferOk};
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::ObligationCause;
use rustc_middle::ty;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::TraitPredicate;
use rustc_span::DUMMY_SP;
/// A candidate is a possible way to prove a goal.
///
/// It consists of both the `source`, which describes how that goal
/// would be proven, and the `result` when using the given `source`.
///
/// For the list of possible candidates, please look at the documentation
/// of [CandidateSource].
#[derive(Debug, Clone)]
pub(super) struct Candidate<'tcx> {
source: CandidateSource,
result: CanonicalResponse<'tcx>,
}
#[allow(dead_code)] // FIXME: implement and use all variants.
#[derive(Debug, Clone, Copy)]
pub(super) enum CandidateSource {
/// Some user-defined impl with the given `DefId`.
Impl(DefId),
/// The n-th caller bound in the `param_env` of our goal.
///
/// This is pretty much always a bound from the `where`-clauses of the
/// currently checked item.
ParamEnv(usize),
/// A bound on the `self_ty` in case it is a projection or an opaque type.
///
/// # Examples
///
/// ```ignore (for syntax highlighting)
/// trait Trait {
/// type Assoc: OtherTrait;
/// }
/// ```
///
/// We know that `<Whatever as Trait>::Assoc: OtherTrait` holds by looking at
/// the bounds on `Trait::Assoc`.
AliasBound(usize),
/// A builtin implementation for some specific traits, used in cases
/// where we cannot rely an ordinary library implementations.
///
/// The most notable examples are `Sized`, `Copy` and `Clone`. This is also
/// used for the `DiscriminantKind` and `Pointee` trait, both of which have
/// an associated type.
Builtin,
/// An automatic impl for an auto trait, e.g. `Send`. These impls recursively look
/// at the constituent types of the `self_ty` to check whether the auto trait
/// is implemented for those.
AutoImpl,
}
struct AssemblyCtxt<'a, 'tcx> {
cx: &'a mut EvalCtxt<'tcx>,
infcx: &'a InferCtxt<'tcx>,
var_values: CanonicalVarValues<'tcx>,
candidates: Vec<Candidate<'tcx>>,
}
impl<'tcx> EvalCtxt<'tcx> {
pub(super) fn compute_trait_goal(
&mut self,
goal: CanonicalGoal<'tcx, TraitPredicate<'tcx>>,
) -> QueryResult<'tcx> {
let candidates = self.assemble_and_evaluate_trait_candidates(goal);
self.merge_trait_candidates_discard_reservation_impls(candidates)
}
pub(super) fn assemble_and_evaluate_trait_candidates(
&mut self,
goal: CanonicalGoal<'tcx, TraitPredicate<'tcx>>,
) -> Vec<Candidate<'tcx>> {
let (ref infcx, goal, var_values) =
self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
let mut acx = AssemblyCtxt { cx: self, infcx, var_values, candidates: Vec::new() };
acx.assemble_candidates_after_normalizing_self_ty(goal);
acx.assemble_impl_candidates(goal);
// FIXME: Remaining candidates
acx.candidates
}
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn merge_trait_candidates_discard_reservation_impls(
&mut self,
mut candidates: Vec<Candidate<'tcx>>,
) -> QueryResult<'tcx> {
match candidates.len() {
0 => return Err(NoSolution),
1 => return Ok(self.discard_reservation_impl(candidates.pop().unwrap()).result),
_ => {}
}
if candidates.len() > 1 {
let mut i = 0;
'outer: while i < candidates.len() {
for j in (0..candidates.len()).filter(|&j| i != j) {
if self.trait_candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
) {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
continue 'outer;
}
}
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
i += 1;
if i > 1 {
debug!("multiple matches, ambig");
// FIXME: return overflow if all candidates overflow, otherwise return ambiguity.
unimplemented!();
}
}
}
Ok(self.discard_reservation_impl(candidates.pop().unwrap()).result)
}
fn trait_candidate_should_be_dropped_in_favor_of(
&self,
candidate: &Candidate<'tcx>,
other: &Candidate<'tcx>,
) -> bool {
// FIXME: implement this
match (candidate.source, other.source) {
(CandidateSource::Impl(_), _)
| (CandidateSource::ParamEnv(_), _)
| (CandidateSource::AliasBound(_), _)
| (CandidateSource::Builtin, _)
| (CandidateSource::AutoImpl, _) => unimplemented!(),
}
}
fn discard_reservation_impl(&self, candidate: Candidate<'tcx>) -> Candidate<'tcx> {
if let CandidateSource::Impl(def_id) = candidate.source {
if let ty::ImplPolarity::Reservation = self.tcx.impl_polarity(def_id) {
debug!("Selected reservation impl");
// FIXME: reduce candidate to ambiguous
// FIXME: replace `var_values` with identity, yeet external constraints.
unimplemented!()
}
}
candidate
}
}
impl<'tcx> AssemblyCtxt<'_, 'tcx> {
/// Adds a new candidate using the current state of the inference context.
///
/// This does require each assembly method to correctly use `probe` to not taint
/// the results of other candidates.
fn try_insert_candidate(&mut self, source: CandidateSource, certainty: Certainty) {
match self.infcx.make_canonical_response(self.var_values.clone(), certainty) {
Ok(result) => self.candidates.push(Candidate { source, result }),
Err(NoSolution) => debug!(?source, ?certainty, "failed leakcheck"),
}
}
/// If the self type of a trait goal is a projection, computing the relevant candidates is difficult.
///
/// To deal with this, we first try to normalize the self type and add the candidates for the normalized
/// self type to the list of candidates in case that succeeds. Note that we can't just eagerly return in
/// this case as projections as self types add `
fn assemble_candidates_after_normalizing_self_ty(
&mut self,
goal: Goal<'tcx, TraitPredicate<'tcx>>,
) {
let tcx = self.cx.tcx;
// FIXME: We also have to normalize opaque types, not sure where to best fit that in.
let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
return
};
self.infcx.probe(|_| {
let normalized_ty = self.infcx.next_ty_infer();
let normalizes_to_goal = goal.with(
tcx,
ty::Binder::dummy(ty::ProjectionPredicate {
projection_ty,
term: normalized_ty.into(),
}),
);
let normalization_certainty =
match self.cx.evaluate_goal(&self.infcx, normalizes_to_goal) {
Ok((_, certainty)) => certainty,
Err(NoSolution) => return,
};
// NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate.
// This doesn't work as long as we use `CandidateSource` in both winnowing and to resolve associated items.
let goal = goal.with(tcx, goal.predicate.with_self_type(tcx, normalized_ty));
let mut orig_values = OriginalQueryValues::default();
let goal = self.infcx.canonicalize_query(goal, &mut orig_values);
let normalized_candidates = self.cx.assemble_and_evaluate_trait_candidates(goal);
// Map each candidate from being canonical wrt the current inference context to being
// canonical wrt the caller.
for Candidate { source, result } in normalized_candidates {
self.infcx.probe(|_| {
let candidate_certainty = fixme_instantiate_canonical_query_response(
self.infcx,
&orig_values,
result,
);
// FIXME: This is a bit scary if the `normalizes_to_goal` overflows.
//
// If we have an ambiguous candidate it hides that normalization
// caused an overflow which may cause issues.
self.try_insert_candidate(
source,
normalization_certainty.unify_and(candidate_certainty),
)
})
}
})
}
fn assemble_impl_candidates(&mut self, goal: Goal<'tcx, TraitPredicate<'tcx>>) {
self.cx.tcx.for_each_relevant_impl(
goal.predicate.def_id(),
goal.predicate.self_ty(),
|impl_def_id| self.consider_impl_candidate(goal, impl_def_id),
);
}
fn consider_impl_candidate(
&mut self,
goal: Goal<'tcx, TraitPredicate<'tcx>>,
impl_def_id: DefId,
) {
let impl_trait_ref = self.cx.tcx.bound_impl_trait_ref(impl_def_id).unwrap();
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
if iter::zip(goal.predicate.trait_ref.substs, impl_trait_ref.skip_binder().substs)
.any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
{
return;
}
self.infcx.probe(|_| {
let impl_substs = self.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(self.cx.tcx, impl_substs);
let Ok(InferOk { obligations, .. }) = self
.infcx
.at(&ObligationCause::dummy(), goal.param_env)
.define_opaque_types(false)
.eq(goal.predicate.trait_ref, impl_trait_ref)
.map_err(|e| debug!("failed to equate trait refs: {e:?}"))
else {
return
};
let nested_goals = obligations.into_iter().map(|o| o.into()).collect();
let Ok(certainty) = self.cx.evaluate_all(self.infcx, nested_goals) else { return };
self.try_insert_candidate(CandidateSource::Impl(impl_def_id), certainty);
})
}
}