blob: 188cb2b3d324741e656b8a0b2b5d15945b61e092 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
<!DOCTYPE html>
<html lang="da">
<!--#include virtual="/shtml/head.shtml"-->
<!--#include virtual="/shtml/mathJax.shtml"-->
<body>
<!--#include virtual="/shtml/pageHeader.shtml"-->
<div class="page">
<p class="pageHeading">Matematik</p>
<div class="section" id="rules">
<p class="sectionHeading">Regneregler</p>
<p class="math">\(x+y=z\)</p>
<p class="math">\(z-y=x\)</p>
<p class="math">\(z-x=y\)</p>
<p class="math">\(\sum_{i=a}^b i=a+(a \pm 1) + \cdots +(b \pm 1)+b\)</p>
<br />
<p class="math">\(xy=z\)</p>
<p class="math">\(\frac {z}{y}=x\)</p>
<p class="math">\(\frac {z}{x}=y\)</p>
<p class="math">\(\prod_{i=a}^b i=a(a \pm 1) \cdots (b \pm 1)b\)</p>
<p class="math">\(n!=\prod_{i=1}^n i,n \gt 0\)</p>
<p class="math">\(0!=1\)</p>
<br />
<p class="math">\(\frac xy=z\)</p>
<p class="math">\(zy=x\)</p>
<p class="math">\(\frac {x}{z}=y\)</p>
<br />
<p class="math">\(x^y=z\)</p>
<p class="math">\(\sqrt[y] {z}=x\)</p>
<p class="math">\(log_x(z)=y\)</p>
<br />
<p class="math">\(x^n=\prod_{i=1}^n x,\ n \gt 0\)</p>
<p class="math">\(x^n=\frac {1}{x^{-n}},\ n \lt 0\)</p>
<p class="math">\(x^0=1\)</p>
<p class="math">\(x^{\frac nm}=\sqrt[m] {x^n}\)</p>
<br />
<p class="math">\(\frac xy+n=\frac {x+n y}{y}\)</p>
<p class="math">\(\frac xy+\frac ab=\frac {x b+ay}{yb}\)</p>
<p class="math">\(\frac xyn=\frac {xn}{y}\)</p>
<p class="math">\(\frac xy\frac ab=\frac {x a}{y b}\)</p>
<p class="math">\(\frac {x}{\frac ab}=\frac {xb}{a}\)</p>
<p class="math">\(\frac {\frac xy}z=\frac {x}{yz}\)</p>
<p class="math">\(\frac {\frac xy}{\frac ab}=\frac {xb}{ya}\)</p>
<br />
<p class="math">\((x^a)^b=x^{ab}\)</p>
<p class="math">\(x^ay^a=(xy)^a\)</p>
<p class="math">\(\frac {x^a}{y^a}=(\frac xy)^a\)</p>
<p class="math">\(x^ax^b=x^{a+b}\)</p>
<p class="math">\(\frac {x^a}{x^b}=x^{a-b}\)</p>
</div>
<div class="section" id="equations">
<p class="sectionHeading">Ligninger</p>
<p>Andengrads:</p>
<p class="math">\(ax^2+bx+c=0\)</p>
<p class="math">\(d=b^2-4ac\)</p>
<p class="math">\(x=\frac {-b \pm \sqrt[2] {d}}{2a}\)</p>
</div>
<div class="section" id="functions">
<p class="sectionHeading">Funktioner</p>
<p class="math">\(y=f(x)\)</p>
<p class="math">\(x=f^{-1}(y)\)</p>
<br />
<p>Lineær:</p>
<p class="math">\(f(x)=ax+b\)</p>
<p class="math">\(a=\frac {y_1-y_0}{x_1-x_0}\)</p>
<p class="math">\(b=y-ax\)</p>
<p class="math">\(f(0)=b\)</p>
<br />
<p>Eksponentiel:</p>
<p class="math">\(f(x)=ba^x\)</p>
<p class="math">\(a=\sqrt[x_1-x_0] {\frac {y_1}{y_{0}}}\)</p>
<p class="math">\(b=\frac {y}{a^x}\)</p>
<p class="math">\(f(0)=b\)</p>
<br />
<p>Potens:</p>
<p class="math">\(f(x)=bx^a\)</p>
<p class="math">\(a=\frac {log_n(y_1)-log_n(y_0)}{log_n(x_1)-log_n(x_1)}\)</p>
<p class="math">\(b=\frac {y}{x^a}\)</p>
<p class="math">\(f(0)=0\)</p>
<p class="math">\(f(1)=b\)</p>
<br />
<p>Andengrads:</p>
<p class="math">\(f(x)=ax^2+bx+c\)</p>
</div>
<div class="section" id="trigonometry">
<p class="sectionHeading">Trigonometri</p>
<p class="math">\(modliggende_{\alpha}=hosliggende_{\beta}=a\)</p>
<p class="math">\(hosliggende_{\alpha}=modliggende_{\beta}=b\)</p>
<p class="math">\(hypotenuse=modliggende_{\gamma}=c\)</p>
<br />
<p class="math">\(sin(\theta)=\frac {modliggende_{\theta}}{hypotenuse_{\theta}}\)</p>
<p class="math">\(cos(\theta)=\frac {hosliggende_{\theta}}{hypotenuse_{\theta}}\)</p>
<p class="math">\(tan(\theta)=\frac {modliggende_{\theta}}{hosliggende_{\theta}}\)</p>
<p class="math">\(cot(\theta)=\frac {hosliggende_{\theta}}{modliggende_{\theta}}\)</p>
<p class="math">\(csc(\theta)=\frac {hypotenuse_{\theta}}{modliggende_{\theta}}\)</p>
<p class="math">\(sec(\theta)=\frac {hypotenuse_{\theta}}{hosliggende_{\theta}}\)</p>
<br />
<p class="math">\(sin^{-1}(\frac {modliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)</p>
<p class="math">\(cos^{-1}(\frac {hosliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)</p>
<p class="math">\(tan^{-1}(\frac {modliggende_{\theta}}{hosliggende_{\theta}})=\theta\)</p>
<p class="math">\(cot^{-1}(\frac {hosliggende_{\theta}}{modliggende_{\theta}})=\theta\)</p>
<p class="math">\(csc^{-1}(\frac {hypotenuse_{\theta}}{modliggende_{\theta}})=\theta\)</p>
<p class="math">\(sec^{-1}(\frac {hypotenuse_{\theta}}{hosliggende_{\theta}})=\theta\)</p>
<br />
<p>Forkortelser:</p>
<p class="math">\(sin=sinus\)</p>
<p class="math">\(cos=cosinus\)</p>
<p class="math">\(tan=tangens\)</p>
<p class="math">\(cot=cotangens\)</p>
<p class="math">\(csc=cosekant\)</p>
<p class="math">\(sec=sekant\)</p>
<p class="math">\(arcsin=sin^{-1}\)</p>
<p class="math">\(arccos=cos^{-1}\)</p>
<p class="math">\(arctan=tan^{-1}\)</p>
<p class="math">\(arccot=cot^{-1}\)</p>
<p class="math">\(arcsec=sec^{-1}\)</p>
<p class="math">\(arccsc=csc^{-1}\)</p>
<br />
<p class="math">\(deg(rad)=\frac {rad \cdot 180}{\pi}\)</p>
<p class="math">\(rad(deg)=\frac {deg \cdot \pi}{180}\)</p>
<br />
<p class="math">\(\Theta(n)=(n-2)\pi\)</p>
<p>... hvori <span class="math">\({\Theta}(n)\)</span> er vinkelsummen af <i>n</i>-gonen.</p>
<p class="math">\(\Theta(3)=(3-2)\pi=\pi\)</p>
<br />
<p class="math">\(\alpha=sin^{-1}(\frac ac)=cos^{-1}(\frac bc)=tan^{-1}(\frac ab)=\Theta(3)-\beta-\gamma\)</p>
<p class="math">\(\beta=sin^{-1}(\frac bc)=cos^{-1}(\frac ac)=tan^{-1}(\frac ba)=\Theta(3)-\alpha-\gamma\)</p>
<p class="math">\(\gamma=\Theta(3)-\alpha-\beta\)</p>
<p>I en retvinklet trekant:</p>
<p class="math">\(\gamma=\frac {\pi}{2}\)</p>
<p>I en regulær trekant:</p>
<p class="math">\(\alpha=\beta=\gamma=\frac {\pi}{3}\)</p>
<br />
<p class="math">\(a=c \cdot sin(\alpha)=c \cdot cos(\beta)=b \cdot tan(\alpha)=b \cdot cot(\beta)\)</p>
<p class="math">\(b=c \cdot sin(\beta)=c \cdot cos(\alpha)=a \cdot tan(\beta)=a \cdot cot(\alpha)\)</p>
<p class="math">\(c=a \cdot csc(\alpha)=b \cdot csc(\beta)=a \cdot sec(\beta)=b \cdot sec(\alpha)\)</p>
<p>I en retvinklet trekant:</p>
<p class="math">\(a=\sqrt[2] {c^2-b^2}\)</p>
<p class="math">\(b=\sqrt[2] {c^2-a^2}\)</p>
<p class="math">\(c=\sqrt[2] {a^2+b^2}\)</p>
<p>I en retvinklet trekant, hvori kateterne har samme længde:</p>
<p class="math">\(a=b=\sqrt[2] {\frac {c^2}{2}}\)</p>
<p>I en regulær trekant:</p>
<p class="math">\(a=b=c\)</p>
<br />
<p class="math">\(O=a+b+c\)</p>
<p class="math">\(A=\frac {b h}{2}\)</p>
<p>Mellem to ligedannede trekanter:</p>
<p class="math">\(\alpha_1=\alpha_0\)</p>
<p class="math">\(\beta_1=\beta_0\)</p>
<p class="math">\(\gamma_1=\gamma_0\)</p>
<p class="math">\(k=\frac {a_1}{a_0}=\frac {b_1}{b_0}=\frac {c_1}{c_0}\)</p>
<p class="math">\(a_1=a_0 k\)</p>
<p class="math">\(b_1=b_0 k\)</p>
<p class="math">\(c_1=c_0 k\)</p>
<p class="math">\(O_1=O_0 k\)</p>
<p class="math">\(A_1=A_0 k^2\)</p>
</div>
<div class="section" id="constants">
<p class="sectionHeading">Konstanter</p>
<table>
<tr>
<th>Navn</th>
<th>Symbol</th>
</tr>
<tr>
<td>Pythagoras' konstant</td>
<td class="math">\(\sqrt[2] {2}\)</td>
</tr>
<tr>
<td>Theodorus' konstant</td>
<td class="math">\(\sqrt[2] {3}\)</td>
</tr>
<tr>
<td>Eulers tal</td>
<td class="math">\(e\)</td>
</tr>
<tr>
<td><sub>den </sub>imaginære enhed</td>
<td class="math">\(i\)</td>
</tr>
<tr>
<td>Arkimedes' konstant (<i>pi</i>)</td>
<td class="math">\(\pi\)</td>
</tr>
<tr>
<td><i>tau</i></td>
<td class="math">\(\tau\)</td>
</tr>
<tr>
<td><sub>den </sub>gyldne ratio</td>
<td class="math">\(\phi\)</td>
</tr>
</table>
<p class="math">\(\sqrt[2] {2} \approx \frac {1\ 414\ 213\ 562}{10^9}\)</p>
<p class="math">\(\sqrt[2] {3} \approx \frac {1\ 732\ 050\ 808}{10^9}\)</p>
<p class="math">\(e=\sum_{n=0}^\infty \frac {1}{n!} \approx \frac {2\ 718\ 281\ 828}{10^9}\)</p>
<p class="math">\(i=\sqrt[2] {-1}\)</p>
<p class="math">\(\pi \approx \frac {3\ 141\ 592\ 654}{10^9}\)</p>
<p class="math">\(\tau=2\pi \approx \frac {6\ 283\ 185\ 307}{10^9}\)</p>
<p class="math">\(\phi=\frac {1+\sqrt[2] {5}}{2} \approx \frac {1\ 618\ 033\ 989}{10^9}\)</p>
</div>
</div>
<!--#include virtual="/shtml/pageFooter.shtml"-->
</body>
</html>
|