summaryrefslogtreecommitdiff
path: root/html
diff options
context:
space:
mode:
Diffstat (limited to 'html')
-rw-r--r--html/topic/astronomy.html57
-rw-r--r--html/topic/latin.html72
-rw-r--r--html/topic/mathematics.html41
3 files changed, 133 insertions, 37 deletions
diff --git a/html/topic/astronomy.html b/html/topic/astronomy.html
index 5f06147..9dac1c0 100644
--- a/html/topic/astronomy.html
+++ b/html/topic/astronomy.html
@@ -84,6 +84,63 @@
<p class="math">\(1\ d=864 \cdot 10^2\ s\)</p>
</div>
</div>
+ <div class="section" id="stellar-bodies">
+ <p class="heading">Himmellegemer</p>
+ <p>Følgende er en liste over de syv klassiske planeter, solen og månen:</p>
+ <table>
+ <thead>
+ <tr>
+ <th>Navn</th>
+ <th>Symbol</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>Sōl</td>
+ <td>&#9737;</td>
+ </tr>
+ <tr>
+ <td>Lūna</td>
+ <td>&#9790;</td>
+ </tr>
+ <tr>
+ <td>Mercurius</td>
+ <td>&#9791;</td>
+ </tr>
+ <tr>
+ <td>Venus</td>
+ <td>&female;</td>
+ </tr>
+ <tr>
+ <td>Terra</td>
+ <td>&#9793;</td>
+ </tr>
+ <tr>
+ <td>Mārs</td>
+ <td>&male;</td>
+ </tr>
+ <tr>
+ <td>Jūpiter</td>
+ <td>&#9795;</td>
+ </tr>
+ <tr>
+ <td>Sāturnus</td>
+ <td>&#9796;</td>
+ </tr>
+ <tr>
+ <td>Ūranus</td>
+ <td>&#9954;</td>
+ </tr>
+ <tr>
+ <td>Neptūnus</td>
+ <td>&#9798;</td>
+ </tr>
+ </tbody>
+ </table>
+ </div>
+ <div class="section" id="constellations">
+ <p class="heading">Konstellationer</p>
+ </div>
</div>
<!--#include virtual="/shtml/copyrightNotice.shtml"-->
</div>
diff --git a/html/topic/latin.html b/html/topic/latin.html
index 312d210..14f4147 100644
--- a/html/topic/latin.html
+++ b/html/topic/latin.html
@@ -434,23 +434,61 @@
</div>
<div class="section" id="glossary">
<p class="heading">Gloseliste</p>
- <p class="vocable">aedificō vb. jeg bygger, jeg opfører </p>
- <p class="vocable">amō vb. jeg elsker, jeg holder af </p>
- <p class="vocable">arx sb. f3 borg, fort, fæstning </p>
- <p class="vocable">castellum sb. n2 borg, palads </p>
- <p class="vocable">contra (akk) præp. imod, mod </p>
- <p class="vocable">creō vb. jeg skaber </p>
- <p class="vocable">dominus sb. m2 herre (religion), hersker, kejser </p>
- <p class="vocable">egō pron. jeg </p>
- <p class="vocable">ex (abl) præp. fra </p>
- <p class="vocable">habeō vb. jeg har </p>
- <p class="vocable">hic adj. denne/dette </p>
- <p class="vocable">hic pron. denne/dette </p>
- <p class="vocable">in (abl/akk) præp. i/på (abl, som mål med akk) </p>
- <p class="vocable">magnus adj. stor, storartet </p>
- <p class="vocable">rēgīna sb. f1 dronning </p>
- <p class="vocable">rēx sb. m3 konge </p>
- <p class="vocable">sum vb. jeg er </p>
+ <p class="vocable">aedificō vb. jeg bygger, jeg opfører</p>
+ <p class="vocable">alpha sb. f1 det første bogstav af det græske alfabet</p>
+ <p class="vocable">amō vb. jeg elsker, jeg holder af</p>
+ <p class="vocable">arx sb. f3 borg, fort, fæstning</p>
+ <p class="vocable">cancer sb. m2 krebs, kræft, tumor</p>
+ <p class="vocable">canis sb. mf3 hund</p>
+ <p class="vocable">castellum sb. n2 borg, palads</p>
+ <p class="vocable">centrum sb. n2 centrum, midte</p>
+ <p class="vocable">contra (akk) præp. imod, mod</p>
+ <p class="vocable">creō vb. jeg skaber</p>
+ <p class="vocable">cum adv. med</p>
+ <p class="vocable">Dānia prop. f1 Danmark</p>
+ <p class="vocable">dominus sb. m2 herre (religion), hersker, kejser</p>
+ <p class="vocable">egō pron. jeg</p>
+ <p class="vocable">epistola sb. f1 brev</p>
+ <p class="vocable">ex (abl) præp. fra</p>
+ <p class="vocable">faciō vb. jeg gør</p>
+ <p class="vocable">femina sb. f1 kone, kvinde</p>
+ <p class="vocable">fleō vb. jeg græder, jeg tuder</p>
+ <p class="vocable">Hafnia prop. f1 København</p>
+ <p class="vocable">habeō vb. jeg har</p>
+ <p class="vocable">hic adj. f1mn2 denne/dette</p>
+ <p class="vocable">hic pron. f1mn2 denne/dette</p>
+ <p class="vocable">in (abl/akk) præp. i/på (m. abl, som m. akk)</p>
+ <p class="vocable">īnstituō vb. jeg etablerer</p>
+ <p class="vocable">Juppiter prop. m3 (guden el. planeten) Jupiter</p>
+ <p class="vocable">Lia prop. f1 egenavn: første kone af Jakob</p>
+ <p class="vocable">Lūna prop. f1 Luna (personificeringen af månen), månen</p>
+ <p class="vocable">lūna sb. f1 måne</p>
+ <p class="vocable">lyra sb. f1 lyre</p>
+ <p class="vocable">magnus adj. f1mn2 stor, storartet</p>
+ <p class="vocable">Mārs prop. m3 herre (religion), hersker, kejser</p>
+ <p class="vocable">medicīna sb. f1 medicin</p>
+ <p class="vocable">Mercurius prop. m2 (guden el. planeten) Merkur</p>
+ <p class="vocable">mercurius sb. m2 kviksølv</p>
+ <p class="vocable">mīles sb. m3 ridder, soldat</p>
+ <p class="vocable">Neptūnus prop. m2 (guden el. planeten) Neptun</p>
+ <p class="vocable">nōminātīvus adj. f1mn2 nominativ</p>
+ <p class="vocable">oppidum sb. n2 by</p>
+ <p class="vocable">praenūntiō vb. jeg annoncerer, jeg forudser</p>
+ <p class="vocable">puella sb. f1 (ung) pige</p>
+ <p class="vocable">puer sb. m2 dreng, knægt, ungkarl</p>
+ <p class="vocable">rēgīna sb. f1 dronning</p>
+ <p class="vocable">rēx sb. m3 konge</p>
+ <p class="vocable">scrībō konj. men</p>
+ <p class="vocable">sed konj. men</p>
+ <p class="vocable">servus sb. m2 slave(gjort), træl</p>
+ <p class="vocable">Sāturnus prop. m2 (guden el. planeten) Saturn</p>
+ <p class="vocable">Sōl prop. m3 Solen (el. guden af)</p>
+ <p class="vocable">stēlla sb. f1 stjerne</p>
+ <p class="vocable">sum vb. jeg er</p>
+ <p class="vocable">taurus sb. m2 tyr</p>
+ <p class="vocable">Ūranus prop. m2 (guden el. planeten) Uranus</p>
+ <p class="vocable">urbs sb. f3 (stor) by, Rom (byen) el. blot hovedstaden</p>
+ <p class="vocable">Venus prop. m2 (guden el. planeten) Venus</p>
</div>
</div>
<!--#include virtual="/shtml/copyrightNotice.shtml"-->
diff --git a/html/topic/mathematics.html b/html/topic/mathematics.html
index 91c2557..f3abbe0 100644
--- a/html/topic/mathematics.html
+++ b/html/topic/mathematics.html
@@ -108,62 +108,63 @@
<p class="math">\(hypotenuse=modliggende_{\gamma}=c\)</p>
</div>
<div class="group">
+ <p>I en retvinklet trekant:</p>
<p class="math">\(sin(\theta)=\frac {modliggende_{\theta}}{hypotenuse_{\theta}}\)</p>
<p class="math">\(cos(\theta)=\frac {hosliggende_{\theta}}{hypotenuse_{\theta}}\)</p>
<p class="math">\(tan(\theta)=\frac {modliggende_{\theta}}{hosliggende_{\theta}}\)</p>
- <p class="math">\(cot(\theta)=\frac {hosliggende_{\theta}}{modliggende_{\theta}}\)</p>
- <p class="math">\(csc(\theta)=\frac {hypotenuse_{\theta}}{modliggende_{\theta}}\)</p>
- <p class="math">\(sec(\theta)=\frac {hypotenuse_{\theta}}{hosliggende_{\theta}}\)</p>
+ <p class="math">\(csc(\theta)=\frac 1{sin(\theta)}=\frac {hypotenuse_{\theta}}{modliggende_{\theta}}\)</p>
+ <p class="math">\(sec(\theta)=\frac 1{cos(\theta)}=\frac {hypotenuse_{\theta}}{hosliggende_{\theta}}\)</p>
+ <p class="math">\(cot(\theta)=\frac 1{tan(\theta)}=\frac {hosliggende_{\theta}}{modliggende_{\theta}}\)</p>
</div>
<div class="group">
+ <p>I en retvinklet trekant:</p>
<p class="math">\(sin^{-1}(\frac {modliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)</p>
<p class="math">\(cos^{-1}(\frac {hosliggende_{\theta}}{hypotenuse_{\theta}})=\theta\)</p>
<p class="math">\(tan^{-1}(\frac {modliggende_{\theta}}{hosliggende_{\theta}})=\theta\)</p>
- <p class="math">\(cot^{-1}(\frac {hosliggende_{\theta}}{modliggende_{\theta}})=\theta\)</p>
<p class="math">\(csc^{-1}(\frac {hypotenuse_{\theta}}{modliggende_{\theta}})=\theta\)</p>
<p class="math">\(sec^{-1}(\frac {hypotenuse_{\theta}}{hosliggende_{\theta}})=\theta\)</p>
+ <p class="math">\(cot^{-1}(\frac {hosliggende_{\theta}}{modliggende_{\theta}})=\theta\)</p>
</div>
<div class="group">
<p>Forkortelser:</p>
<p class="math">\(sin=sinus\)</p>
<p class="math">\(cos=cosinus\)</p>
<p class="math">\(tan=tangens\)</p>
- <p class="math">\(cot=cotangens\)</p>
<p class="math">\(csc=cosekant\)</p>
<p class="math">\(sec=sekant\)</p>
+ <p class="math">\(cot=cotangens\)</p>
<p class="math">\(arcsin=sin^{-1}\)</p>
<p class="math">\(arccos=cos^{-1}\)</p>
<p class="math">\(arctan=tan^{-1}\)</p>
- <p class="math">\(arccot=cot^{-1}\)</p>
- <p class="math">\(arcsec=sec^{-1}\)</p>
<p class="math">\(arccsc=csc^{-1}\)</p>
+ <p class="math">\(arcsec=sec^{-1}\)</p>
+ <p class="math">\(arccot=cot^{-1}\)</p>
</div>
<div class="group">
<p class="math">\(deg(rad)=\frac {rad \cdot 180}{\pi}\)</p>
<p class="math">\(rad(deg)=\frac {deg \cdot \pi}{180}\)</p>
</div>
<div class="group">
- <p class="math">\(\Theta(n)=(n-2)\pi\)</p>
+ <p class="math">\(\Theta(n)=\pi(n-2)\)</p>
<p class="note">hvori <span class="math">\({\Theta}(n)\)</span> er vinkelsummen af <span class="emphasis">n</span>-gonen.</p>
- <p class="math">\(\Theta(3)=(3-2)\pi=\pi\)</p>
+ <p class="math">\(\Theta(3)=\pi\)</p>
</div>
<div class="group">
- <p class="math">\(\alpha=sin^{-1}(\frac ac)=cos^{-1}(\frac bc)=tan^{-1}(\frac ab)=\Theta(3)-\beta-\gamma\)</p>
- <p class="math">\(\beta=sin^{-1}(\frac bc)=cos^{-1}(\frac ac)=tan^{-1}(\frac ba)=\Theta(3)-\alpha-\gamma\)</p>
- <p class="math">\(\gamma=\Theta(3)-\alpha-\beta\)</p>
+ <p class="math">\(\alpha=\pi-\beta-\gamma\)</p>
+ <p class="math">\(\beta=\pi-\alpha-\gamma\)</p>
+ <p class="math">\(\gamma=\pi-\alpha-\beta\)</p>
<p>I en retvinklet trekant:</p>
+ <p class="math">\(\alpha=sin^{-1}(\frac ac)=cos^{-1}(\frac bc)=tan^{-1}(\frac ab)\)</p>
+ <p class="math">\(\beta=sin^{-1}(\frac bc)=cos^{-1}(\frac ac)=tan^{-1}(\frac ba)\)</p>
<p class="math">\(\gamma=\frac {\pi}2\)</p>
<p>I en regulær trekant:</p>
<p class="math">\(\alpha=\beta=\gamma=\frac {\pi}3\)</p>
</div>
<div class="group">
- <p class="math">\(a=c \cdot sin(\alpha)=c \cdot cos(\beta)=b \cdot tan(\alpha)=b \cdot cot(\beta)\)</p>
- <p class="math">\(b=c \cdot sin(\beta)=c \cdot cos(\alpha)=a \cdot tan(\beta)=a \cdot cot(\alpha)\)</p>
- <p class="math">\(c=a \cdot csc(\alpha)=b \cdot csc(\beta)=a \cdot sec(\beta)=b \cdot sec(\alpha)\)</p>
<p>I en retvinklet trekant:</p>
- <p class="math">\(a=\sqrt[2] {c^2-b^2}\)</p>
- <p class="math">\(b=\sqrt[2] {c^2-a^2}\)</p>
- <p class="math">\(c=\sqrt[2] {a^2+b^2}\)</p>
+ <p class="math">\(a=c \cdot sin(\alpha)=c \cdot cos(\beta)=b \cdot tan(\alpha)=b \cdot cot(\beta)=\sqrt[2] {c^2-b^2}\)</p>
+ <p class="math">\(b=c \cdot sin(\beta)=c \cdot cos(\alpha)=a \cdot tan(\beta)=a \cdot cot(\alpha)=\sqrt[2] {c^2-a^2}\)</p>
+ <p class="math">\(c=a \cdot csc(\alpha)=b \cdot csc(\beta)=a \cdot sec(\beta)=b \cdot sec(\alpha)=\sqrt[2] {a^2+b^2}\)</p>
<p>I en retvinklet trekant, hvori kateterne har samme længde:</p>
<p class="math">\(a=b=\sqrt[2] {\frac {c^2}2}\)</p>
<p>I en regulær trekant:</p>
@@ -221,7 +222,7 @@
</tr>
<tr>
<td><sub>den </sub>gyldne ratio</td>
- <td class="math">\(\phi\)</td>
+ <td class="math">\(\varphi\)</td>
</tr>
</tbody>
</table>
@@ -232,7 +233,7 @@
<p class="math">\(i=\sqrt[2] {-1}\)</p>
<p class="math">\(\pi \approx \frac {3\ 141\ 592\ 654}{10^9}\)</p>
<p class="math">\(\tau=2\pi \approx \frac {6\ 283\ 185\ 307}{10^9}\)</p>
- <p class="math">\(\phi=\frac {1+\sqrt[2] 5}2 \approx \frac {1\ 618\ 033\ 989}{10^9}\)</p>
+ <p class="math">\(\varphi=\frac {1+\sqrt[2] 5}2 \approx \frac {1\ 618\ 033\ 989}{10^9}\)</p>
</div>
</div>
</div>