1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
# bZipper
bZipper is a Rust crate for cheaply serialising (encoding) and deserialising (decoding) data structures into binary streams
What separates this crate from others such as [Bincode](https://crates.io/crates/bincode/) or [Postcard](https://crates.io/crates/postcard/) is that this crate is extensively optimised for *just* binary encodings (whilst the mentioned crates specifically use Serde and build on a more abstract data model).
The original goal of this project was specifically to guarantee size constraints for encodings on a per-type basis at compile-time.
Therefore, this crate may be more suited for networking or other cases where many allocations are unwanted.
Keep in mind that this project is still work-in-progress.
Until the interfaces are stabilised, different facilities may be replaced, removed, or altered in a breaking way.
This crate is compatible with `no_std`.
## Performance
As bZipper is optimised exclusively for a single, binary format, it may outperform other libraries that are more generic in nature.
The `bzipper_benchmarks` binary compares multiple scenarios using bZipper and other, similar crates.
According to my runs on an AMD Ryzen 7 3700X, these benchmarks indicate that bZipper outperform all of the tested crates -- as demonstrated in the following table:
| Benchmark | [Bincode] | [Borsh] | bZipper | [Ciborium] | [Postcard] |
| :--------------------------------- | --------: | ------: | ------: | ---------: | ---------: |
| `encode_u8` | 1.262 | 1.271 | 1.153 | 2.854 | 1.270 |
| `encode_struct_unit` | 0.000 | 0.000 | 0.000 | 0.447 | 0.000 |
| `encode_struct_unnamed` | 1.270 | 1.102 | 0.998 | 1.948 | 1.182 |
| `encode_struct_named` | 4.205 | 1.186 | 1.136 | 10.395 | 1.168 |
| `encode_enum_unit` | 0.328 | 0.008 | 0.000 | 2.293 | 0.004 |
| **Total time** → | 7.065 | 3.567 | 3.286 | 17.937 | 3.625 |
| **Total deviation (p.c.)** → | +115 | +9 | ±0 | +446 | +10 |
[Bincode]: https://crates.io/crates/bincode/
[Borsh]: https://crates.io/crates/borsh/
[Ciborium]: https://crates.io/crates/ciborium/
[Postcard]: https://crates.io/crates/postcard/
All quantities are measured in seconds unless otherwise noted.
Please feel free to conduct your own tests of bZipper.
## Data model
Most primitives encode losslessly, with the main exceptions being `usize` and `isize`.
These are instead first cast as `u16` and `i16`, respectively, due to portability concerns (with respect to embedded systems).
See specific types' implementations for notes on their data models.
**Note that the data model is currently not stabilised,** and may not necessarily be in the near future (before [specialisation](https://github.com/rust-lang/rust/issues/31844/)).
It may therefore be undesired to store encodings long-term.
## Usage
This crate revolves around the `Encode` and `Decode` traits which both handle conversions to and from byte streams.
Many standard types come implemented with bZipper, including most primitives as well as some standard library types such as `Option` and `Result`.
Some [features](#features-flags) enable an extended set of implementations.
It is recommended in most cases to simply derive these two traits for custom types (although this is only supported with enumerations and structures – not untagged unions).
Here, each field is *chained* according to declaration order:
```rust
use bzipper::{Buf, Decode, Encode, SizedEncode};
#[derive(Debug, Decode, PartialEq, SizedEncode)]
struct IoRegister {
addr: u32,
value: u16,
}
let mut buf = Buf::new();
buf.write(IoRegister { addr: 0x04000000, value: 0x0402 }).unwrap();
assert_eq!(buf.len(), 0x6);
assert_eq!(buf, [0x04, 0x00, 0x00, 0x00, 0x04, 0x02].as_slice());
assert_eq!(buf.read().unwrap(), IoRegister { addr: 0x04000000, value: 0x0402 });
```
### Buffer types
The `Encode` and `Decode` traits both rely on streams for carrying the manipulated byte streams.
These streams are separated into two type: *O-streams* (output streams) and *i-streams* (input streams).
Often, but not always, the `Buf` type is preferred over directly calling the `encode` and `decode` methods.
### Encoding
To encode an object directly using the `Encode` trait, simply allocate a buffer for the encoding and wrap it in an `OStream` object:
```rust
use bzipper::{Encode, OStream, SizedEncode};
let mut buf = [0x00; char::MAX_ENCODED_SIZE];
let mut stream = OStream::new(&mut buf);
'Ж'.encode(&mut stream).unwrap();
assert_eq!(buf, [0x00, 0x00, 0x04, 0x16].as_slice());
```
Streams can also be used to chain multiple objects together:
```rust
use bzipper::{Encode, OStream, SizedEncode};
let mut buf = [0x0; char::MAX_ENCODED_SIZE * 0x5];
let mut stream = OStream::new(&mut buf);
// Note: For serialising multiple characters, the
// `String` and `SizedStr` types are usually
// preferred.
'ل'.encode(&mut stream).unwrap();
'ا'.encode(&mut stream).unwrap();
'م'.encode(&mut stream).unwrap();
'د'.encode(&mut stream).unwrap();
'ا'.encode(&mut stream).unwrap();
assert_eq!(buf, [
0x00, 0x00, 0x06, 0x44, 0x00, 0x00, 0x06, 0x27,
0x00, 0x00, 0x06, 0x45, 0x00, 0x00, 0x06, 0x2F,
0x00, 0x00, 0x06, 0x27
]);
```
If the encoded type additionally implements `SizedEncode`, then the maximum size of any encoding is guaranteed with the `MAX_ENCODED_SIZE` constant.
Numerical primitives are encoded in big endian (a.k.a. [network order](https://en.wikipedia.org/wiki/Endianness#Networking)) for... reasons.
It is recommended for implementors to follow this convention as well.
### Decoding
Decoding works with a similar syntax to encoding.
To decode a byte array, simply call the `decode` method with an `IStream` object:
```rust
use bzipper::{Decode, IStream};
let data = [0x45, 0x54];
let mut stream = IStream::new(&data);
assert_eq!(u16::decode(&mut stream).unwrap(), 0x4554);
// Data can theoretically be reinterpretred:
stream = IStream::new(&data);
assert_eq!(u8::decode(&mut stream).unwrap(), 0x45);
assert_eq!(u8::decode(&mut stream).unwrap(), 0x54);
// Including as tuples:
stream = IStream::new(&data);
assert_eq!(<(u8, u8)>::decode(&mut stream).unwrap(), (0x45, 0x54));
```
## Examples
A UDP server/client for geographic data:
```rust
use bzipper::{Buf, Decode, SizedEncode};
use std::io;
use std::net::{SocketAddr, ToSocketAddrs, UdpSocket};
use std::thread::spawn;
// City, region, etc.:
#[derive(Clone, Copy, Debug, Decode, Eq, PartialEq, SizedEncode)]
enum Area {
AlQuds,
Byzantion,
Cusco,
Tenochtitlan,
// ...
}
// Client-to-server message:
#[derive(Debug, Decode, PartialEq, SizedEncode)]
enum Request {
AtmosphericHumidity { area: Area },
AtmosphericPressure { area: Area },
AtmosphericTemperature { area: Area },
// ...
}
// Server-to-client message:
#[derive(Debug, Decode, PartialEq, SizedEncode)]
enum Response {
AtmosphericHumidity(f64),
AtmosphericPressure(f64), // Pascal
AtmosphericTemperature(f64), // Kelvin
// ...
}
struct Party {
pub socket: UdpSocket,
pub request_buf: Buf::<Request>,
pub response_buf: Buf::<Response>,
}
impl Party {
pub fn new<A: ToSocketAddrs>(addr: A) -> io::Result<Self> {
let socket = UdpSocket::bind(addr)?;
let this = Self {
socket,
request_buf: Buf::new(),
response_buf: Buf::new(),
};
Ok(this)
}
}
let mut server = Party::new("127.0.0.1:27015").unwrap();
let mut client = Party::new("0.0.0.0:0").unwrap();
spawn(move || {
let Party { socket, mut request_buf, mut response_buf } = server;
// Recieve initial request from client.
let (len, addr) = socket.recv_from(&mut request_buf).unwrap();
request_buf.set_len(len);
let request = request_buf.read().unwrap();
assert_eq!(request, Request::AtmosphericTemperature { area: Area::AlQuds });
// Handle request and respond back to client.
let response = Response::AtmosphericTemperature(44.4); // For demonstration's sake.
response_buf.write(response).unwrap();
socket.send_to(&response_buf, addr).unwrap();
});
spawn(move || {
let Party { socket, mut request_buf, mut response_buf } = client;
// Send initial request to server.
socket.connect("127.0.0.1:27015").unwrap();
let request = Request::AtmosphericTemperature { area: Area::AlQuds };
request_buf.write(request);
socket.send(&request_buf).unwrap();
// Recieve final response from server.
socket.recv(&mut response_buf).unwrap();
let response = response_buf.read().unwrap();
assert_eq!(response, Response::AtmosphericTemperature(44.4));
});
```
## Feature flags
bZipper defines the following features:
* `alloc` (default): Enables the `Buf` type and implementations for e.g. `Box` and `Arc`
* `std` (default): Enables implementations for types such as `Mutex` and `RwLock`
## Documentation
bZipper has its documentation written in-source for use by `rustdoc`.
See [Docs.rs](https://docs.rs/bzipper/latest/bzipper/) for an on-line, rendered instance.
Currently, these docs make use of some unstable features for the sake of readability.
The nightly toolchain is therefore required when rendering them.
## Contribution
bZipper does not accept source code contributions at the moment.
This is a personal choice by the maintainer and may be undone in the future.
Do however feel free to open up an issue on [`GitLab`](https://gitlab.com/bjoernager/bzipper/issues/) or (preferably) [`GitHub`](https://github.com/bjoernager/bzipper/issues/) if you feel the need to express any concerns over the project.
## Copyright & Licence
Copyright 2024 Gabriel Bjørnager Jensen.
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this program.
If not, see <https://www.gnu.org/licenses/>.
|