
By replacing them with `{Open,Close}{Param,Brace,Bracket,Invisible}`. PR #137902 made `ast::TokenKind` more like `lexer::TokenKind` by replacing the compound `BinOp{,Eq}(BinOpToken)` variants with fieldless variants `Plus`, `Minus`, `Star`, etc. This commit does a similar thing with delimiters. It also makes `ast::TokenKind` more similar to `parser::TokenType`. This requires a few new methods: - `TokenKind::is_{,open_,close_}delim()` replace various kinds of pattern matches. - `Delimiter::as_{open,close}_token_kind` are used to convert `Delimiter` values to `TokenKind`. Despite these additions, it's a net reduction in lines of code. This is because e.g. `token::OpenParen` is so much shorter than `token::OpenDelim(Delimiter::Parenthesis)` that many multi-line forms reduce to single line forms. And many places where the number of lines doesn't change are still easier to read, just because the names are shorter, e.g.: ``` - } else if self.token != token::CloseDelim(Delimiter::Brace) { + } else if self.token != token::CloseBrace { ```
966 lines
41 KiB
Rust
966 lines
41 KiB
Rust
use std::mem;
|
|
|
|
use ast::token::IdentIsRaw;
|
|
use rustc_ast::ptr::P;
|
|
use rustc_ast::token::{self, MetaVarKind, Token, TokenKind};
|
|
use rustc_ast::{
|
|
self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
|
|
AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
|
|
Path, PathSegment, QSelf,
|
|
};
|
|
use rustc_errors::{Applicability, Diag, PResult};
|
|
use rustc_span::{BytePos, Ident, Span, kw, sym};
|
|
use thin_vec::ThinVec;
|
|
use tracing::debug;
|
|
|
|
use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
|
|
use super::{Parser, Restrictions, TokenType};
|
|
use crate::errors::{self, PathSingleColon, PathTripleColon};
|
|
use crate::exp;
|
|
use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
|
|
|
|
/// Specifies how to parse a path.
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
pub(super) enum PathStyle {
|
|
/// In some contexts, notably in expressions, paths with generic arguments are ambiguous
|
|
/// with something else. For example, in expressions `segment < ....` can be interpreted
|
|
/// as a comparison and `segment ( ....` can be interpreted as a function call.
|
|
/// In all such contexts the non-path interpretation is preferred by default for practical
|
|
/// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
|
|
/// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
|
|
///
|
|
/// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
|
|
/// we encounter it.
|
|
Expr,
|
|
/// The same as `Expr`, but may be followed by a `:`.
|
|
/// For example, this code:
|
|
/// ```rust
|
|
/// struct S;
|
|
///
|
|
/// let S: S;
|
|
/// // ^ Followed by a `:`
|
|
/// ```
|
|
Pat,
|
|
/// In other contexts, notably in types, no ambiguity exists and paths can be written
|
|
/// without the disambiguator, e.g., `x<y>` - unambiguously a path.
|
|
/// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
|
|
Type,
|
|
/// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
|
|
/// visibilities or attributes.
|
|
/// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
|
|
/// (paths in "mod" contexts have to be checked later for absence of generic arguments
|
|
/// anyway, due to macros), but it is used to avoid weird suggestions about expected
|
|
/// tokens when something goes wrong.
|
|
Mod,
|
|
}
|
|
|
|
impl PathStyle {
|
|
fn has_generic_ambiguity(&self) -> bool {
|
|
matches!(self, Self::Expr | Self::Pat)
|
|
}
|
|
}
|
|
|
|
impl<'a> Parser<'a> {
|
|
/// Parses a qualified path.
|
|
/// Assumes that the leading `<` has been parsed already.
|
|
///
|
|
/// `qualified_path = <type [as trait_ref]>::path`
|
|
///
|
|
/// # Examples
|
|
/// `<T>::default`
|
|
/// `<T as U>::a`
|
|
/// `<T as U>::F::a<S>` (without disambiguator)
|
|
/// `<T as U>::F::a::<S>` (with disambiguator)
|
|
pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
|
|
let lo = self.prev_token.span;
|
|
let ty = self.parse_ty()?;
|
|
|
|
// `path` will contain the prefix of the path up to the `>`,
|
|
// if any (e.g., `U` in the `<T as U>::*` examples
|
|
// above). `path_span` has the span of that path, or an empty
|
|
// span in the case of something like `<T>::Bar`.
|
|
let (mut path, path_span);
|
|
if self.eat_keyword(exp!(As)) {
|
|
let path_lo = self.token.span;
|
|
path = self.parse_path(PathStyle::Type)?;
|
|
path_span = path_lo.to(self.prev_token.span);
|
|
} else {
|
|
path_span = self.token.span.to(self.token.span);
|
|
path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
|
|
}
|
|
|
|
// See doc comment for `unmatched_angle_bracket_count`.
|
|
self.expect(exp!(Gt))?;
|
|
if self.unmatched_angle_bracket_count > 0 {
|
|
self.unmatched_angle_bracket_count -= 1;
|
|
debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
|
|
}
|
|
|
|
let is_import_coupler = self.is_import_coupler();
|
|
if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
|
|
self.expect(exp!(PathSep))?;
|
|
}
|
|
|
|
let qself = P(QSelf { ty, path_span, position: path.segments.len() });
|
|
if !is_import_coupler {
|
|
self.parse_path_segments(&mut path.segments, style, None)?;
|
|
}
|
|
|
|
Ok((
|
|
qself,
|
|
Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
|
|
))
|
|
}
|
|
|
|
/// Recover from an invalid single colon, when the user likely meant a qualified path.
|
|
/// We avoid emitting this if not followed by an identifier, as our assumption that the user
|
|
/// intended this to be a qualified path may not be correct.
|
|
///
|
|
/// ```ignore (diagnostics)
|
|
/// <Bar as Baz<T>>:Qux
|
|
/// ^ help: use double colon
|
|
/// ```
|
|
fn recover_colon_before_qpath_proj(&mut self) -> bool {
|
|
if !self.check_noexpect(&TokenKind::Colon)
|
|
|| self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
self.bump(); // colon
|
|
|
|
self.dcx()
|
|
.struct_span_err(
|
|
self.prev_token.span,
|
|
"found single colon before projection in qualified path",
|
|
)
|
|
.with_span_suggestion(
|
|
self.prev_token.span,
|
|
"use double colon",
|
|
"::",
|
|
Applicability::MachineApplicable,
|
|
)
|
|
.emit();
|
|
|
|
true
|
|
}
|
|
|
|
pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
|
|
self.parse_path_inner(style, None)
|
|
}
|
|
|
|
/// Parses simple paths.
|
|
///
|
|
/// `path = [::] segment+`
|
|
/// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
|
|
///
|
|
/// # Examples
|
|
/// `a::b::C<D>` (without disambiguator)
|
|
/// `a::b::C::<D>` (with disambiguator)
|
|
/// `Fn(Args)` (without disambiguator)
|
|
/// `Fn::(Args)` (with disambiguator)
|
|
pub(super) fn parse_path_inner(
|
|
&mut self,
|
|
style: PathStyle,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, Path> {
|
|
let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
|
|
// Ensure generic arguments don't end up in attribute paths, such as:
|
|
//
|
|
// macro_rules! m {
|
|
// ($p:path) => { #[$p] struct S; }
|
|
// }
|
|
//
|
|
// m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
|
|
//
|
|
if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
|
|
{
|
|
let span = path
|
|
.segments
|
|
.iter()
|
|
.filter_map(|segment| segment.args.as_ref())
|
|
.map(|arg| arg.span())
|
|
.collect::<Vec<_>>();
|
|
parser.dcx().emit_err(errors::GenericsInPath { span });
|
|
// Ignore these arguments to prevent unexpected behaviors.
|
|
let segments = path
|
|
.segments
|
|
.iter()
|
|
.map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
|
|
.collect();
|
|
Path { segments, ..path }
|
|
} else {
|
|
path
|
|
}
|
|
};
|
|
|
|
if let Some(path) =
|
|
self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
|
|
{
|
|
return Ok(reject_generics_if_mod_style(self, path));
|
|
}
|
|
|
|
// If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
|
|
// of reparsing it as a `ty` and then extracting the path.
|
|
if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
|
|
this.parse_path(PathStyle::Type)
|
|
}) {
|
|
return Ok(reject_generics_if_mod_style(self, path));
|
|
}
|
|
|
|
let lo = self.token.span;
|
|
let mut segments = ThinVec::new();
|
|
let mod_sep_ctxt = self.token.span.ctxt();
|
|
if self.eat_path_sep() {
|
|
segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
|
|
}
|
|
self.parse_path_segments(&mut segments, style, ty_generics)?;
|
|
Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
|
|
}
|
|
|
|
pub(super) fn parse_path_segments(
|
|
&mut self,
|
|
segments: &mut ThinVec<PathSegment>,
|
|
style: PathStyle,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, ()> {
|
|
loop {
|
|
let segment = self.parse_path_segment(style, ty_generics)?;
|
|
if style.has_generic_ambiguity() {
|
|
// In order to check for trailing angle brackets, we must have finished
|
|
// recursing (`parse_path_segment` can indirectly call this function),
|
|
// that is, the next token must be the highlighted part of the below example:
|
|
//
|
|
// `Foo::<Bar as Baz<T>>::Qux`
|
|
// ^ here
|
|
//
|
|
// As opposed to the below highlight (if we had only finished the first
|
|
// recursion):
|
|
//
|
|
// `Foo::<Bar as Baz<T>>::Qux`
|
|
// ^ here
|
|
//
|
|
// `PathStyle::Expr` is only provided at the root invocation and never in
|
|
// `parse_path_segment` to recurse and therefore can be checked to maintain
|
|
// this invariant.
|
|
self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
|
|
}
|
|
segments.push(segment);
|
|
|
|
if self.is_import_coupler() || !self.eat_path_sep() {
|
|
let ok_for_recovery = self.may_recover()
|
|
&& match style {
|
|
PathStyle::Expr => true,
|
|
PathStyle::Type if let Some((ident, _)) = self.prev_token.ident() => {
|
|
self.token == token::Colon
|
|
&& ident.as_str().chars().all(|c| c.is_lowercase())
|
|
&& self.token.span.lo() == self.prev_token.span.hi()
|
|
&& self
|
|
.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
|
|
}
|
|
_ => false,
|
|
};
|
|
if ok_for_recovery
|
|
&& self.token == token::Colon
|
|
&& self.look_ahead(1, |token| token.is_ident() && !token.is_reserved_ident())
|
|
{
|
|
// Emit a special error message for `a::b:c` to help users
|
|
// otherwise, `a: c` might have meant to introduce a new binding
|
|
if self.token.span.lo() == self.prev_token.span.hi()
|
|
&& self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
|
|
{
|
|
self.bump(); // bump past the colon
|
|
self.dcx().emit_err(PathSingleColon {
|
|
span: self.prev_token.span,
|
|
suggestion: self.prev_token.span.shrink_to_hi(),
|
|
});
|
|
}
|
|
continue;
|
|
}
|
|
|
|
return Ok(());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Eat `::` or, potentially, `:::`.
|
|
#[must_use]
|
|
pub(super) fn eat_path_sep(&mut self) -> bool {
|
|
let result = self.eat(exp!(PathSep));
|
|
if result && self.may_recover() {
|
|
if self.eat_noexpect(&token::Colon) {
|
|
self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
pub(super) fn parse_path_segment(
|
|
&mut self,
|
|
style: PathStyle,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, PathSegment> {
|
|
let ident = self.parse_path_segment_ident()?;
|
|
let is_args_start = |token: &Token| {
|
|
matches!(token.kind, token::Lt | token::Shl | token::OpenParen | token::LArrow)
|
|
};
|
|
let check_args_start = |this: &mut Self| {
|
|
this.expected_token_types.insert(TokenType::Lt);
|
|
this.expected_token_types.insert(TokenType::OpenParen);
|
|
is_args_start(&this.token)
|
|
};
|
|
|
|
Ok(
|
|
if style == PathStyle::Type && check_args_start(self)
|
|
|| style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
|
|
{
|
|
// We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
|
|
// it isn't, then we reset the unmatched angle bracket count as we're about to start
|
|
// parsing a new path.
|
|
if style == PathStyle::Expr {
|
|
self.unmatched_angle_bracket_count = 0;
|
|
}
|
|
|
|
// Generic arguments are found - `<`, `(`, `::<` or `::(`.
|
|
// First, eat `::` if it exists.
|
|
let _ = self.eat_path_sep();
|
|
|
|
let lo = self.token.span;
|
|
let args = if self.eat_lt() {
|
|
// `<'a, T, A = U>`
|
|
let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
|
|
style,
|
|
lo,
|
|
ty_generics,
|
|
)?;
|
|
self.expect_gt().map_err(|mut err| {
|
|
// Try to recover a `:` into a `::`
|
|
if self.token == token::Colon
|
|
&& self.look_ahead(1, |token| {
|
|
token.is_ident() && !token.is_reserved_ident()
|
|
})
|
|
{
|
|
err.cancel();
|
|
err = self.dcx().create_err(PathSingleColon {
|
|
span: self.token.span,
|
|
suggestion: self.prev_token.span.shrink_to_hi(),
|
|
});
|
|
}
|
|
// Attempt to find places where a missing `>` might belong.
|
|
else if let Some(arg) = args
|
|
.iter()
|
|
.rev()
|
|
.find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
|
|
{
|
|
err.span_suggestion_verbose(
|
|
arg.span().shrink_to_hi(),
|
|
"you might have meant to end the type parameters here",
|
|
">",
|
|
Applicability::MaybeIncorrect,
|
|
);
|
|
}
|
|
err
|
|
})?;
|
|
let span = lo.to(self.prev_token.span);
|
|
AngleBracketedArgs { args, span }.into()
|
|
} else if self.token == token::OpenParen
|
|
// FIXME(return_type_notation): Could also recover `...` here.
|
|
&& self.look_ahead(1, |t| *t == token::DotDot)
|
|
{
|
|
self.bump(); // (
|
|
self.bump(); // ..
|
|
self.expect(exp!(CloseParen))?;
|
|
let span = lo.to(self.prev_token.span);
|
|
|
|
self.psess.gated_spans.gate(sym::return_type_notation, span);
|
|
|
|
let prev_lo = self.prev_token.span.shrink_to_hi();
|
|
if self.eat_noexpect(&token::RArrow) {
|
|
let lo = self.prev_token.span;
|
|
let ty = self.parse_ty()?;
|
|
let span = lo.to(ty.span);
|
|
let suggestion = prev_lo.to(ty.span);
|
|
self.dcx()
|
|
.emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
|
|
}
|
|
|
|
P(ast::GenericArgs::ParenthesizedElided(span))
|
|
} else {
|
|
// `(T, U) -> R`
|
|
|
|
let prev_token_before_parsing = self.prev_token;
|
|
let token_before_parsing = self.token;
|
|
let mut snapshot = None;
|
|
if self.may_recover()
|
|
&& prev_token_before_parsing == token::PathSep
|
|
&& (style == PathStyle::Expr && self.token.can_begin_expr()
|
|
|| style == PathStyle::Pat
|
|
&& self.token.can_begin_pattern(token::NtPatKind::PatParam {
|
|
inferred: false,
|
|
}))
|
|
{
|
|
snapshot = Some(self.create_snapshot_for_diagnostic());
|
|
}
|
|
|
|
let (inputs, _) = match self.parse_paren_comma_seq(|p| p.parse_ty()) {
|
|
Ok(output) => output,
|
|
Err(mut error) if prev_token_before_parsing == token::PathSep => {
|
|
error.span_label(
|
|
prev_token_before_parsing.span.to(token_before_parsing.span),
|
|
"while parsing this parenthesized list of type arguments starting here",
|
|
);
|
|
|
|
if let Some(mut snapshot) = snapshot {
|
|
snapshot.recover_fn_call_leading_path_sep(
|
|
style,
|
|
prev_token_before_parsing,
|
|
&mut error,
|
|
)
|
|
}
|
|
|
|
return Err(error);
|
|
}
|
|
Err(error) => return Err(error),
|
|
};
|
|
let inputs_span = lo.to(self.prev_token.span);
|
|
let output =
|
|
self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
|
|
let span = ident.span.to(self.prev_token.span);
|
|
ParenthesizedArgs { span, inputs, inputs_span, output }.into()
|
|
};
|
|
|
|
PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
|
|
} else {
|
|
// Generic arguments are not found.
|
|
PathSegment::from_ident(ident)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
|
|
match self.token.ident() {
|
|
Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
|
|
self.bump();
|
|
Ok(ident)
|
|
}
|
|
_ => self.parse_ident(),
|
|
}
|
|
}
|
|
|
|
/// Recover `$path::(...)` as `$path(...)`.
|
|
///
|
|
/// ```ignore (diagnostics)
|
|
/// foo::(420, "bar")
|
|
/// ^^ remove extra separator to make the function call
|
|
/// // or
|
|
/// match x {
|
|
/// Foo::(420, "bar") => { ... },
|
|
/// ^^ remove extra separator to turn this into tuple struct pattern
|
|
/// _ => { ... },
|
|
/// }
|
|
/// ```
|
|
fn recover_fn_call_leading_path_sep(
|
|
&mut self,
|
|
style: PathStyle,
|
|
prev_token_before_parsing: Token,
|
|
error: &mut Diag<'_>,
|
|
) {
|
|
match style {
|
|
PathStyle::Expr
|
|
if let Ok(_) = self
|
|
.parse_paren_comma_seq(|p| p.parse_expr())
|
|
.map_err(|error| error.cancel()) => {}
|
|
PathStyle::Pat
|
|
if let Ok(_) = self
|
|
.parse_paren_comma_seq(|p| {
|
|
p.parse_pat_allow_top_guard(
|
|
None,
|
|
RecoverComma::No,
|
|
RecoverColon::No,
|
|
CommaRecoveryMode::LikelyTuple,
|
|
)
|
|
})
|
|
.map_err(|error| error.cancel()) => {}
|
|
_ => {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if let token::PathSep | token::RArrow = self.token.kind {
|
|
return;
|
|
}
|
|
|
|
error.span_suggestion_verbose(
|
|
prev_token_before_parsing.span,
|
|
format!(
|
|
"consider removing the `::` here to {}",
|
|
match style {
|
|
PathStyle::Expr => "call the expression",
|
|
PathStyle::Pat => "turn this into a tuple struct pattern",
|
|
_ => {
|
|
return;
|
|
}
|
|
}
|
|
),
|
|
"",
|
|
Applicability::MaybeIncorrect,
|
|
);
|
|
}
|
|
|
|
/// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
|
|
/// For the purposes of understanding the parsing logic of generic arguments, this function
|
|
/// can be thought of being the same as just calling `self.parse_angle_args()` if the source
|
|
/// had the correct amount of leading angle brackets.
|
|
///
|
|
/// ```ignore (diagnostics)
|
|
/// bar::<<<<T as Foo>::Output>();
|
|
/// ^^ help: remove extra angle brackets
|
|
/// ```
|
|
fn parse_angle_args_with_leading_angle_bracket_recovery(
|
|
&mut self,
|
|
style: PathStyle,
|
|
lo: Span,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, ThinVec<AngleBracketedArg>> {
|
|
// We need to detect whether there are extra leading left angle brackets and produce an
|
|
// appropriate error and suggestion. This cannot be implemented by looking ahead at
|
|
// upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
|
|
// then there won't be matching `>` tokens to find.
|
|
//
|
|
// To explain how this detection works, consider the following example:
|
|
//
|
|
// ```ignore (diagnostics)
|
|
// bar::<<<<T as Foo>::Output>();
|
|
// ^^ help: remove extra angle brackets
|
|
// ```
|
|
//
|
|
// Parsing of the left angle brackets starts in this function. We start by parsing the
|
|
// `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
|
|
// `eat_lt`):
|
|
//
|
|
// *Upcoming tokens:* `<<<<T as Foo>::Output>;`
|
|
// *Unmatched count:* 1
|
|
// *`parse_path_segment` calls deep:* 0
|
|
//
|
|
// This has the effect of recursing as this function is called if a `<` character
|
|
// is found within the expected generic arguments:
|
|
//
|
|
// *Upcoming tokens:* `<<<T as Foo>::Output>;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 1
|
|
//
|
|
// Eventually we will have recursed until having consumed all of the `<` tokens and
|
|
// this will be reflected in the count:
|
|
//
|
|
// *Upcoming tokens:* `T as Foo>::Output>;`
|
|
// *Unmatched count:* 4
|
|
// `parse_path_segment` calls deep:* 3
|
|
//
|
|
// The parser will continue until reaching the first `>` - this will decrement the
|
|
// unmatched angle bracket count and return to the parent invocation of this function
|
|
// having succeeded in parsing:
|
|
//
|
|
// *Upcoming tokens:* `::Output>;`
|
|
// *Unmatched count:* 3
|
|
// *`parse_path_segment` calls deep:* 2
|
|
//
|
|
// This will continue until the next `>` character which will also return successfully
|
|
// to the parent invocation of this function and decrement the count:
|
|
//
|
|
// *Upcoming tokens:* `;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 1
|
|
//
|
|
// At this point, this function will expect to find another matching `>` character but
|
|
// won't be able to and will return an error. This will continue all the way up the
|
|
// call stack until the first invocation:
|
|
//
|
|
// *Upcoming tokens:* `;`
|
|
// *Unmatched count:* 2
|
|
// *`parse_path_segment` calls deep:* 0
|
|
//
|
|
// In doing this, we have managed to work out how many unmatched leading left angle
|
|
// brackets there are, but we cannot recover as the unmatched angle brackets have
|
|
// already been consumed. To remedy this, we keep a snapshot of the parser state
|
|
// before we do the above. We can then inspect whether we ended up with a parsing error
|
|
// and unmatched left angle brackets and if so, restore the parser state before we
|
|
// consumed any `<` characters to emit an error and consume the erroneous tokens to
|
|
// recover by attempting to parse again.
|
|
//
|
|
// In practice, the recursion of this function is indirect and there will be other
|
|
// locations that consume some `<` characters - as long as we update the count when
|
|
// this happens, it isn't an issue.
|
|
|
|
let is_first_invocation = style == PathStyle::Expr;
|
|
// Take a snapshot before attempting to parse - we can restore this later.
|
|
let snapshot = is_first_invocation.then(|| self.clone());
|
|
|
|
self.angle_bracket_nesting += 1;
|
|
debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
|
|
match self.parse_angle_args(ty_generics) {
|
|
Ok(args) => {
|
|
self.angle_bracket_nesting -= 1;
|
|
Ok(args)
|
|
}
|
|
Err(e) if self.angle_bracket_nesting > 10 => {
|
|
self.angle_bracket_nesting -= 1;
|
|
// When encountering severely malformed code where there are several levels of
|
|
// nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
|
|
// behavior by bailing out earlier (#117080).
|
|
e.emit().raise_fatal();
|
|
}
|
|
Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
|
|
self.angle_bracket_nesting -= 1;
|
|
|
|
// Swap `self` with our backup of the parser state before attempting to parse
|
|
// generic arguments.
|
|
let snapshot = mem::replace(self, snapshot.unwrap());
|
|
|
|
// Eat the unmatched angle brackets.
|
|
let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
|
|
.fold(true, |a, _| a && self.eat_lt());
|
|
|
|
if !all_angle_brackets {
|
|
// If there are other tokens in between the extraneous `<`s, we cannot simply
|
|
// suggest to remove them. This check also prevents us from accidentally ending
|
|
// up in the middle of a multibyte character (issue #84104).
|
|
let _ = mem::replace(self, snapshot);
|
|
Err(e)
|
|
} else {
|
|
// Cancel error from being unable to find `>`. We know the error
|
|
// must have been this due to a non-zero unmatched angle bracket
|
|
// count.
|
|
e.cancel();
|
|
|
|
debug!(
|
|
"parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
|
|
snapshot.count={:?}",
|
|
snapshot.unmatched_angle_bracket_count,
|
|
);
|
|
|
|
// Make a span over ${unmatched angle bracket count} characters.
|
|
// This is safe because `all_angle_brackets` ensures that there are only `<`s,
|
|
// i.e. no multibyte characters, in this range.
|
|
let span = lo
|
|
.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
|
|
self.dcx().emit_err(errors::UnmatchedAngle {
|
|
span,
|
|
plural: snapshot.unmatched_angle_bracket_count > 1,
|
|
});
|
|
|
|
// Try again without unmatched angle bracket characters.
|
|
self.parse_angle_args(ty_generics)
|
|
}
|
|
}
|
|
Err(e) => {
|
|
self.angle_bracket_nesting -= 1;
|
|
Err(e)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parses (possibly empty) list of generic arguments / associated item constraints,
|
|
/// possibly including trailing comma.
|
|
pub(super) fn parse_angle_args(
|
|
&mut self,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, ThinVec<AngleBracketedArg>> {
|
|
let mut args = ThinVec::new();
|
|
while let Some(arg) = self.parse_angle_arg(ty_generics)? {
|
|
args.push(arg);
|
|
if !self.eat(exp!(Comma)) {
|
|
if self.check_noexpect(&TokenKind::Semi)
|
|
&& self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
|
|
{
|
|
// Add `>` to the list of expected tokens.
|
|
self.check(exp!(Gt));
|
|
// Handle `,` to `;` substitution
|
|
let mut err = self.unexpected().unwrap_err();
|
|
self.bump();
|
|
err.span_suggestion_verbose(
|
|
self.prev_token.span.until(self.token.span),
|
|
"use a comma to separate type parameters",
|
|
", ",
|
|
Applicability::MachineApplicable,
|
|
);
|
|
err.emit();
|
|
continue;
|
|
}
|
|
if !self.token.kind.should_end_const_arg()
|
|
&& self.handle_ambiguous_unbraced_const_arg(&mut args)?
|
|
{
|
|
// We've managed to (partially) recover, so continue trying to parse
|
|
// arguments.
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
Ok(args)
|
|
}
|
|
|
|
/// Parses a single argument in the angle arguments `<...>` of a path segment.
|
|
fn parse_angle_arg(
|
|
&mut self,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, Option<AngleBracketedArg>> {
|
|
let lo = self.token.span;
|
|
let arg = self.parse_generic_arg(ty_generics)?;
|
|
match arg {
|
|
Some(arg) => {
|
|
// we are using noexpect here because we first want to find out if either `=` or `:`
|
|
// is present and then use that info to push the other token onto the tokens list
|
|
let separated =
|
|
self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
|
|
if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
|
|
let arg_span = arg.span();
|
|
let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
|
|
Ok(ident_gen_args) => ident_gen_args,
|
|
Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
|
|
};
|
|
if binder {
|
|
// FIXME(compiler-errors): this could be improved by suggesting lifting
|
|
// this up to the trait, at least before this becomes real syntax.
|
|
// e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
|
|
return Err(self.dcx().struct_span_err(
|
|
arg_span,
|
|
"`for<...>` is not allowed on associated type bounds",
|
|
));
|
|
}
|
|
let kind = if self.eat(exp!(Colon)) {
|
|
AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
|
|
} else if self.eat(exp!(Eq)) {
|
|
self.parse_assoc_equality_term(
|
|
ident,
|
|
gen_args.as_ref(),
|
|
self.prev_token.span,
|
|
)?
|
|
} else {
|
|
unreachable!();
|
|
};
|
|
|
|
let span = lo.to(self.prev_token.span);
|
|
|
|
let constraint =
|
|
AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
|
|
Ok(Some(AngleBracketedArg::Constraint(constraint)))
|
|
} else {
|
|
// we only want to suggest `:` and `=` in contexts where the previous token
|
|
// is an ident and the current token or the next token is an ident
|
|
if self.prev_token.is_ident()
|
|
&& (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
|
|
{
|
|
self.check(exp!(Colon));
|
|
self.check(exp!(Eq));
|
|
}
|
|
Ok(Some(AngleBracketedArg::Arg(arg)))
|
|
}
|
|
}
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
|
|
/// Parse the term to the right of an associated item equality constraint.
|
|
///
|
|
/// That is, parse `$term` in `Item = $term` where `$term` is a type or
|
|
/// a const expression (wrapped in curly braces if complex).
|
|
fn parse_assoc_equality_term(
|
|
&mut self,
|
|
ident: Ident,
|
|
gen_args: Option<&GenericArgs>,
|
|
eq: Span,
|
|
) -> PResult<'a, AssocItemConstraintKind> {
|
|
let arg = self.parse_generic_arg(None)?;
|
|
let span = ident.span.to(self.prev_token.span);
|
|
let term = match arg {
|
|
Some(GenericArg::Type(ty)) => ty.into(),
|
|
Some(GenericArg::Const(c)) => {
|
|
self.psess.gated_spans.gate(sym::associated_const_equality, span);
|
|
c.into()
|
|
}
|
|
Some(GenericArg::Lifetime(lt)) => {
|
|
let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
|
|
span: lt.ident.span,
|
|
lifetime: lt.ident,
|
|
binding_label: span,
|
|
colon_sugg: gen_args
|
|
.map_or(ident.span, |args| args.span())
|
|
.between(lt.ident.span),
|
|
});
|
|
self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
|
|
}
|
|
None => {
|
|
let after_eq = eq.shrink_to_hi();
|
|
let before_next = self.token.span.shrink_to_lo();
|
|
let mut err = self
|
|
.dcx()
|
|
.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
|
|
if matches!(self.token.kind, token::Comma | token::Gt) {
|
|
err.span_suggestion(
|
|
self.psess.source_map().next_point(eq).to(before_next),
|
|
"to constrain the associated type, add a type after `=`",
|
|
" TheType",
|
|
Applicability::HasPlaceholders,
|
|
);
|
|
err.span_suggestion(
|
|
eq.to(before_next),
|
|
format!("remove the `=` if `{ident}` is a type"),
|
|
"",
|
|
Applicability::MaybeIncorrect,
|
|
)
|
|
} else {
|
|
err.span_label(
|
|
self.token.span,
|
|
format!("expected type, found {}", super::token_descr(&self.token)),
|
|
)
|
|
};
|
|
return Err(err);
|
|
}
|
|
};
|
|
Ok(AssocItemConstraintKind::Equality { term })
|
|
}
|
|
|
|
/// We do not permit arbitrary expressions as const arguments. They must be one of:
|
|
/// - An expression surrounded in `{}`.
|
|
/// - A literal.
|
|
/// - A numeric literal prefixed by `-`.
|
|
/// - A single-segment path.
|
|
pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
|
|
match &expr.kind {
|
|
ast::ExprKind::Block(_, _)
|
|
| ast::ExprKind::Lit(_)
|
|
| ast::ExprKind::IncludedBytes(..) => true,
|
|
ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
|
|
matches!(expr.kind, ast::ExprKind::Lit(_))
|
|
}
|
|
// We can only resolve single-segment paths at the moment, because multi-segment paths
|
|
// require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
|
|
ast::ExprKind::Path(None, path)
|
|
if let [segment] = path.segments.as_slice()
|
|
&& segment.args.is_none() =>
|
|
{
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
|
|
/// the caller.
|
|
pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
|
|
// Parse const argument.
|
|
let value = if self.token.kind == token::OpenBrace {
|
|
self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
|
|
} else {
|
|
self.handle_unambiguous_unbraced_const_arg()?
|
|
};
|
|
Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
|
|
}
|
|
|
|
/// Parse a generic argument in a path segment.
|
|
/// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
|
|
pub(super) fn parse_generic_arg(
|
|
&mut self,
|
|
ty_generics: Option<&Generics>,
|
|
) -> PResult<'a, Option<GenericArg>> {
|
|
let start = self.token.span;
|
|
let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
|
|
// Parse lifetime argument.
|
|
GenericArg::Lifetime(self.expect_lifetime())
|
|
} else if self.check_const_arg() {
|
|
// Parse const argument.
|
|
GenericArg::Const(self.parse_const_arg()?)
|
|
} else if self.check_type() {
|
|
// Parse type argument.
|
|
|
|
// Proactively create a parser snapshot enabling us to rewind and try to reparse the
|
|
// input as a const expression in case we fail to parse a type. If we successfully
|
|
// do so, we will report an error that it needs to be wrapped in braces.
|
|
let mut snapshot = None;
|
|
if self.may_recover() && self.token.can_begin_expr() {
|
|
snapshot = Some(self.create_snapshot_for_diagnostic());
|
|
}
|
|
|
|
match self.parse_ty() {
|
|
Ok(ty) => {
|
|
// Since the type parser recovers from some malformed slice and array types and
|
|
// successfully returns a type, we need to look for `TyKind::Err`s in the
|
|
// type to determine if error recovery has occurred and if the input is not a
|
|
// syntactically valid type after all.
|
|
if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
|
|
&& let ast::TyKind::Err(_) = inner_ty.kind
|
|
&& let Some(snapshot) = snapshot
|
|
&& let Some(expr) =
|
|
self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
|
|
{
|
|
return Ok(Some(
|
|
self.dummy_const_arg_needs_braces(
|
|
self.dcx()
|
|
.struct_span_err(expr.span, "invalid const generic expression"),
|
|
expr.span,
|
|
),
|
|
));
|
|
}
|
|
|
|
GenericArg::Type(ty)
|
|
}
|
|
Err(err) => {
|
|
if let Some(snapshot) = snapshot
|
|
&& let Some(expr) =
|
|
self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
|
|
{
|
|
return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
|
|
}
|
|
// Try to recover from possible `const` arg without braces.
|
|
return self.recover_const_arg(start, err).map(Some);
|
|
}
|
|
}
|
|
} else if self.token.is_keyword(kw::Const) {
|
|
return self.recover_const_param_declaration(ty_generics);
|
|
} else {
|
|
// Fall back by trying to parse a const-expr expression. If we successfully do so,
|
|
// then we should report an error that it needs to be wrapped in braces.
|
|
let snapshot = self.create_snapshot_for_diagnostic();
|
|
let attrs = self.parse_outer_attributes()?;
|
|
match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
|
|
Ok((expr, _)) => {
|
|
return Ok(Some(self.dummy_const_arg_needs_braces(
|
|
self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
|
|
expr.span,
|
|
)));
|
|
}
|
|
Err(err) => {
|
|
self.restore_snapshot(snapshot);
|
|
err.cancel();
|
|
return Ok(None);
|
|
}
|
|
}
|
|
};
|
|
Ok(Some(arg))
|
|
}
|
|
|
|
/// Given a arg inside of generics, we try to destructure it as if it were the LHS in
|
|
/// `LHS = ...`, i.e. an associated item binding.
|
|
/// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
|
|
/// identifier, and any GAT arguments.
|
|
fn get_ident_from_generic_arg(
|
|
&self,
|
|
gen_arg: &GenericArg,
|
|
) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
|
|
if let GenericArg::Type(ty) = gen_arg {
|
|
if let ast::TyKind::Path(qself, path) = &ty.kind
|
|
&& qself.is_none()
|
|
&& let [seg] = path.segments.as_slice()
|
|
{
|
|
return Ok((false, seg.ident, seg.args.as_deref().cloned()));
|
|
} else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
|
|
&& let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
|
|
&& trait_ref.modifiers == ast::TraitBoundModifiers::NONE
|
|
&& let [seg] = trait_ref.trait_ref.path.segments.as_slice()
|
|
{
|
|
return Ok((true, seg.ident, seg.args.as_deref().cloned()));
|
|
}
|
|
}
|
|
Err(())
|
|
}
|
|
}
|