481 lines
19 KiB
Rust
481 lines
19 KiB
Rust
use std::sync::atomic::Ordering::Relaxed;
|
|
|
|
use either::{Left, Right};
|
|
use rustc_hir::def::DefKind;
|
|
use rustc_middle::bug;
|
|
use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo};
|
|
use rustc_middle::mir::{self, ConstAlloc, ConstValue};
|
|
use rustc_middle::query::TyCtxtAt;
|
|
use rustc_middle::traits::Reveal;
|
|
use rustc_middle::ty::layout::LayoutOf;
|
|
use rustc_middle::ty::print::with_no_trimmed_paths;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
|
use rustc_session::lint;
|
|
use rustc_span::def_id::LocalDefId;
|
|
use rustc_span::{Span, DUMMY_SP};
|
|
use rustc_target::abi::{self, Abi};
|
|
use tracing::{debug, instrument, trace};
|
|
|
|
use super::{CanAccessMutGlobal, CompileTimeInterpCx, CompileTimeMachine};
|
|
use crate::const_eval::CheckAlignment;
|
|
use crate::errors::{self, ConstEvalError, DanglingPtrInFinal};
|
|
use crate::interpret::{
|
|
create_static_alloc, eval_nullary_intrinsic, intern_const_alloc_recursive, throw_exhaust,
|
|
CtfeValidationMode, GlobalId, Immediate, InternKind, InternResult, InterpCx, InterpError,
|
|
InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, StackPopCleanup,
|
|
};
|
|
use crate::CTRL_C_RECEIVED;
|
|
|
|
// Returns a pointer to where the result lives
|
|
#[instrument(level = "trace", skip(ecx, body))]
|
|
fn eval_body_using_ecx<'tcx, R: InterpretationResult<'tcx>>(
|
|
ecx: &mut CompileTimeInterpCx<'tcx>,
|
|
cid: GlobalId<'tcx>,
|
|
body: &'tcx mir::Body<'tcx>,
|
|
) -> InterpResult<'tcx, R> {
|
|
trace!(?ecx.param_env);
|
|
let tcx = *ecx.tcx;
|
|
assert!(
|
|
cid.promoted.is_some()
|
|
|| matches!(
|
|
ecx.tcx.def_kind(cid.instance.def_id()),
|
|
DefKind::Const
|
|
| DefKind::Static { .. }
|
|
| DefKind::ConstParam
|
|
| DefKind::AnonConst
|
|
| DefKind::InlineConst
|
|
| DefKind::AssocConst
|
|
),
|
|
"Unexpected DefKind: {:?}",
|
|
ecx.tcx.def_kind(cid.instance.def_id())
|
|
);
|
|
let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
|
|
assert!(layout.is_sized());
|
|
|
|
let intern_kind = if cid.promoted.is_some() {
|
|
InternKind::Promoted
|
|
} else {
|
|
match tcx.static_mutability(cid.instance.def_id()) {
|
|
Some(m) => InternKind::Static(m),
|
|
None => InternKind::Constant,
|
|
}
|
|
};
|
|
|
|
let ret = if let InternKind::Static(_) = intern_kind {
|
|
create_static_alloc(ecx, cid.instance.def_id().expect_local(), layout)?
|
|
} else {
|
|
ecx.allocate(layout, MemoryKind::Stack)?
|
|
};
|
|
|
|
trace!(
|
|
"eval_body_using_ecx: pushing stack frame for global: {}{}",
|
|
with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
|
|
cid.promoted.map_or_else(String::new, |p| format!("::{p:?}"))
|
|
);
|
|
|
|
// This can't use `init_stack_frame` since `body` is not a function,
|
|
// so computing its ABI would fail. It's also not worth it since there are no arguments to pass.
|
|
ecx.push_stack_frame_raw(
|
|
cid.instance,
|
|
body,
|
|
&ret.clone().into(),
|
|
StackPopCleanup::Root { cleanup: false },
|
|
)?;
|
|
ecx.storage_live_for_always_live_locals()?;
|
|
|
|
// The main interpreter loop.
|
|
while ecx.step()? {
|
|
if CTRL_C_RECEIVED.load(Relaxed) {
|
|
throw_exhaust!(Interrupted);
|
|
}
|
|
}
|
|
|
|
// Intern the result
|
|
let intern_result = intern_const_alloc_recursive(ecx, intern_kind, &ret);
|
|
|
|
// Since evaluation had no errors, validate the resulting constant.
|
|
const_validate_mplace(&ecx, &ret, cid)?;
|
|
|
|
// Only report this after validation, as validaiton produces much better diagnostics.
|
|
// FIXME: ensure validation always reports this and stop making interning care about it.
|
|
|
|
match intern_result {
|
|
Ok(()) => {}
|
|
Err(InternResult::FoundDanglingPointer) => {
|
|
return Err(ecx
|
|
.tcx
|
|
.dcx()
|
|
.emit_err(DanglingPtrInFinal { span: ecx.tcx.span, kind: intern_kind })
|
|
.into());
|
|
}
|
|
Err(InternResult::FoundBadMutablePointer) => {
|
|
// only report mutable pointers if there were no dangling pointers
|
|
let err_diag = errors::MutablePtrInFinal { span: ecx.tcx.span, kind: intern_kind };
|
|
ecx.tcx.emit_node_span_lint(
|
|
lint::builtin::CONST_EVAL_MUTABLE_PTR_IN_FINAL_VALUE,
|
|
ecx.machine.best_lint_scope(*ecx.tcx),
|
|
err_diag.span,
|
|
err_diag,
|
|
)
|
|
}
|
|
}
|
|
|
|
Ok(R::make_result(ret, ecx))
|
|
}
|
|
|
|
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
|
|
/// `simd_shuffle` and const patterns in match arms.
|
|
///
|
|
/// This should *not* be used to do any actual interpretation. In particular, alignment checks are
|
|
/// turned off!
|
|
///
|
|
/// The function containing the `match` that is currently being analyzed may have generic bounds
|
|
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
|
|
/// of a function's generic parameter will require knowledge about the bounds on the generic
|
|
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
|
|
pub(crate) fn mk_eval_cx_to_read_const_val<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
root_span: Span,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
can_access_mut_global: CanAccessMutGlobal,
|
|
) -> CompileTimeInterpCx<'tcx> {
|
|
debug!("mk_eval_cx: {:?}", param_env);
|
|
InterpCx::new(
|
|
tcx,
|
|
root_span,
|
|
param_env,
|
|
CompileTimeMachine::new(can_access_mut_global, CheckAlignment::No),
|
|
)
|
|
}
|
|
|
|
/// Create an interpreter context to inspect the given `ConstValue`.
|
|
/// Returns both the context and an `OpTy` that represents the constant.
|
|
pub fn mk_eval_cx_for_const_val<'tcx>(
|
|
tcx: TyCtxtAt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
val: mir::ConstValue<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
) -> Option<(CompileTimeInterpCx<'tcx>, OpTy<'tcx>)> {
|
|
let ecx = mk_eval_cx_to_read_const_val(tcx.tcx, tcx.span, param_env, CanAccessMutGlobal::No);
|
|
let op = ecx.const_val_to_op(val, ty, None).ok()?;
|
|
Some((ecx, op))
|
|
}
|
|
|
|
/// This function converts an interpreter value into a MIR constant.
|
|
///
|
|
/// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a
|
|
/// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc
|
|
/// relies on, but it is okay for diagnostics which will just give up gracefully when they
|
|
/// encounter an `Indirect` they cannot handle.
|
|
#[instrument(skip(ecx), level = "debug")]
|
|
pub(super) fn op_to_const<'tcx>(
|
|
ecx: &CompileTimeInterpCx<'tcx>,
|
|
op: &OpTy<'tcx>,
|
|
for_diagnostics: bool,
|
|
) -> ConstValue<'tcx> {
|
|
// Handle ZST consistently and early.
|
|
if op.layout.is_zst() {
|
|
return ConstValue::ZeroSized;
|
|
}
|
|
|
|
// All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
|
|
// `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
|
|
// type (it's used throughout the compiler and having it work just on literals is not enough)
|
|
// and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
|
|
// from its byte-serialized form).
|
|
let force_as_immediate = match op.layout.abi {
|
|
Abi::Scalar(abi::Scalar::Initialized { .. }) => true,
|
|
// We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
|
|
// input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
|
|
// not have to generate any duplicate allocations (we preserve the original `AllocId` in
|
|
// `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
|
|
// they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
|
|
// ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
|
|
// functionality.)
|
|
_ => false,
|
|
};
|
|
let immediate = if force_as_immediate {
|
|
match ecx.read_immediate(op) {
|
|
Ok(imm) => Right(imm),
|
|
Err(err) if !for_diagnostics => {
|
|
panic!("normalization works on validated constants: {err:?}")
|
|
}
|
|
_ => op.as_mplace_or_imm(),
|
|
}
|
|
} else {
|
|
op.as_mplace_or_imm()
|
|
};
|
|
|
|
debug!(?immediate);
|
|
|
|
match immediate {
|
|
Left(ref mplace) => {
|
|
// We know `offset` is relative to the allocation, so we can use `into_parts`.
|
|
let (prov, offset) = mplace.ptr().into_parts();
|
|
let alloc_id = prov.expect("cannot have `fake` place for non-ZST type").alloc_id();
|
|
ConstValue::Indirect { alloc_id, offset }
|
|
}
|
|
// see comment on `let force_as_immediate` above
|
|
Right(imm) => match *imm {
|
|
Immediate::Scalar(x) => ConstValue::Scalar(x),
|
|
Immediate::ScalarPair(a, b) => {
|
|
debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
|
|
// This codepath solely exists for `valtree_to_const_value` to not need to generate
|
|
// a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
|
|
// that case.
|
|
let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap(); // `false` = no raw ptrs
|
|
debug_assert!(
|
|
matches!(
|
|
ecx.tcx.struct_tail_for_codegen(pointee_ty, ecx.param_env).kind(),
|
|
ty::Str | ty::Slice(..),
|
|
),
|
|
"`ConstValue::Slice` is for slice-tailed types only, but got {}",
|
|
imm.layout.ty,
|
|
);
|
|
let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
|
|
// We know `offset` is relative to the allocation, so we can use `into_parts`.
|
|
let (prov, offset) = a.to_pointer(ecx).expect(msg).into_parts();
|
|
let alloc_id = prov.expect(msg).alloc_id();
|
|
let data = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
|
|
assert!(offset == abi::Size::ZERO, "{}", msg);
|
|
let meta = b.to_target_usize(ecx).expect(msg);
|
|
ConstValue::Slice { data, meta }
|
|
}
|
|
Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
|
|
},
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(tcx), level = "debug", ret)]
|
|
pub(crate) fn turn_into_const_value<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
constant: ConstAlloc<'tcx>,
|
|
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
|
|
) -> ConstValue<'tcx> {
|
|
let cid = key.value;
|
|
let def_id = cid.instance.def.def_id();
|
|
let is_static = tcx.is_static(def_id);
|
|
// This is just accessing an already computed constant, so no need to check alignment here.
|
|
let ecx = mk_eval_cx_to_read_const_val(
|
|
tcx,
|
|
tcx.def_span(key.value.instance.def_id()),
|
|
key.param_env,
|
|
CanAccessMutGlobal::from(is_static),
|
|
);
|
|
|
|
let mplace = ecx.raw_const_to_mplace(constant).expect(
|
|
"can only fail if layout computation failed, \
|
|
which should have given a good error before ever invoking this function",
|
|
);
|
|
assert!(
|
|
!is_static || cid.promoted.is_some(),
|
|
"the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
|
|
);
|
|
|
|
// Turn this into a proper constant.
|
|
op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false)
|
|
}
|
|
|
|
#[instrument(skip(tcx), level = "debug")]
|
|
pub fn eval_to_const_value_raw_provider<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
|
|
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
|
|
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
|
|
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
|
|
// types that are not specified in the opaque type.
|
|
assert_eq!(key.param_env.reveal(), Reveal::All);
|
|
|
|
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
|
|
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
|
|
if let ty::InstanceKind::Intrinsic(def_id) = key.value.instance.def {
|
|
let ty = key.value.instance.ty(tcx, key.param_env);
|
|
let ty::FnDef(_, args) = ty.kind() else {
|
|
bug!("intrinsic with type {:?}", ty);
|
|
};
|
|
return eval_nullary_intrinsic(tcx, key.param_env, def_id, args).map_err(|error| {
|
|
let span = tcx.def_span(def_id);
|
|
|
|
super::report(
|
|
tcx,
|
|
error.into_kind(),
|
|
span,
|
|
|| (span, vec![]),
|
|
|span, _| errors::NullaryIntrinsicError { span },
|
|
)
|
|
});
|
|
}
|
|
|
|
tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
|
|
}
|
|
|
|
#[instrument(skip(tcx), level = "debug")]
|
|
pub fn eval_static_initializer_provider<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: LocalDefId,
|
|
) -> ::rustc_middle::mir::interpret::EvalStaticInitializerRawResult<'tcx> {
|
|
assert!(tcx.is_static(def_id.to_def_id()));
|
|
|
|
let instance = ty::Instance::mono(tcx, def_id.to_def_id());
|
|
let cid = rustc_middle::mir::interpret::GlobalId { instance, promoted: None };
|
|
eval_in_interpreter(tcx, cid, ty::ParamEnv::reveal_all())
|
|
}
|
|
|
|
pub trait InterpretationResult<'tcx> {
|
|
/// This function takes the place where the result of the evaluation is stored
|
|
/// and prepares it for returning it in the appropriate format needed by the specific
|
|
/// evaluation query.
|
|
fn make_result(
|
|
mplace: MPlaceTy<'tcx>,
|
|
ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
|
|
) -> Self;
|
|
}
|
|
|
|
impl<'tcx> InterpretationResult<'tcx> for ConstAlloc<'tcx> {
|
|
fn make_result(
|
|
mplace: MPlaceTy<'tcx>,
|
|
_ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
|
|
) -> Self {
|
|
ConstAlloc { alloc_id: mplace.ptr().provenance.unwrap().alloc_id(), ty: mplace.layout.ty }
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(tcx), level = "debug")]
|
|
pub fn eval_to_allocation_raw_provider<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
|
|
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
|
|
// This shouldn't be used for statics, since statics are conceptually places,
|
|
// not values -- so what we do here could break pointer identity.
|
|
assert!(key.value.promoted.is_some() || !tcx.is_static(key.value.instance.def_id()));
|
|
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
|
|
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
|
|
// types that are not specified in the opaque type.
|
|
|
|
assert_eq!(key.param_env.reveal(), Reveal::All);
|
|
if cfg!(debug_assertions) {
|
|
// Make sure we format the instance even if we do not print it.
|
|
// This serves as a regression test against an ICE on printing.
|
|
// The next two lines concatenated contain some discussion:
|
|
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
|
|
// subject/anon_const_instance_printing/near/135980032
|
|
let instance = with_no_trimmed_paths!(key.value.instance.to_string());
|
|
trace!("const eval: {:?} ({})", key, instance);
|
|
}
|
|
|
|
eval_in_interpreter(tcx, key.value, key.param_env)
|
|
}
|
|
|
|
fn eval_in_interpreter<'tcx, R: InterpretationResult<'tcx>>(
|
|
tcx: TyCtxt<'tcx>,
|
|
cid: GlobalId<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> Result<R, ErrorHandled> {
|
|
let def = cid.instance.def.def_id();
|
|
let is_static = tcx.is_static(def);
|
|
|
|
let mut ecx = InterpCx::new(
|
|
tcx,
|
|
tcx.def_span(def),
|
|
param_env,
|
|
// Statics (and promoteds inside statics) may access mutable global memory, because unlike consts
|
|
// they do not have to behave "as if" they were evaluated at runtime.
|
|
// For consts however we want to ensure they behave "as if" they were evaluated at runtime,
|
|
// so we have to reject reading mutable global memory.
|
|
CompileTimeMachine::new(CanAccessMutGlobal::from(is_static), CheckAlignment::Error),
|
|
);
|
|
let res = ecx.load_mir(cid.instance.def, cid.promoted);
|
|
res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, body))
|
|
.map_err(|error| report_eval_error(&ecx, cid, error))
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn const_validate_mplace<'tcx>(
|
|
ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
|
|
mplace: &MPlaceTy<'tcx>,
|
|
cid: GlobalId<'tcx>,
|
|
) -> Result<(), ErrorHandled> {
|
|
let alloc_id = mplace.ptr().provenance.unwrap().alloc_id();
|
|
let mut ref_tracking = RefTracking::new(mplace.clone());
|
|
let mut inner = false;
|
|
while let Some((mplace, path)) = ref_tracking.next() {
|
|
let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) {
|
|
_ if cid.promoted.is_some() => CtfeValidationMode::Promoted,
|
|
Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static`
|
|
None => {
|
|
// This is a normal `const` (not promoted).
|
|
// The outermost allocation is always only copied, so having `UnsafeCell` in there
|
|
// is okay despite them being in immutable memory.
|
|
CtfeValidationMode::Const { allow_immutable_unsafe_cell: !inner }
|
|
}
|
|
};
|
|
ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)
|
|
// Instead of just reporting the `InterpError` via the usual machinery, we give a more targeted
|
|
// error about the validation failure.
|
|
.map_err(|error| report_validation_error(&ecx, cid, error, alloc_id))?;
|
|
inner = true;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[inline(never)]
|
|
fn report_eval_error<'tcx>(
|
|
ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
|
|
cid: GlobalId<'tcx>,
|
|
error: InterpErrorInfo<'tcx>,
|
|
) -> ErrorHandled {
|
|
let (error, backtrace) = error.into_parts();
|
|
backtrace.print_backtrace();
|
|
|
|
let (kind, instance) = if ecx.tcx.is_static(cid.instance.def_id()) {
|
|
("static", String::new())
|
|
} else {
|
|
// If the current item has generics, we'd like to enrich the message with the
|
|
// instance and its args: to show the actual compile-time values, in addition to
|
|
// the expression, leading to the const eval error.
|
|
let instance = &cid.instance;
|
|
if !instance.args.is_empty() {
|
|
let instance = with_no_trimmed_paths!(instance.to_string());
|
|
("const_with_path", instance)
|
|
} else {
|
|
("const", String::new())
|
|
}
|
|
};
|
|
|
|
super::report(
|
|
*ecx.tcx,
|
|
error,
|
|
DUMMY_SP,
|
|
|| super::get_span_and_frames(ecx.tcx, ecx.stack()),
|
|
|span, frames| ConstEvalError { span, error_kind: kind, instance, frame_notes: frames },
|
|
)
|
|
}
|
|
|
|
#[inline(never)]
|
|
fn report_validation_error<'tcx>(
|
|
ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
|
|
cid: GlobalId<'tcx>,
|
|
error: InterpErrorInfo<'tcx>,
|
|
alloc_id: AllocId,
|
|
) -> ErrorHandled {
|
|
if !matches!(error.kind(), InterpError::UndefinedBehavior(_)) {
|
|
// Some other error happened during validation, e.g. an unsupported operation.
|
|
return report_eval_error(ecx, cid, error);
|
|
}
|
|
|
|
let (error, backtrace) = error.into_parts();
|
|
backtrace.print_backtrace();
|
|
|
|
let bytes = ecx.print_alloc_bytes_for_diagnostics(alloc_id);
|
|
let (size, align, _) = ecx.get_alloc_info(alloc_id);
|
|
let raw_bytes = errors::RawBytesNote { size: size.bytes(), align: align.bytes(), bytes };
|
|
|
|
crate::const_eval::report(
|
|
*ecx.tcx,
|
|
error,
|
|
DUMMY_SP,
|
|
|| crate::const_eval::get_span_and_frames(ecx.tcx, ecx.stack()),
|
|
move |span, frames| errors::ValidationFailure { span, ub_note: (), frames, raw_bytes },
|
|
)
|
|
}
|