rust/src/libsyntax/parse/parser.rs
2014-10-09 09:44:51 -07:00

5852 lines
215 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![macro_escape]
use abi;
use ast::{AssociatedType, BareFnTy, ClosureTy};
use ast::{RegionTyParamBound, TraitTyParamBound};
use ast::{ProvidedMethod, Public, FnStyle};
use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue};
use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, Block};
use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
use ast::{Crate, CrateConfig, Decl, DeclItem};
use ast::{DeclLocal, DefaultBlock, UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
use ast::{ExprBreak, ExprCall, ExprCast};
use ast::{ExprField, ExprTupField, ExprFnBlock, ExprIf, ExprIfLet, ExprIndex, ExprSlice};
use ast::{ExprLit, ExprLoop, ExprMac};
use ast::{ExprMethodCall, ExprParen, ExprPath, ExprProc};
use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary, ExprUnboxedFn};
use ast::{ExprVec, ExprWhile, ExprForLoop, Field, FnDecl};
use ast::{Once, Many};
use ast::{FnUnboxedClosureKind, FnMutUnboxedClosureKind};
use ast::{FnOnceUnboxedClosureKind};
use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod};
use ast::{Ident, NormalFn, Inherited, ImplItem, Item, Item_, ItemStatic};
use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy};
use ast::{LifetimeDef, Lit, Lit_};
use ast::{LitBool, LitChar, LitByte, LitBinary};
use ast::{LitNil, LitStr, LitInt, Local, LocalLet};
use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, Matcher, MatchNonterminal, MatchNormal};
use ast::{MatchSeq, MatchTok, Method, MutTy, BiMul, Mutability};
use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, UnNot};
use ast::{Pat, PatEnum, PatIdent, PatLit, PatRange, PatRegion, PatStruct};
use ast::{PatTup, PatBox, PatWild, PatWildMulti, PatWildSingle};
use ast::{QPath, RequiredMethod};
use ast::{RetStyle, Return, BiShl, BiShr, Stmt, StmtDecl};
use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField};
use ast::{StructVariantKind, BiSub};
use ast::StrStyle;
use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
use ast::{TokenTree, TraitItem, TraitRef, TTDelim, TTSeq, TTTok};
use ast::{TTNonterminal, TupleVariantKind, Ty, Ty_, TyBot};
use ast::{TypeField, TyFixedLengthVec, TyClosure, TyProc, TyBareFn};
use ast::{TyTypeof, TyInfer, TypeMethod};
use ast::{TyNil, TyParam, TyParamBound, TyParen, TyPath, TyPtr, TyQPath};
use ast::{TyRptr, TyTup, TyU32, TyUnboxedFn, TyUniq, TyVec, UnUniq};
use ast::{TypeImplItem, TypeTraitItem, Typedef, UnboxedClosureKind};
use ast::{UnboxedFnBound, UnboxedFnTy, UnboxedFnTyParamBound};
use ast::{UnnamedField, UnsafeBlock};
use ast::{UnsafeFn, ViewItem, ViewItem_, ViewItemExternCrate, ViewItemUse};
use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
use ast::{Visibility, WhereClause, WherePredicate};
use ast;
use ast_util::{as_prec, ident_to_path, operator_prec};
use ast_util;
use attr;
use codemap::{Span, BytePos, Spanned, spanned, mk_sp};
use codemap;
use parse;
use parse::attr::ParserAttr;
use parse::classify;
use parse::common::{SeqSep, seq_sep_none};
use parse::common::{seq_sep_trailing_allowed};
use parse::lexer::Reader;
use parse::lexer::TokenAndSpan;
use parse::obsolete::*;
use parse::token::{INTERPOLATED, InternedString, can_begin_expr};
use parse::token::{is_ident, is_ident_or_path, is_plain_ident};
use parse::token::{keywords, special_idents, token_to_binop};
use parse::token;
use parse::{new_sub_parser_from_file, ParseSess};
use ptr::P;
use owned_slice::OwnedSlice;
use std::collections::HashSet;
use std::io::fs::PathExtensions;
use std::mem::replace;
use std::mem;
use std::rc::Rc;
use std::iter;
bitflags! {
flags Restrictions: u8 {
const UNRESTRICTED = 0b0000,
const RESTRICTION_STMT_EXPR = 0b0001,
const RESTRICTION_NO_BAR_OP = 0b0010,
const RESTRICTION_NO_STRUCT_LITERAL = 0b0100
}
}
type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
/// How to parse a path. There are four different kinds of paths, all of which
/// are parsed somewhat differently.
#[deriving(PartialEq)]
pub enum PathParsingMode {
/// A path with no type parameters; e.g. `foo::bar::Baz`
NoTypesAllowed,
/// A path with a lifetime and type parameters, with no double colons
/// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
LifetimeAndTypesWithoutColons,
/// A path with a lifetime and type parameters with double colons before
/// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
LifetimeAndTypesWithColons,
/// A path with a lifetime and type parameters with bounds before the last
/// set of type parameters only; e.g. `foo::bar<'a>::Baz+X+Y<T>` This
/// form does not use extra double colons.
LifetimeAndTypesAndBounds,
}
/// A path paired with optional type bounds.
pub struct PathAndBounds {
pub path: ast::Path,
pub bounds: Option<ast::TyParamBounds>,
}
enum ItemOrViewItem {
/// Indicates a failure to parse any kind of item. The attributes are
/// returned.
IoviNone(Vec<Attribute>),
IoviItem(P<Item>),
IoviForeignItem(P<ForeignItem>),
IoviViewItem(ViewItem)
}
/// Possibly accept an `INTERPOLATED` expression (a pre-parsed expression
/// dropped into the token stream, which happens while parsing the
/// result of macro expansion)
/// Placement of these is not as complex as I feared it would be.
/// The important thing is to make sure that lookahead doesn't balk
/// at INTERPOLATED tokens
macro_rules! maybe_whole_expr (
($p:expr) => (
{
let found = match $p.token {
INTERPOLATED(token::NtExpr(ref e)) => {
Some((*e).clone())
}
INTERPOLATED(token::NtPath(_)) => {
// FIXME: The following avoids an issue with lexical borrowck scopes,
// but the clone is unfortunate.
let pt = match $p.token {
INTERPOLATED(token::NtPath(ref pt)) => (**pt).clone(),
_ => unreachable!()
};
let span = $p.span;
Some($p.mk_expr(span.lo, span.hi, ExprPath(pt)))
}
INTERPOLATED(token::NtBlock(_)) => {
// FIXME: The following avoids an issue with lexical borrowck scopes,
// but the clone is unfortunate.
let b = match $p.token {
INTERPOLATED(token::NtBlock(ref b)) => (*b).clone(),
_ => unreachable!()
};
let span = $p.span;
Some($p.mk_expr(span.lo, span.hi, ExprBlock(b)))
}
_ => None
};
match found {
Some(e) => {
$p.bump();
return e;
}
None => ()
}
}
)
)
/// As maybe_whole_expr, but for things other than expressions
macro_rules! maybe_whole (
($p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return x.clone()
}
_ => {}
}
}
);
(no_clone $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return x
}
_ => {}
}
}
);
(deref $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return (*x).clone()
}
_ => {}
}
}
);
(Some $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return Some(x.clone()),
}
_ => {}
}
}
);
(iovi $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return IoviItem(x.clone())
}
_ => {}
}
}
);
(pair_empty $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
INTERPOLATED(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
match found {
Some(INTERPOLATED(token::$constructor(x))) => {
return (Vec::new(), x)
}
_ => {}
}
}
)
)
fn maybe_append(lhs: Vec<Attribute> , rhs: Option<Vec<Attribute> >)
-> Vec<Attribute> {
match rhs {
None => lhs,
Some(ref attrs) => lhs.append(attrs.as_slice())
}
}
struct ParsedItemsAndViewItems {
attrs_remaining: Vec<Attribute>,
view_items: Vec<ViewItem>,
items: Vec<P<Item>> ,
foreign_items: Vec<P<ForeignItem>>
}
/* ident is handled by common.rs */
pub struct Parser<'a> {
pub sess: &'a ParseSess,
/// the current token:
pub token: token::Token,
/// the span of the current token:
pub span: Span,
/// the span of the prior token:
pub last_span: Span,
pub cfg: CrateConfig,
/// the previous token or None (only stashed sometimes).
pub last_token: Option<Box<token::Token>>,
pub buffer: [TokenAndSpan, ..4],
pub buffer_start: int,
pub buffer_end: int,
pub tokens_consumed: uint,
pub restrictions: Restrictions,
pub quote_depth: uint, // not (yet) related to the quasiquoter
pub reader: Box<Reader+'a>,
pub interner: Rc<token::IdentInterner>,
/// The set of seen errors about obsolete syntax. Used to suppress
/// extra detail when the same error is seen twice
pub obsolete_set: HashSet<ObsoleteSyntax>,
/// Used to determine the path to externally loaded source files
pub mod_path_stack: Vec<InternedString>,
/// Stack of spans of open delimiters. Used for error message.
pub open_braces: Vec<Span>,
/// Flag if this parser "owns" the directory that it is currently parsing
/// in. This will affect how nested files are looked up.
pub owns_directory: bool,
/// Name of the root module this parser originated from. If `None`, then the
/// name is not known. This does not change while the parser is descending
/// into modules, and sub-parsers have new values for this name.
pub root_module_name: Option<String>,
}
fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
is_plain_ident(t) || *t == token::UNDERSCORE
}
/// Get a token the parser cares about
fn real_token(rdr: &mut Reader) -> TokenAndSpan {
let mut t = rdr.next_token();
loop {
match t.tok {
token::WS | token::COMMENT | token::SHEBANG(_) => {
t = rdr.next_token();
},
_ => break
}
}
t
}
impl<'a> Parser<'a> {
pub fn new(sess: &'a ParseSess,
cfg: ast::CrateConfig,
mut rdr: Box<Reader+'a>)
-> Parser<'a>
{
let tok0 = real_token(&mut *rdr);
let span = tok0.sp;
let placeholder = TokenAndSpan {
tok: token::UNDERSCORE,
sp: span,
};
Parser {
reader: rdr,
interner: token::get_ident_interner(),
sess: sess,
cfg: cfg,
token: tok0.tok,
span: span,
last_span: span,
last_token: None,
buffer: [
placeholder.clone(),
placeholder.clone(),
placeholder.clone(),
placeholder.clone(),
],
buffer_start: 0,
buffer_end: 0,
tokens_consumed: 0,
restrictions: UNRESTRICTED,
quote_depth: 0,
obsolete_set: HashSet::new(),
mod_path_stack: Vec::new(),
open_braces: Vec::new(),
owns_directory: true,
root_module_name: None,
}
}
/// Convert a token to a string using self's reader
pub fn token_to_string(token: &token::Token) -> String {
token::to_string(token)
}
/// Convert the current token to a string using self's reader
pub fn this_token_to_string(&mut self) -> String {
Parser::token_to_string(&self.token)
}
pub fn unexpected_last(&mut self, t: &token::Token) -> ! {
let token_str = Parser::token_to_string(t);
let last_span = self.last_span;
self.span_fatal(last_span, format!("unexpected token: `{}`",
token_str).as_slice());
}
pub fn unexpected(&mut self) -> ! {
let this_token = self.this_token_to_string();
self.fatal(format!("unexpected token: `{}`", this_token).as_slice());
}
/// Expect and consume the token t. Signal an error if
/// the next token is not t.
pub fn expect(&mut self, t: &token::Token) {
if self.token == *t {
self.bump();
} else {
let token_str = Parser::token_to_string(t);
let this_token_str = self.this_token_to_string();
self.fatal(format!("expected `{}`, found `{}`",
token_str,
this_token_str).as_slice())
}
}
/// Expect next token to be edible or inedible token. If edible,
/// then consume it; if inedible, then return without consuming
/// anything. Signal a fatal error if next token is unexpected.
pub fn expect_one_of(&mut self,
edible: &[token::Token],
inedible: &[token::Token]) {
fn tokens_to_string(tokens: &[token::Token]) -> String {
let mut i = tokens.iter();
// This might be a sign we need a connect method on Iterator.
let b = i.next()
.map_or("".to_string(), |t| Parser::token_to_string(t));
i.fold(b, |b,a| {
let mut b = b;
b.push_str("`, `");
b.push_str(Parser::token_to_string(a).as_slice());
b
})
}
if edible.contains(&self.token) {
self.bump();
} else if inedible.contains(&self.token) {
// leave it in the input
} else {
let expected = edible.iter().map(|x| (*x).clone()).collect::<Vec<_>>().append(inedible);
let expect = tokens_to_string(expected.as_slice());
let actual = self.this_token_to_string();
self.fatal(
(if expected.len() != 1 {
(format!("expected one of `{}`, found `{}`",
expect,
actual))
} else {
(format!("expected `{}`, found `{}`",
expect,
actual))
}).as_slice()
)
}
}
/// Check for erroneous `ident { }`; if matches, signal error and
/// recover (without consuming any expected input token). Returns
/// true if and only if input was consumed for recovery.
pub fn check_for_erroneous_unit_struct_expecting(&mut self, expected: &[token::Token]) -> bool {
if self.token == token::LBRACE
&& expected.iter().all(|t| *t != token::LBRACE)
&& self.look_ahead(1, |t| *t == token::RBRACE) {
// matched; signal non-fatal error and recover.
let span = self.span;
self.span_err(span,
"unit-like struct construction is written with no trailing `{ }`");
self.eat(&token::LBRACE);
self.eat(&token::RBRACE);
true
} else {
false
}
}
/// Commit to parsing a complete expression `e` expected to be
/// followed by some token from the set edible + inedible. Recover
/// from anticipated input errors, discarding erroneous characters.
pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token], inedible: &[token::Token]) {
debug!("commit_expr {:?}", e);
match e.node {
ExprPath(..) => {
// might be unit-struct construction; check for recoverableinput error.
let expected = edible.iter().map(|x| (*x).clone()).collect::<Vec<_>>()
.append(inedible);
self.check_for_erroneous_unit_struct_expecting(
expected.as_slice());
}
_ => {}
}
self.expect_one_of(edible, inedible)
}
pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) {
self.commit_expr(e, &[edible], &[])
}
/// Commit to parsing a complete statement `s`, which expects to be
/// followed by some token from the set edible + inedible. Check
/// for recoverable input errors, discarding erroneous characters.
pub fn commit_stmt(&mut self, edible: &[token::Token], inedible: &[token::Token]) {
if self.last_token
.as_ref()
.map_or(false, |t| is_ident_or_path(&**t)) {
let expected = edible.iter().map(|x| (*x).clone()).collect::<Vec<_>>()
.append(inedible.as_slice());
self.check_for_erroneous_unit_struct_expecting(
expected.as_slice());
}
self.expect_one_of(edible, inedible)
}
pub fn commit_stmt_expecting(&mut self, edible: token::Token) {
self.commit_stmt(&[edible], &[])
}
pub fn parse_ident(&mut self) -> ast::Ident {
self.check_strict_keywords();
self.check_reserved_keywords();
match self.token {
token::IDENT(i, _) => {
self.bump();
i
}
token::INTERPOLATED(token::NtIdent(..)) => {
self.bug("ident interpolation not converted to real token");
}
_ => {
let token_str = self.this_token_to_string();
self.fatal((format!("expected ident, found `{}`",
token_str)).as_slice())
}
}
}
pub fn parse_path_list_item(&mut self) -> ast::PathListItem {
let lo = self.span.lo;
let node = if self.eat_keyword(keywords::Mod) {
ast::PathListMod { id: ast::DUMMY_NODE_ID }
} else {
let ident = self.parse_ident();
ast::PathListIdent { name: ident, id: ast::DUMMY_NODE_ID }
};
let hi = self.last_span.hi;
spanned(lo, hi, node)
}
/// Consume token 'tok' if it exists. Returns true if the given
/// token was present, false otherwise.
pub fn eat(&mut self, tok: &token::Token) -> bool {
let is_present = self.token == *tok;
if is_present { self.bump() }
is_present
}
pub fn is_keyword(&mut self, kw: keywords::Keyword) -> bool {
token::is_keyword(kw, &self.token)
}
/// If the next token is the given keyword, eat it and return
/// true. Otherwise, return false.
pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool {
if self.is_keyword(kw) {
self.bump();
true
} else {
false
}
}
/// If the given word is not a keyword, signal an error.
/// If the next token is not the given word, signal an error.
/// Otherwise, eat it.
pub fn expect_keyword(&mut self, kw: keywords::Keyword) {
if !self.eat_keyword(kw) {
let id_interned_str = token::get_name(kw.to_name());
let token_str = self.this_token_to_string();
self.fatal(format!("expected `{}`, found `{}`",
id_interned_str, token_str).as_slice())
}
}
/// Signal an error if the given string is a strict keyword
pub fn check_strict_keywords(&mut self) {
if token::is_strict_keyword(&self.token) {
let token_str = self.this_token_to_string();
let span = self.span;
self.span_err(span,
format!("expected identifier, found keyword `{}`",
token_str).as_slice());
}
}
/// Signal an error if the current token is a reserved keyword
pub fn check_reserved_keywords(&mut self) {
if token::is_reserved_keyword(&self.token) {
let token_str = self.this_token_to_string();
self.fatal(format!("`{}` is a reserved keyword",
token_str).as_slice())
}
}
/// Expect and consume an `&`. If `&&` is seen, replace it with a single
/// `&` and continue. If an `&` is not seen, signal an error.
fn expect_and(&mut self) {
match self.token {
token::BINOP(token::AND) => self.bump(),
token::ANDAND => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::BINOP(token::AND), lo, span.hi)
}
_ => {
let token_str = self.this_token_to_string();
let found_token =
Parser::token_to_string(&token::BINOP(token::AND));
self.fatal(format!("expected `{}`, found `{}`",
found_token,
token_str).as_slice())
}
}
}
/// Expect and consume a `|`. If `||` is seen, replace it with a single
/// `|` and continue. If a `|` is not seen, signal an error.
fn expect_or(&mut self) {
match self.token {
token::BINOP(token::OR) => self.bump(),
token::OROR => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::BINOP(token::OR), lo, span.hi)
}
_ => {
let found_token = self.this_token_to_string();
let token_str =
Parser::token_to_string(&token::BINOP(token::OR));
self.fatal(format!("expected `{}`, found `{}`",
token_str,
found_token).as_slice())
}
}
}
/// Attempt to consume a `<`. If `<<` is seen, replace it with a single
/// `<` and continue. If a `<` is not seen, return false.
///
/// This is meant to be used when parsing generics on a path to get the
/// starting token. The `force` parameter is used to forcefully break up a
/// `<<` token. If `force` is false, then `<<` is only broken when a lifetime
/// shows up next. For example, consider the expression:
///
/// foo as bar << test
///
/// The parser needs to know if `bar <<` is the start of a generic path or if
/// it's a left-shift token. If `test` were a lifetime, then it's impossible
/// for the token to be a left-shift, but if it's not a lifetime, then it's
/// considered a left-shift.
///
/// The reason for this is that the only current ambiguity with `<<` is when
/// parsing closure types:
///
/// foo::<<'a> ||>();
/// impl Foo<<'a> ||>() { ... }
fn eat_lt(&mut self, force: bool) -> bool {
match self.token {
token::LT => { self.bump(); true }
token::BINOP(token::SHL) => {
let next_lifetime = self.look_ahead(1, |t| match *t {
token::LIFETIME(..) => true,
_ => false,
});
if force || next_lifetime {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::LT, lo, span.hi);
true
} else {
false
}
}
_ => false,
}
}
fn expect_lt(&mut self) {
if !self.eat_lt(true) {
let found_token = self.this_token_to_string();
let token_str = Parser::token_to_string(&token::LT);
self.fatal(format!("expected `{}`, found `{}`",
token_str,
found_token).as_slice())
}
}
/// Parse a sequence bracketed by `|` and `|`, stopping before the `|`.
fn parse_seq_to_before_or<T>(
&mut self,
sep: &token::Token,
f: |&mut Parser| -> T)
-> Vec<T> {
let mut first = true;
let mut vector = Vec::new();
while self.token != token::BINOP(token::OR) &&
self.token != token::OROR {
if first {
first = false
} else {
self.expect(sep)
}
vector.push(f(self))
}
vector
}
/// Expect and consume a GT. if a >> is seen, replace it
/// with a single > and continue. If a GT is not seen,
/// signal an error.
pub fn expect_gt(&mut self) {
match self.token {
token::GT => self.bump(),
token::BINOP(token::SHR) => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::GT, lo, span.hi)
}
token::BINOPEQ(token::SHR) => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::GE, lo, span.hi)
}
token::GE => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::EQ, lo, span.hi)
}
_ => {
let gt_str = Parser::token_to_string(&token::GT);
let this_token_str = self.this_token_to_string();
self.fatal(format!("expected `{}`, found `{}`",
gt_str,
this_token_str).as_slice())
}
}
}
/// Parse a sequence bracketed by '<' and '>', stopping
/// before the '>'.
pub fn parse_seq_to_before_gt<T>(
&mut self,
sep: Option<token::Token>,
f: |&mut Parser| -> T)
-> OwnedSlice<T> {
let mut v = Vec::new();
// This loop works by alternating back and forth between parsing types
// and commas. For example, given a string `A, B,>`, the parser would
// first parse `A`, then a comma, then `B`, then a comma. After that it
// would encounter a `>` and stop. This lets the parser handle trailing
// commas in generic parameters, because it can stop either after
// parsing a type or after parsing a comma.
for i in iter::count(0u, 1) {
if self.token == token::GT
|| self.token == token::BINOP(token::SHR)
|| self.token == token::GE
|| self.token == token::BINOPEQ(token::SHR) {
break;
}
if i % 2 == 0 {
v.push(f(self));
} else {
sep.as_ref().map(|t| self.expect(t));
}
}
return OwnedSlice::from_vec(v);
}
pub fn parse_seq_to_gt<T>(
&mut self,
sep: Option<token::Token>,
f: |&mut Parser| -> T)
-> OwnedSlice<T> {
let v = self.parse_seq_to_before_gt(sep, f);
self.expect_gt();
return v;
}
/// Parse a sequence, including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_seq_to_end<T>(
&mut self,
ket: &token::Token,
sep: SeqSep,
f: |&mut Parser| -> T)
-> Vec<T> {
let val = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
val
}
/// Parse a sequence, not including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_seq_to_before_end<T>(
&mut self,
ket: &token::Token,
sep: SeqSep,
f: |&mut Parser| -> T)
-> Vec<T> {
let mut first: bool = true;
let mut v = vec!();
while self.token != *ket {
match sep.sep {
Some(ref t) => {
if first { first = false; }
else { self.expect(t); }
}
_ => ()
}
if sep.trailing_sep_allowed && self.token == *ket { break; }
v.push(f(self));
}
return v;
}
/// Parse a sequence, including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_unspanned_seq<T>(
&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: |&mut Parser| -> T)
-> Vec<T> {
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
result
}
/// Parse a sequence parameter of enum variant. For consistency purposes,
/// these should not be empty.
pub fn parse_enum_variant_seq<T>(
&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: |&mut Parser| -> T)
-> Vec<T> {
let result = self.parse_unspanned_seq(bra, ket, sep, f);
if result.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
"nullary enum variants are written with no trailing `( )`");
}
result
}
// NB: Do not use this function unless you actually plan to place the
// spanned list in the AST.
pub fn parse_seq<T>(
&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: |&mut Parser| -> T)
-> Spanned<Vec<T> > {
let lo = self.span.lo;
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
let hi = self.span.hi;
self.bump();
spanned(lo, hi, result)
}
/// Advance the parser by one token
pub fn bump(&mut self) {
self.last_span = self.span;
// Stash token for error recovery (sometimes; clone is not necessarily cheap).
self.last_token = if is_ident_or_path(&self.token) {
Some(box self.token.clone())
} else {
None
};
let next = if self.buffer_start == self.buffer_end {
real_token(&mut *self.reader)
} else {
// Avoid token copies with `replace`.
let buffer_start = self.buffer_start as uint;
let next_index = (buffer_start + 1) & 3 as uint;
self.buffer_start = next_index as int;
let placeholder = TokenAndSpan {
tok: token::UNDERSCORE,
sp: self.span,
};
replace(&mut self.buffer[buffer_start], placeholder)
};
self.span = next.sp;
self.token = next.tok;
self.tokens_consumed += 1u;
}
/// Advance the parser by one token and return the bumped token.
pub fn bump_and_get(&mut self) -> token::Token {
let old_token = replace(&mut self.token, token::UNDERSCORE);
self.bump();
old_token
}
/// EFFECT: replace the current token and span with the given one
pub fn replace_token(&mut self,
next: token::Token,
lo: BytePos,
hi: BytePos) {
self.last_span = mk_sp(self.span.lo, lo);
self.token = next;
self.span = mk_sp(lo, hi);
}
pub fn buffer_length(&mut self) -> int {
if self.buffer_start <= self.buffer_end {
return self.buffer_end - self.buffer_start;
}
return (4 - self.buffer_start) + self.buffer_end;
}
pub fn look_ahead<R>(&mut self, distance: uint, f: |&token::Token| -> R)
-> R {
let dist = distance as int;
while self.buffer_length() < dist {
self.buffer[self.buffer_end as uint] = real_token(&mut *self.reader);
self.buffer_end = (self.buffer_end + 1) & 3;
}
f(&self.buffer[((self.buffer_start + dist - 1) & 3) as uint].tok)
}
pub fn fatal(&mut self, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(self.span, m)
}
pub fn span_fatal(&mut self, sp: Span, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(sp, m)
}
pub fn span_note(&mut self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_note(sp, m)
}
pub fn bug(&mut self, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(self.span, m)
}
pub fn warn(&mut self, m: &str) {
self.sess.span_diagnostic.span_warn(self.span, m)
}
pub fn span_warn(&mut self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_warn(sp, m)
}
pub fn span_err(&mut self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
pub fn abort_if_errors(&mut self) {
self.sess.span_diagnostic.handler().abort_if_errors();
}
pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
token::get_ident(id)
}
/// Is the current token one of the keywords that signals a bare function
/// type?
pub fn token_is_bare_fn_keyword(&mut self) -> bool {
if token::is_keyword(keywords::Fn, &self.token) {
return true
}
if token::is_keyword(keywords::Unsafe, &self.token) ||
token::is_keyword(keywords::Once, &self.token) {
return self.look_ahead(1, |t| token::is_keyword(keywords::Fn, t))
}
false
}
/// Is the current token one of the keywords that signals a closure type?
pub fn token_is_closure_keyword(&mut self) -> bool {
token::is_keyword(keywords::Unsafe, &self.token) ||
token::is_keyword(keywords::Once, &self.token)
}
/// Is the current token one of the keywords that signals an old-style
/// closure type (with explicit sigil)?
pub fn token_is_old_style_closure_keyword(&mut self) -> bool {
token::is_keyword(keywords::Unsafe, &self.token) ||
token::is_keyword(keywords::Once, &self.token) ||
token::is_keyword(keywords::Fn, &self.token)
}
pub fn token_is_lifetime(tok: &token::Token) -> bool {
match *tok {
token::LIFETIME(..) => true,
_ => false,
}
}
pub fn get_lifetime(&mut self) -> ast::Ident {
match self.token {
token::LIFETIME(ref ident) => *ident,
_ => self.bug("not a lifetime"),
}
}
/// parse a TyBareFn type:
pub fn parse_ty_bare_fn(&mut self) -> Ty_ {
/*
[unsafe] [extern "ABI"] fn <'lt> (S) -> T
^~~~^ ^~~~^ ^~~~^ ^~^ ^
| | | | |
| | | | Return type
| | | Argument types
| | Lifetimes
| ABI
Function Style
*/
let fn_style = self.parse_unsafety();
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
self.expect_keyword(keywords::Fn);
let (decl, lifetimes) = self.parse_ty_fn_decl(true);
TyBareFn(P(BareFnTy {
abi: abi,
fn_style: fn_style,
lifetimes: lifetimes,
decl: decl
}))
}
/// Parses a procedure type (`proc`). The initial `proc` keyword must
/// already have been parsed.
pub fn parse_proc_type(&mut self) -> Ty_ {
/*
proc <'lt> (S) [:Bounds] -> T
^~~^ ^~~~^ ^ ^~~~~~~~^ ^
| | | | |
| | | | Return type
| | | Bounds
| | Argument types
| Lifetimes
the `proc` keyword
*/
let lifetime_defs = if self.eat(&token::LT) {
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
Vec::new()
};
let (inputs, variadic) = self.parse_fn_args(false, false);
let bounds = self.parse_colon_then_ty_param_bounds();
let (ret_style, ret_ty) = self.parse_ret_ty();
let decl = P(FnDecl {
inputs: inputs,
output: ret_ty,
cf: ret_style,
variadic: variadic
});
TyProc(P(ClosureTy {
fn_style: NormalFn,
onceness: Once,
bounds: bounds,
decl: decl,
lifetimes: lifetime_defs,
}))
}
/// Parses an optional unboxed closure kind (`&:`, `&mut:`, or `:`).
pub fn parse_optional_unboxed_closure_kind(&mut self)
-> Option<UnboxedClosureKind> {
if self.token == token::BINOP(token::AND) &&
self.look_ahead(1, |t| {
token::is_keyword(keywords::Mut, t)
}) &&
self.look_ahead(2, |t| *t == token::COLON) {
self.bump();
self.bump();
self.bump();
return Some(FnMutUnboxedClosureKind)
}
if self.token == token::BINOP(token::AND) &&
self.look_ahead(1, |t| *t == token::COLON) {
self.bump();
self.bump();
return Some(FnUnboxedClosureKind)
}
if self.eat(&token::COLON) {
return Some(FnOnceUnboxedClosureKind)
}
return None
}
/// Parse a TyClosure type
pub fn parse_ty_closure(&mut self) -> Ty_ {
/*
[unsafe] [once] <'lt> |S| [:Bounds] -> T
^~~~~~~^ ^~~~~^ ^~~~^ ^ ^~~~~~~~^ ^
| | | | | |
| | | | | Return type
| | | | Closure bounds
| | | Argument types
| | Lifetime defs
| Once-ness (a.k.a., affine)
Function Style
*/
let fn_style = self.parse_unsafety();
let onceness = if self.eat_keyword(keywords::Once) {Once} else {Many};
let lifetime_defs = if self.eat(&token::LT) {
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
Vec::new()
};
let (optional_unboxed_closure_kind, inputs) = if self.eat(&token::OROR) {
(None, Vec::new())
} else {
self.expect_or();
let optional_unboxed_closure_kind =
self.parse_optional_unboxed_closure_kind();
let inputs = self.parse_seq_to_before_or(
&token::COMMA,
|p| p.parse_arg_general(false));
self.expect_or();
(optional_unboxed_closure_kind, inputs)
};
let bounds = self.parse_colon_then_ty_param_bounds();
let (return_style, output) = self.parse_ret_ty();
let decl = P(FnDecl {
inputs: inputs,
output: output,
cf: return_style,
variadic: false
});
match optional_unboxed_closure_kind {
Some(unboxed_closure_kind) => {
TyUnboxedFn(P(UnboxedFnTy {
kind: unboxed_closure_kind,
decl: decl,
}))
}
None => {
TyClosure(P(ClosureTy {
fn_style: fn_style,
onceness: onceness,
bounds: bounds,
decl: decl,
lifetimes: lifetime_defs,
}))
}
}
}
pub fn parse_unsafety(&mut self) -> FnStyle {
if self.eat_keyword(keywords::Unsafe) {
return UnsafeFn;
} else {
return NormalFn;
}
}
/// Parse a function type (following the 'fn')
pub fn parse_ty_fn_decl(&mut self, allow_variadic: bool)
-> (P<FnDecl>, Vec<ast::LifetimeDef>) {
/*
(fn) <'lt> (S) -> T
^~~~^ ^~^ ^
| | |
| | Return type
| Argument types
Lifetime_defs
*/
let lifetime_defs = if self.eat(&token::LT) {
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
Vec::new()
};
let (inputs, variadic) = self.parse_fn_args(false, allow_variadic);
let (ret_style, ret_ty) = self.parse_ret_ty();
let decl = P(FnDecl {
inputs: inputs,
output: ret_ty,
cf: ret_style,
variadic: variadic
});
(decl, lifetime_defs)
}
/// Parses `type Foo;` in a trait declaration only. The `type` keyword has
/// already been parsed.
fn parse_associated_type(&mut self, attrs: Vec<Attribute>)
-> AssociatedType {
let lo = self.span.lo;
let ident = self.parse_ident();
let hi = self.span.hi;
self.expect(&token::SEMI);
AssociatedType {
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
ident: ident,
attrs: attrs,
}
}
/// Parses `type Foo = TYPE;` in an implementation declaration only. The
/// `type` keyword has already been parsed.
fn parse_typedef(&mut self, attrs: Vec<Attribute>, vis: Visibility)
-> Typedef {
let lo = self.span.lo;
let ident = self.parse_ident();
self.expect(&token::EQ);
let typ = self.parse_ty(true);
let hi = self.span.hi;
self.expect(&token::SEMI);
Typedef {
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
ident: ident,
vis: vis,
attrs: attrs,
typ: typ,
}
}
/// Parse the items in a trait declaration
pub fn parse_trait_items(&mut self) -> Vec<TraitItem> {
self.parse_unspanned_seq(
&token::LBRACE,
&token::RBRACE,
seq_sep_none(),
|p| {
let attrs = p.parse_outer_attributes();
if p.eat_keyword(keywords::Type) {
TypeTraitItem(P(p.parse_associated_type(attrs)))
} else {
let lo = p.span.lo;
let vis = p.parse_visibility();
let abi = if p.eat_keyword(keywords::Extern) {
p.parse_opt_abi().unwrap_or(abi::C)
} else if attr::contains_name(attrs.as_slice(),
"rust_call_abi_hack") {
// FIXME(stage0, pcwalton): Remove this awful hack after a
// snapshot, and change to `extern "rust-call" fn`.
abi::RustCall
} else {
abi::Rust
};
let style = p.parse_fn_style();
let ident = p.parse_ident();
let mut generics = p.parse_generics();
let (explicit_self, d) = p.parse_fn_decl_with_self(|p| {
// This is somewhat dubious; We don't want to allow
// argument names to be left off if there is a
// definition...
p.parse_arg_general(false)
});
p.parse_where_clause(&mut generics);
let hi = p.last_span.hi;
match p.token {
token::SEMI => {
p.bump();
debug!("parse_trait_methods(): parsing required method");
RequiredMethod(TypeMethod {
ident: ident,
attrs: attrs,
fn_style: style,
decl: d,
generics: generics,
abi: abi,
explicit_self: explicit_self,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis,
})
}
token::LBRACE => {
debug!("parse_trait_methods(): parsing provided method");
let (inner_attrs, body) =
p.parse_inner_attrs_and_block();
let attrs = attrs.append(inner_attrs.as_slice());
ProvidedMethod(P(ast::Method {
attrs: attrs,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
node: ast::MethDecl(ident,
generics,
abi,
explicit_self,
style,
d,
body,
vis)
}))
}
_ => {
let token_str = p.this_token_to_string();
p.fatal((format!("expected `;` or `{{`, found `{}`",
token_str)).as_slice())
}
}
}
})
}
/// Parse a possibly mutable type
pub fn parse_mt(&mut self) -> MutTy {
let mutbl = self.parse_mutability();
let t = self.parse_ty(true);
MutTy { ty: t, mutbl: mutbl }
}
/// Parse [mut/const/imm] ID : TY
/// now used only by obsolete record syntax parser...
pub fn parse_ty_field(&mut self) -> TypeField {
let lo = self.span.lo;
let mutbl = self.parse_mutability();
let id = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(true);
let hi = ty.span.hi;
ast::TypeField {
ident: id,
mt: MutTy { ty: ty, mutbl: mutbl },
span: mk_sp(lo, hi),
}
}
/// Parse optional return type [ -> TY ] in function decl
pub fn parse_ret_ty(&mut self) -> (RetStyle, P<Ty>) {
return if self.eat(&token::RARROW) {
let lo = self.span.lo;
if self.eat(&token::NOT) {
(
NoReturn,
P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyBot,
span: mk_sp(lo, self.last_span.hi)
})
)
} else {
(Return, self.parse_ty(true))
}
} else {
let pos = self.span.lo;
(
Return,
P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyNil,
span: mk_sp(pos, pos),
})
)
}
}
/// Parse a type.
///
/// The second parameter specifies whether the `+` binary operator is
/// allowed in the type grammar.
pub fn parse_ty(&mut self, plus_allowed: bool) -> P<Ty> {
maybe_whole!(no_clone self, NtTy);
let lo = self.span.lo;
let t = if self.token == token::LPAREN {
self.bump();
if self.token == token::RPAREN {
self.bump();
TyNil
} else {
// (t) is a parenthesized ty
// (t,) is the type of a tuple with only one field,
// of type t
let mut ts = vec!(self.parse_ty(true));
let mut one_tuple = false;
while self.token == token::COMMA {
self.bump();
if self.token != token::RPAREN {
ts.push(self.parse_ty(true));
}
else {
one_tuple = true;
}
}
if ts.len() == 1 && !one_tuple {
self.expect(&token::RPAREN);
TyParen(ts.into_iter().nth(0).unwrap())
} else {
let t = TyTup(ts);
self.expect(&token::RPAREN);
t
}
}
} else if self.token == token::TILDE {
// OWNED POINTER
self.bump();
let last_span = self.last_span;
match self.token {
token::LBRACKET => self.obsolete(last_span, ObsoleteOwnedVector),
_ => self.obsolete(last_span, ObsoleteOwnedType)
}
TyUniq(self.parse_ty(false))
} else if self.token == token::BINOP(token::STAR) {
// STAR POINTER (bare pointer?)
self.bump();
TyPtr(self.parse_ptr())
} else if self.token == token::LBRACKET {
// VECTOR
self.expect(&token::LBRACKET);
let t = self.parse_ty(true);
// Parse the `, ..e` in `[ int, ..e ]`
// where `e` is a const expression
let t = match self.maybe_parse_fixed_vstore() {
None => TyVec(t),
Some(suffix) => TyFixedLengthVec(t, suffix)
};
self.expect(&token::RBRACKET);
t
} else if self.token == token::BINOP(token::AND) ||
self.token == token::ANDAND {
// BORROWED POINTER
self.expect_and();
self.parse_borrowed_pointee()
} else if self.is_keyword(keywords::Extern) ||
self.is_keyword(keywords::Unsafe) ||
self.token_is_bare_fn_keyword() {
// BARE FUNCTION
self.parse_ty_bare_fn()
} else if self.token_is_closure_keyword() ||
self.token == token::BINOP(token::OR) ||
self.token == token::OROR ||
(self.token == token::LT &&
self.look_ahead(1, |t| {
*t == token::GT || Parser::token_is_lifetime(t)
})) {
// CLOSURE
self.parse_ty_closure()
} else if self.eat_keyword(keywords::Typeof) {
// TYPEOF
// In order to not be ambiguous, the type must be surrounded by parens.
self.expect(&token::LPAREN);
let e = self.parse_expr();
self.expect(&token::RPAREN);
TyTypeof(e)
} else if self.eat_keyword(keywords::Proc) {
self.parse_proc_type()
} else if self.token == token::LT {
// QUALIFIED PATH
self.bump();
let for_type = self.parse_ty(true);
self.expect_keyword(keywords::As);
let trait_name = self.parse_path(LifetimeAndTypesWithoutColons);
self.expect(&token::GT);
self.expect(&token::MOD_SEP);
let item_name = self.parse_ident();
TyQPath(P(QPath {
for_type: for_type,
trait_name: trait_name.path,
item_name: item_name,
}))
} else if self.token == token::MOD_SEP
|| is_ident_or_path(&self.token) {
// NAMED TYPE
let mode = if plus_allowed {
LifetimeAndTypesAndBounds
} else {
LifetimeAndTypesWithoutColons
};
let PathAndBounds {
path,
bounds
} = self.parse_path(mode);
TyPath(path, bounds, ast::DUMMY_NODE_ID)
} else if self.eat(&token::UNDERSCORE) {
// TYPE TO BE INFERRED
TyInfer
} else {
let msg = format!("expected type, found token {:?}", self.token);
self.fatal(msg.as_slice());
};
let sp = mk_sp(lo, self.last_span.hi);
P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp})
}
pub fn parse_borrowed_pointee(&mut self) -> Ty_ {
// look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
let opt_lifetime = self.parse_opt_lifetime();
let mt = self.parse_mt();
return TyRptr(opt_lifetime, mt);
}
pub fn parse_ptr(&mut self) -> MutTy {
let mutbl = if self.eat_keyword(keywords::Mut) {
MutMutable
} else if self.eat_keyword(keywords::Const) {
MutImmutable
} else {
let span = self.last_span;
self.span_err(span,
"bare raw pointers are no longer allowed, you should \
likely use `*mut T`, but otherwise `*T` is now \
known as `*const T`");
MutImmutable
};
let t = self.parse_ty(true);
MutTy { ty: t, mutbl: mutbl }
}
pub fn is_named_argument(&mut self) -> bool {
let offset = match self.token {
token::BINOP(token::AND) => 1,
token::ANDAND => 1,
_ if token::is_keyword(keywords::Mut, &self.token) => 1,
_ => 0
};
debug!("parser is_named_argument offset:{}", offset);
if offset == 0 {
is_plain_ident_or_underscore(&self.token)
&& self.look_ahead(1, |t| *t == token::COLON)
} else {
self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
&& self.look_ahead(offset + 1, |t| *t == token::COLON)
}
}
/// This version of parse arg doesn't necessarily require
/// identifier names.
pub fn parse_arg_general(&mut self, require_name: bool) -> Arg {
let pat = if require_name || self.is_named_argument() {
debug!("parse_arg_general parse_pat (require_name:{:?})",
require_name);
let pat = self.parse_pat();
self.expect(&token::COLON);
pat
} else {
debug!("parse_arg_general ident_to_pat");
ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
self.last_span,
special_idents::invalid)
};
let t = self.parse_ty(true);
Arg {
ty: t,
pat: pat,
id: ast::DUMMY_NODE_ID,
}
}
/// Parse a single function argument
pub fn parse_arg(&mut self) -> Arg {
self.parse_arg_general(true)
}
/// Parse an argument in a lambda header e.g. |arg, arg|
pub fn parse_fn_block_arg(&mut self) -> Arg {
let pat = self.parse_pat();
let t = if self.eat(&token::COLON) {
self.parse_ty(true)
} else {
P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyInfer,
span: mk_sp(self.span.lo, self.span.hi),
})
};
Arg {
ty: t,
pat: pat,
id: ast::DUMMY_NODE_ID
}
}
pub fn maybe_parse_fixed_vstore(&mut self) -> Option<P<ast::Expr>> {
if self.token == token::COMMA &&
self.look_ahead(1, |t| *t == token::DOTDOT) {
self.bump();
self.bump();
Some(self.parse_expr())
} else {
None
}
}
/// Matches token_lit = LIT_INTEGER | ...
pub fn lit_from_token(&mut self, tok: &token::Token) -> Lit_ {
match *tok {
token::LIT_BYTE(i) => LitByte(parse::byte_lit(i.as_str()).val0()),
token::LIT_CHAR(i) => LitChar(parse::char_lit(i.as_str()).val0()),
token::LIT_INTEGER(s) => parse::integer_lit(s.as_str(),
&self.sess.span_diagnostic, self.span),
token::LIT_FLOAT(s) => parse::float_lit(s.as_str()),
token::LIT_STR(s) => {
LitStr(token::intern_and_get_ident(parse::str_lit(s.as_str()).as_slice()),
ast::CookedStr)
}
token::LIT_STR_RAW(s, n) => {
LitStr(token::intern_and_get_ident(parse::raw_str_lit(s.as_str()).as_slice()),
ast::RawStr(n))
}
token::LIT_BINARY(i) =>
LitBinary(parse::binary_lit(i.as_str())),
token::LIT_BINARY_RAW(i, _) =>
LitBinary(Rc::new(i.as_str().as_bytes().iter().map(|&x| x).collect())),
token::LPAREN => { self.expect(&token::RPAREN); LitNil },
_ => { self.unexpected_last(tok); }
}
}
/// Matches lit = true | false | token_lit
pub fn parse_lit(&mut self) -> Lit {
let lo = self.span.lo;
let lit = if self.eat_keyword(keywords::True) {
LitBool(true)
} else if self.eat_keyword(keywords::False) {
LitBool(false)
} else {
let token = self.bump_and_get();
let lit = self.lit_from_token(&token);
lit
};
codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) }
}
/// matches '-' lit | lit
pub fn parse_literal_maybe_minus(&mut self) -> P<Expr> {
let minus_lo = self.span.lo;
let minus_present = self.eat(&token::BINOP(token::MINUS));
let lo = self.span.lo;
let literal = P(self.parse_lit());
let hi = self.span.hi;
let expr = self.mk_expr(lo, hi, ExprLit(literal));
if minus_present {
let minus_hi = self.span.hi;
let unary = self.mk_unary(UnNeg, expr);
self.mk_expr(minus_lo, minus_hi, unary)
} else {
expr
}
}
/// Parses a path and optional type parameter bounds, depending on the
/// mode. The `mode` parameter determines whether lifetimes, types, and/or
/// bounds are permitted and whether `::` must precede type parameter
/// groups.
pub fn parse_path(&mut self, mode: PathParsingMode) -> PathAndBounds {
// Check for a whole path...
let found = match self.token {
INTERPOLATED(token::NtPath(_)) => Some(self.bump_and_get()),
_ => None,
};
match found {
Some(INTERPOLATED(token::NtPath(box path))) => {
return PathAndBounds {
path: path,
bounds: None
}
}
_ => {}
}
let lo = self.span.lo;
let is_global = self.eat(&token::MOD_SEP);
// Parse any number of segments and bound sets. A segment is an
// identifier followed by an optional lifetime and a set of types.
// A bound set is a set of type parameter bounds.
let mut segments = Vec::new();
loop {
// First, parse an identifier.
let identifier = self.parse_ident();
// Parse the '::' before type parameters if it's required. If
// it is required and wasn't present, then we're done.
if mode == LifetimeAndTypesWithColons &&
!self.eat(&token::MOD_SEP) {
segments.push(ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
});
break
}
// Parse the `<` before the lifetime and types, if applicable.
let (any_lifetime_or_types, lifetimes, types) = {
if mode != NoTypesAllowed && self.eat_lt(false) {
let (lifetimes, types) =
self.parse_generic_values_after_lt();
(true, lifetimes, OwnedSlice::from_vec(types))
} else {
(false, Vec::new(), OwnedSlice::empty())
}
};
// Assemble and push the result.
segments.push(ast::PathSegment {
identifier: identifier,
lifetimes: lifetimes,
types: types,
});
// We're done if we don't see a '::', unless the mode required
// a double colon to get here in the first place.
if !(mode == LifetimeAndTypesWithColons &&
!any_lifetime_or_types) {
if !self.eat(&token::MOD_SEP) {
break
}
}
}
// Next, parse a plus and bounded type parameters, if
// applicable. We need to remember whether the separate was
// present for later, because in some contexts it's a parse
// error.
let opt_bounds = {
if mode == LifetimeAndTypesAndBounds &&
self.eat(&token::BINOP(token::PLUS))
{
let bounds = self.parse_ty_param_bounds();
// For some reason that I do not fully understand, we
// do not permit an empty list in the case where it is
// introduced by a `+`, but we do for `:` and other
// separators. -nmatsakis
if bounds.len() == 0 {
let last_span = self.last_span;
self.span_err(last_span,
"at least one type parameter bound \
must be specified");
}
Some(bounds)
} else {
None
}
};
// Assemble the span.
let span = mk_sp(lo, self.last_span.hi);
// Assemble the result.
PathAndBounds {
path: ast::Path {
span: span,
global: is_global,
segments: segments,
},
bounds: opt_bounds,
}
}
/// parses 0 or 1 lifetime
pub fn parse_opt_lifetime(&mut self) -> Option<ast::Lifetime> {
match self.token {
token::LIFETIME(..) => {
Some(self.parse_lifetime())
}
_ => {
None
}
}
}
/// Parses a single lifetime
/// Matches lifetime = LIFETIME
pub fn parse_lifetime(&mut self) -> ast::Lifetime {
match self.token {
token::LIFETIME(i) => {
let span = self.span;
self.bump();
return ast::Lifetime {
id: ast::DUMMY_NODE_ID,
span: span,
name: i.name
};
}
_ => {
self.fatal(format!("expected a lifetime name").as_slice());
}
}
}
pub fn parse_lifetime_defs(&mut self) -> Vec<ast::LifetimeDef> {
/*!
* Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]`
* where `lifetime_def = lifetime [':' lifetimes]`
*/
let mut res = Vec::new();
loop {
match self.token {
token::LIFETIME(_) => {
let lifetime = self.parse_lifetime();
let bounds =
if self.eat(&token::COLON) {
self.parse_lifetimes(token::BINOP(token::PLUS))
} else {
Vec::new()
};
res.push(ast::LifetimeDef { lifetime: lifetime,
bounds: bounds });
}
_ => {
return res;
}
}
match self.token {
token::COMMA => { self.bump(); }
token::GT => { return res; }
token::BINOP(token::SHR) => { return res; }
_ => {
let msg = format!("expected `,` or `>` after lifetime \
name, got: {:?}",
self.token);
self.fatal(msg.as_slice());
}
}
}
}
// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes )
// actually, it matches the empty one too, but putting that in there
// messes up the grammar....
pub fn parse_lifetimes(&mut self, sep: token::Token) -> Vec<ast::Lifetime> {
/*!
* Parses zero or more comma separated lifetimes.
* Expects each lifetime to be followed by either
* a comma or `>`. Used when parsing type parameter
* lists, where we expect something like `<'a, 'b, T>`.
*/
let mut res = Vec::new();
loop {
match self.token {
token::LIFETIME(_) => {
res.push(self.parse_lifetime());
}
_ => {
return res;
}
}
if self.token != sep {
return res;
}
self.bump();
}
}
pub fn token_is_mutability(tok: &token::Token) -> bool {
token::is_keyword(keywords::Mut, tok) ||
token::is_keyword(keywords::Const, tok)
}
/// Parse mutability declaration (mut/const/imm)
pub fn parse_mutability(&mut self) -> Mutability {
if self.eat_keyword(keywords::Mut) {
MutMutable
} else {
MutImmutable
}
}
/// Parse ident COLON expr
pub fn parse_field(&mut self) -> Field {
let lo = self.span.lo;
let i = self.parse_ident();
let hi = self.last_span.hi;
self.expect(&token::COLON);
let e = self.parse_expr();
ast::Field {
ident: spanned(lo, hi, i),
span: mk_sp(lo, e.span.hi),
expr: e,
}
}
pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P<Expr> {
P(Expr {
id: ast::DUMMY_NODE_ID,
node: node,
span: mk_sp(lo, hi),
})
}
pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
ExprUnary(unop, expr)
}
pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
ExprBinary(binop, lhs, rhs)
}
pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
ExprCall(f, args)
}
fn mk_method_call(&mut self,
ident: ast::SpannedIdent,
tps: Vec<P<Ty>>,
args: Vec<P<Expr>>)
-> ast::Expr_ {
ExprMethodCall(ident, tps, args)
}
pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
ExprIndex(expr, idx)
}
pub fn mk_slice(&mut self, expr: P<Expr>,
start: Option<P<Expr>>,
end: Option<P<Expr>>,
mutbl: Mutability)
-> ast::Expr_ {
ExprSlice(expr, start, end, mutbl)
}
pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent,
tys: Vec<P<Ty>>) -> ast::Expr_ {
ExprField(expr, ident, tys)
}
pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<uint>,
tys: Vec<P<Ty>>) -> ast::Expr_ {
ExprTupField(expr, idx, tys)
}
pub fn mk_assign_op(&mut self, binop: ast::BinOp,
lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
ExprAssignOp(binop, lhs, rhs)
}
pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P<Expr> {
P(Expr {
id: ast::DUMMY_NODE_ID,
node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
span: mk_sp(lo, hi),
})
}
pub fn mk_lit_u32(&mut self, i: u32) -> P<Expr> {
let span = &self.span;
let lv_lit = P(codemap::Spanned {
node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
span: *span
});
P(Expr {
id: ast::DUMMY_NODE_ID,
node: ExprLit(lv_lit),
span: *span,
})
}
/// At the bottom (top?) of the precedence hierarchy,
/// parse things like parenthesized exprs,
/// macros, return, etc.
pub fn parse_bottom_expr(&mut self) -> P<Expr> {
maybe_whole_expr!(self);
let lo = self.span.lo;
let mut hi = self.span.hi;
let ex: Expr_;
match self.token {
token::LPAREN => {
self.bump();
// (e) is parenthesized e
// (e,) is a tuple with only one field, e
let mut trailing_comma = false;
if self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = P(spanned(lo, hi, LitNil));
return self.mk_expr(lo, hi, ExprLit(lit));
}
let mut es = vec!(self.parse_expr());
self.commit_expr(&**es.last().unwrap(), &[], &[token::COMMA, token::RPAREN]);
while self.token == token::COMMA {
self.bump();
if self.token != token::RPAREN {
es.push(self.parse_expr());
self.commit_expr(&**es.last().unwrap(), &[],
&[token::COMMA, token::RPAREN]);
} else {
trailing_comma = true;
}
}
hi = self.span.hi;
self.commit_expr_expecting(&**es.last().unwrap(), token::RPAREN);
return if es.len() == 1 && !trailing_comma {
self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap()))
} else {
self.mk_expr(lo, hi, ExprTup(es))
}
},
token::LBRACE => {
self.bump();
let blk = self.parse_block_tail(lo, DefaultBlock);
return self.mk_expr(blk.span.lo, blk.span.hi,
ExprBlock(blk));
},
token::BINOP(token::OR) | token::OROR => {
return self.parse_lambda_expr(CaptureByRef);
},
// FIXME #13626: Should be able to stick in
// token::SELF_KEYWORD_NAME
token::IDENT(id @ ast::Ident{
name: ast::Name(token::SELF_KEYWORD_NAME_NUM),
ctxt: _
} ,false) => {
self.bump();
let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
ex = ExprPath(path);
hi = self.last_span.hi;
}
token::LBRACKET => {
self.bump();
if self.token == token::RBRACKET {
// Empty vector.
self.bump();
ex = ExprVec(Vec::new());
} else {
// Nonempty vector.
let first_expr = self.parse_expr();
if self.token == token::COMMA &&
self.look_ahead(1, |t| *t == token::DOTDOT) {
// Repeating vector syntax: [ 0, ..512 ]
self.bump();
self.bump();
let count = self.parse_expr();
self.expect(&token::RBRACKET);
ex = ExprRepeat(first_expr, count);
} else if self.token == token::COMMA {
// Vector with two or more elements.
self.bump();
let remaining_exprs = self.parse_seq_to_end(
&token::RBRACKET,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_expr()
);
let mut exprs = vec!(first_expr);
exprs.push_all_move(remaining_exprs);
ex = ExprVec(exprs);
} else {
// Vector with one element.
self.expect(&token::RBRACKET);
ex = ExprVec(vec!(first_expr));
}
}
hi = self.last_span.hi;
}
_ => {
if self.eat_keyword(keywords::Move) {
return self.parse_lambda_expr(CaptureByValue);
}
if self.eat_keyword(keywords::Proc) {
let decl = self.parse_proc_decl();
let body = self.parse_expr();
let fakeblock = P(ast::Block {
id: ast::DUMMY_NODE_ID,
view_items: Vec::new(),
stmts: Vec::new(),
rules: DefaultBlock,
span: body.span,
expr: Some(body),
});
return self.mk_expr(lo, fakeblock.span.hi, ExprProc(decl, fakeblock));
}
if self.eat_keyword(keywords::If) {
return self.parse_if_expr();
}
if self.eat_keyword(keywords::For) {
return self.parse_for_expr(None);
}
if self.eat_keyword(keywords::While) {
return self.parse_while_expr(None);
}
if Parser::token_is_lifetime(&self.token) {
let lifetime = self.get_lifetime();
self.bump();
self.expect(&token::COLON);
if self.eat_keyword(keywords::While) {
return self.parse_while_expr(Some(lifetime))
}
if self.eat_keyword(keywords::For) {
return self.parse_for_expr(Some(lifetime))
}
if self.eat_keyword(keywords::Loop) {
return self.parse_loop_expr(Some(lifetime))
}
self.fatal("expected `while`, `for`, or `loop` after a label")
}
if self.eat_keyword(keywords::Loop) {
return self.parse_loop_expr(None);
}
if self.eat_keyword(keywords::Continue) {
let lo = self.span.lo;
let ex = if Parser::token_is_lifetime(&self.token) {
let lifetime = self.get_lifetime();
self.bump();
ExprAgain(Some(lifetime))
} else {
ExprAgain(None)
};
let hi = self.span.hi;
return self.mk_expr(lo, hi, ex);
}
if self.eat_keyword(keywords::Match) {
return self.parse_match_expr();
}
if self.eat_keyword(keywords::Unsafe) {
return self.parse_block_expr(
lo,
UnsafeBlock(ast::UserProvided));
}
if self.eat_keyword(keywords::Return) {
// RETURN expression
if can_begin_expr(&self.token) {
let e = self.parse_expr();
hi = e.span.hi;
ex = ExprRet(Some(e));
} else {
ex = ExprRet(None);
}
} else if self.eat_keyword(keywords::Break) {
// BREAK expression
if Parser::token_is_lifetime(&self.token) {
let lifetime = self.get_lifetime();
self.bump();
ex = ExprBreak(Some(lifetime));
} else {
ex = ExprBreak(None);
}
hi = self.span.hi;
} else if self.token == token::MOD_SEP ||
is_ident(&self.token) &&
!self.is_keyword(keywords::True) &&
!self.is_keyword(keywords::False) {
let pth =
self.parse_path(LifetimeAndTypesWithColons).path;
// `!`, as an operator, is prefix, so we know this isn't that
if self.token == token::NOT {
// MACRO INVOCATION expression
self.bump();
let ket = token::close_delimiter_for(&self.token)
.unwrap_or_else(|| {
self.fatal("expected open delimiter")
});
self.bump();
let tts = self.parse_seq_to_end(
&ket,
seq_sep_none(),
|p| p.parse_token_tree());
let hi = self.span.hi;
return self.mk_mac_expr(lo,
hi,
MacInvocTT(pth,
tts,
EMPTY_CTXT));
}
if self.token == token::LBRACE {
// This is a struct literal, unless we're prohibited
// from parsing struct literals here.
if !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) {
// It's a struct literal.
self.bump();
let mut fields = Vec::new();
let mut base = None;
while self.token != token::RBRACE {
if self.eat(&token::DOTDOT) {
base = Some(self.parse_expr());
break;
}
fields.push(self.parse_field());
self.commit_expr(&*fields.last().unwrap().expr,
&[token::COMMA],
&[token::RBRACE]);
}
if fields.len() == 0 && base.is_none() {
let last_span = self.last_span;
self.span_err(last_span,
"structure literal must either \
have at least one field or use \
functional structure update \
syntax");
}
hi = self.span.hi;
self.expect(&token::RBRACE);
ex = ExprStruct(pth, fields, base);
return self.mk_expr(lo, hi, ex);
}
}
hi = pth.span.hi;
ex = ExprPath(pth);
} else {
// other literal expression
let lit = self.parse_lit();
hi = lit.span.hi;
ex = ExprLit(P(lit));
}
}
}
return self.mk_expr(lo, hi, ex);
}
/// Parse a block or unsafe block
pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode)
-> P<Expr> {
self.expect(&token::LBRACE);
let blk = self.parse_block_tail(lo, blk_mode);
return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk));
}
/// parse a.b or a(13) or a[4] or just a
pub fn parse_dot_or_call_expr(&mut self) -> P<Expr> {
let b = self.parse_bottom_expr();
self.parse_dot_or_call_expr_with(b)
}
pub fn parse_dot_or_call_expr_with(&mut self, e0: P<Expr>) -> P<Expr> {
let mut e = e0;
let lo = e.span.lo;
let mut hi;
loop {
// expr.f
if self.eat(&token::DOT) {
match self.token {
token::IDENT(i, _) => {
let dot = self.last_span.hi;
hi = self.span.hi;
self.bump();
let (_, tys) = if self.eat(&token::MOD_SEP) {
self.expect_lt();
self.parse_generic_values_after_lt()
} else {
(Vec::new(), Vec::new())
};
// expr.f() method call
match self.token {
token::LPAREN => {
let mut es = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_expr()
);
hi = self.last_span.hi;
es.unshift(e);
let id = spanned(dot, hi, i);
let nd = self.mk_method_call(id, tys, es);
e = self.mk_expr(lo, hi, nd);
}
_ => {
let id = spanned(dot, hi, i);
let field = self.mk_field(e, id, tys);
e = self.mk_expr(lo, hi, field)
}
}
}
token::LIT_INTEGER(n) => {
let index = n.as_str();
let dot = self.last_span.hi;
hi = self.span.hi;
self.bump();
let (_, tys) = if self.eat(&token::MOD_SEP) {
self.expect_lt();
self.parse_generic_values_after_lt()
} else {
(Vec::new(), Vec::new())
};
let num = from_str::<uint>(index);
match num {
Some(n) => {
let id = spanned(dot, hi, n);
let field = self.mk_tup_field(e, id, tys);
e = self.mk_expr(lo, hi, field);
}
None => {
let last_span = self.last_span;
self.span_err(last_span, "invalid tuple or tuple struct index");
}
}
}
token::LIT_FLOAT(n) => {
self.bump();
let last_span = self.last_span;
self.span_err(last_span,
format!("unexpected token: `{}`", n.as_str()).as_slice());
self.span_note(last_span,
"try parenthesizing the first index; e.g., `(foo.0).1`");
self.abort_if_errors();
}
_ => self.unexpected()
}
continue;
}
if self.expr_is_complete(&*e) { break; }
match self.token {
// expr(...)
token::LPAREN => {
let es = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_expr()
);
hi = self.last_span.hi;
let nd = self.mk_call(e, es);
e = self.mk_expr(lo, hi, nd);
}
// expr[...]
// Could be either an index expression or a slicing expression.
// Any slicing non-terminal can have a mutable version with `mut`
// after the opening square bracket.
token::LBRACKET => {
self.bump();
let mutbl = if self.eat_keyword(keywords::Mut) {
MutMutable
} else {
MutImmutable
};
match self.token {
// e[]
token::RBRACKET => {
self.bump();
hi = self.span.hi;
let slice = self.mk_slice(e, None, None, mutbl);
e = self.mk_expr(lo, hi, slice)
}
// e[..e]
token::DOTDOT => {
self.bump();
match self.token {
// e[..]
token::RBRACKET => {
self.bump();
hi = self.span.hi;
let slice = self.mk_slice(e, None, None, mutbl);
e = self.mk_expr(lo, hi, slice);
self.span_err(e.span, "incorrect slicing expression: `[..]`");
self.span_note(e.span,
"use `expr[]` to construct a slice of the whole of expr");
}
// e[..e]
_ => {
hi = self.span.hi;
let e2 = self.parse_expr();
self.commit_expr_expecting(&*e2, token::RBRACKET);
let slice = self.mk_slice(e, None, Some(e2), mutbl);
e = self.mk_expr(lo, hi, slice)
}
}
}
// e[e] | e[e..] | e[e..e]
_ => {
let ix = self.parse_expr();
match self.token {
// e[e..] | e[e..e]
token::DOTDOT => {
self.bump();
let e2 = match self.token {
// e[e..]
token::RBRACKET => {
self.bump();
None
}
// e[e..e]
_ => {
let e2 = self.parse_expr();
self.commit_expr_expecting(&*e2, token::RBRACKET);
Some(e2)
}
};
hi = self.span.hi;
let slice = self.mk_slice(e, Some(ix), e2, mutbl);
e = self.mk_expr(lo, hi, slice)
}
// e[e]
_ => {
if mutbl == ast::MutMutable {
self.span_err(e.span,
"`mut` keyword is invalid in index expressions");
}
hi = self.span.hi;
self.commit_expr_expecting(&*ix, token::RBRACKET);
let index = self.mk_index(e, ix);
e = self.mk_expr(lo, hi, index)
}
}
}
}
}
_ => return e
}
}
return e;
}
/// Parse an optional separator followed by a kleene-style
/// repetition token (+ or *).
pub fn parse_sep_and_zerok(&mut self) -> (Option<token::Token>, bool) {
fn parse_zerok(parser: &mut Parser) -> Option<bool> {
match parser.token {
token::BINOP(token::STAR) | token::BINOP(token::PLUS) => {
let zerok = parser.token == token::BINOP(token::STAR);
parser.bump();
Some(zerok)
},
_ => None
}
};
match parse_zerok(self) {
Some(zerok) => return (None, zerok),
None => {}
}
let separator = self.bump_and_get();
match parse_zerok(self) {
Some(zerok) => (Some(separator), zerok),
None => self.fatal("expected `*` or `+`")
}
}
/// parse a single token tree from the input.
pub fn parse_token_tree(&mut self) -> TokenTree {
// FIXME #6994: currently, this is too eager. It
// parses token trees but also identifies TTSeq's
// and TTNonterminal's; it's too early to know yet
// whether something will be a nonterminal or a seq
// yet.
maybe_whole!(deref self, NtTT);
// this is the fall-through for the 'match' below.
// invariants: the current token is not a left-delimiter,
// not an EOF, and not the desired right-delimiter (if
// it were, parse_seq_to_before_end would have prevented
// reaching this point.
fn parse_non_delim_tt_tok(p: &mut Parser) -> TokenTree {
maybe_whole!(deref p, NtTT);
match p.token {
token::RPAREN | token::RBRACE | token::RBRACKET => {
// This is a conservative error: only report the last unclosed delimiter. The
// previous unclosed delimiters could actually be closed! The parser just hasn't
// gotten to them yet.
match p.open_braces.last() {
None => {}
Some(&sp) => p.span_note(sp, "unclosed delimiter"),
};
let token_str = p.this_token_to_string();
p.fatal(format!("incorrect close delimiter: `{}`",
token_str).as_slice())
},
/* we ought to allow different depths of unquotation */
token::DOLLAR if p.quote_depth > 0u => {
p.bump();
let sp = p.span;
if p.token == token::LPAREN {
let seq = p.parse_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_none(),
|p| p.parse_token_tree()
);
let (s, z) = p.parse_sep_and_zerok();
let seq = match seq {
Spanned { node, .. } => node,
};
TTSeq(mk_sp(sp.lo, p.span.hi), Rc::new(seq), s, z)
} else {
TTNonterminal(sp, p.parse_ident())
}
}
_ => {
parse_any_tt_tok(p)
}
}
}
// turn the next token into a TTTok:
fn parse_any_tt_tok(p: &mut Parser) -> TokenTree {
TTTok(p.span, p.bump_and_get())
}
match (&self.token, token::close_delimiter_for(&self.token)) {
(&token::EOF, _) => {
let open_braces = self.open_braces.clone();
for sp in open_braces.iter() {
self.span_note(*sp, "Did you mean to close this delimiter?");
}
// There shouldn't really be a span, but it's easier for the test runner
// if we give it one
self.fatal("this file contains an un-closed delimiter ");
}
(_, Some(close_delim)) => {
// Parse the open delimiter.
self.open_braces.push(self.span);
let mut result = vec!(parse_any_tt_tok(self));
let trees =
self.parse_seq_to_before_end(&close_delim,
seq_sep_none(),
|p| p.parse_token_tree());
result.push_all_move(trees);
// Parse the close delimiter.
result.push(parse_any_tt_tok(self));
self.open_braces.pop().unwrap();
TTDelim(Rc::new(result))
}
_ => parse_non_delim_tt_tok(self)
}
}
// parse a stream of tokens into a list of TokenTree's,
// up to EOF.
pub fn parse_all_token_trees(&mut self) -> Vec<TokenTree> {
let mut tts = Vec::new();
while self.token != token::EOF {
tts.push(self.parse_token_tree());
}
tts
}
pub fn parse_matchers(&mut self) -> Vec<Matcher> {
// unification of Matcher's and TokenTree's would vastly improve
// the interpolation of Matcher's
maybe_whole!(self, NtMatchers);
let mut name_idx = 0u;
match token::close_delimiter_for(&self.token) {
Some(other_delimiter) => {
self.bump();
self.parse_matcher_subseq_upto(&mut name_idx, &other_delimiter)
}
None => self.fatal("expected open delimiter")
}
}
/// This goofy function is necessary to correctly match parens in Matcher's.
/// Otherwise, `$( ( )` would be a valid Matcher, and `$( () )` would be
/// invalid. It's similar to common::parse_seq.
pub fn parse_matcher_subseq_upto(&mut self,
name_idx: &mut uint,
ket: &token::Token)
-> Vec<Matcher> {
let mut ret_val = Vec::new();
let mut lparens = 0u;
while self.token != *ket || lparens > 0u {
if self.token == token::LPAREN { lparens += 1u; }
if self.token == token::RPAREN { lparens -= 1u; }
ret_val.push(self.parse_matcher(name_idx));
}
self.bump();
return ret_val;
}
pub fn parse_matcher(&mut self, name_idx: &mut uint) -> Matcher {
let lo = self.span.lo;
let m = if self.token == token::DOLLAR {
self.bump();
if self.token == token::LPAREN {
let name_idx_lo = *name_idx;
self.bump();
let ms = self.parse_matcher_subseq_upto(name_idx,
&token::RPAREN);
if ms.len() == 0u {
self.fatal("repetition body must be nonempty");
}
let (sep, zerok) = self.parse_sep_and_zerok();
MatchSeq(ms, sep, zerok, name_idx_lo, *name_idx)
} else {
let bound_to = self.parse_ident();
self.expect(&token::COLON);
let nt_name = self.parse_ident();
let m = MatchNonterminal(bound_to, nt_name, *name_idx);
*name_idx += 1;
m
}
} else {
MatchTok(self.bump_and_get())
};
return spanned(lo, self.span.hi, m);
}
/// Parse a prefix-operator expr
pub fn parse_prefix_expr(&mut self) -> P<Expr> {
let lo = self.span.lo;
let hi;
let ex;
match self.token {
token::NOT => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnNot, e);
}
token::BINOP(token::MINUS) => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnNeg, e);
}
token::BINOP(token::STAR) => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnDeref, e);
}
token::BINOP(token::AND) | token::ANDAND => {
self.expect_and();
let m = self.parse_mutability();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = ExprAddrOf(m, e);
}
token::TILDE => {
self.bump();
let last_span = self.last_span;
match self.token {
token::LBRACKET => self.obsolete(last_span, ObsoleteOwnedVector),
_ => self.obsolete(last_span, ObsoleteOwnedExpr)
}
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnUniq, e);
}
token::IDENT(_, _) => {
if !self.is_keyword(keywords::Box) {
return self.parse_dot_or_call_expr();
}
self.bump();
// Check for a place: `box(PLACE) EXPR`.
if self.eat(&token::LPAREN) {
// Support `box() EXPR` as the default.
if !self.eat(&token::RPAREN) {
let place = self.parse_expr();
self.expect(&token::RPAREN);
let subexpression = self.parse_prefix_expr();
hi = subexpression.span.hi;
ex = ExprBox(place, subexpression);
return self.mk_expr(lo, hi, ex);
}
}
// Otherwise, we use the unique pointer default.
let subexpression = self.parse_prefix_expr();
hi = subexpression.span.hi;
ex = self.mk_unary(UnUniq, subexpression);
}
_ => return self.parse_dot_or_call_expr()
}
return self.mk_expr(lo, hi, ex);
}
/// Parse an expression of binops
pub fn parse_binops(&mut self) -> P<Expr> {
let prefix_expr = self.parse_prefix_expr();
self.parse_more_binops(prefix_expr, 0)
}
/// Parse an expression of binops of at least min_prec precedence
pub fn parse_more_binops(&mut self, lhs: P<Expr>, min_prec: uint) -> P<Expr> {
if self.expr_is_complete(&*lhs) { return lhs; }
// Prevent dynamic borrow errors later on by limiting the
// scope of the borrows.
if self.token == token::BINOP(token::OR) &&
self.restrictions.contains(RESTRICTION_NO_BAR_OP) {
return lhs;
}
let cur_opt = token_to_binop(&self.token);
match cur_opt {
Some(cur_op) => {
let cur_prec = operator_prec(cur_op);
if cur_prec > min_prec {
self.bump();
let expr = self.parse_prefix_expr();
let rhs = self.parse_more_binops(expr, cur_prec);
let lhs_span = lhs.span;
let rhs_span = rhs.span;
let binary = self.mk_binary(cur_op, lhs, rhs);
let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary);
self.parse_more_binops(bin, min_prec)
} else {
lhs
}
}
None => {
if as_prec > min_prec && self.eat_keyword(keywords::As) {
let rhs = self.parse_ty(false);
let _as = self.mk_expr(lhs.span.lo,
rhs.span.hi,
ExprCast(lhs, rhs));
self.parse_more_binops(_as, min_prec)
} else {
lhs
}
}
}
}
/// Parse an assignment expression....
/// actually, this seems to be the main entry point for
/// parsing an arbitrary expression.
pub fn parse_assign_expr(&mut self) -> P<Expr> {
let lo = self.span.lo;
let lhs = self.parse_binops();
let restrictions = self.restrictions & RESTRICTION_NO_STRUCT_LITERAL;
match self.token {
token::EQ => {
self.bump();
let rhs = self.parse_expr_res(restrictions);
self.mk_expr(lo, rhs.span.hi, ExprAssign(lhs, rhs))
}
token::BINOPEQ(op) => {
self.bump();
let rhs = self.parse_expr_res(restrictions);
let aop = match op {
token::PLUS => BiAdd,
token::MINUS => BiSub,
token::STAR => BiMul,
token::SLASH => BiDiv,
token::PERCENT => BiRem,
token::CARET => BiBitXor,
token::AND => BiBitAnd,
token::OR => BiBitOr,
token::SHL => BiShl,
token::SHR => BiShr
};
let rhs_span = rhs.span;
let assign_op = self.mk_assign_op(aop, lhs, rhs);
self.mk_expr(lo, rhs_span.hi, assign_op)
}
_ => {
lhs
}
}
}
/// Parse an 'if' or 'if let' expression ('if' token already eaten)
pub fn parse_if_expr(&mut self) -> P<Expr> {
if self.is_keyword(keywords::Let) {
return self.parse_if_let_expr();
}
let lo = self.last_span.lo;
let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let thn = self.parse_block();
let mut els: Option<P<Expr>> = None;
let mut hi = thn.span.hi;
if self.eat_keyword(keywords::Else) {
let elexpr = self.parse_else_expr();
hi = elexpr.span.hi;
els = Some(elexpr);
}
self.mk_expr(lo, hi, ExprIf(cond, thn, els))
}
/// Parse an 'if let' expression ('if' token already eaten)
pub fn parse_if_let_expr(&mut self) -> P<Expr> {
let lo = self.last_span.lo;
self.expect_keyword(keywords::Let);
let pat = self.parse_pat();
self.expect(&token::EQ);
let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let thn = self.parse_block();
let (hi, els) = if self.eat_keyword(keywords::Else) {
let expr = self.parse_else_expr();
(expr.span.hi, Some(expr))
} else {
(thn.span.hi, None)
};
self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els))
}
// `|args| expr`
pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause)
-> P<Expr> {
let lo = self.span.lo;
let (decl, optional_unboxed_closure_kind) =
self.parse_fn_block_decl();
let body = self.parse_expr();
let fakeblock = P(ast::Block {
id: ast::DUMMY_NODE_ID,
view_items: Vec::new(),
stmts: Vec::new(),
span: body.span,
expr: Some(body),
rules: DefaultBlock,
});
match optional_unboxed_closure_kind {
Some(unboxed_closure_kind) => {
self.mk_expr(lo,
fakeblock.span.hi,
ExprUnboxedFn(capture_clause,
unboxed_closure_kind,
decl,
fakeblock))
}
None => {
self.mk_expr(lo,
fakeblock.span.hi,
ExprFnBlock(capture_clause, decl, fakeblock))
}
}
}
pub fn parse_else_expr(&mut self) -> P<Expr> {
if self.eat_keyword(keywords::If) {
return self.parse_if_expr();
} else {
let blk = self.parse_block();
return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk));
}
}
/// Parse a 'for' .. 'in' expression ('for' token already eaten)
pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
// Parse: `for <src_pat> in <src_expr> <src_loop_block>`
let lo = self.last_span.lo;
let pat = self.parse_pat();
self.expect_keyword(keywords::In);
let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let loop_block = self.parse_block();
let hi = self.span.hi;
self.mk_expr(lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident))
}
pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
let lo = self.last_span.lo;
let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let body = self.parse_block();
let hi = body.span.hi;
return self.mk_expr(lo, hi, ExprWhile(cond, body, opt_ident));
}
pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
let lo = self.last_span.lo;
let body = self.parse_block();
let hi = body.span.hi;
self.mk_expr(lo, hi, ExprLoop(body, opt_ident))
}
fn parse_match_expr(&mut self) -> P<Expr> {
let lo = self.last_span.lo;
let discriminant = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
self.commit_expr_expecting(&*discriminant, token::LBRACE);
let mut arms: Vec<Arm> = Vec::new();
while self.token != token::RBRACE {
arms.push(self.parse_arm());
}
let hi = self.span.hi;
self.bump();
return self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchNormal));
}
pub fn parse_arm(&mut self) -> Arm {
let attrs = self.parse_outer_attributes();
let pats = self.parse_pats();
let mut guard = None;
if self.eat_keyword(keywords::If) {
guard = Some(self.parse_expr());
}
self.expect(&token::FAT_ARROW);
let expr = self.parse_expr_res(RESTRICTION_STMT_EXPR);
let require_comma =
!classify::expr_is_simple_block(&*expr)
&& self.token != token::RBRACE;
if require_comma {
self.commit_expr(&*expr, &[token::COMMA], &[token::RBRACE]);
} else {
self.eat(&token::COMMA);
}
ast::Arm {
attrs: attrs,
pats: pats,
guard: guard,
body: expr,
}
}
/// Parse an expression
pub fn parse_expr(&mut self) -> P<Expr> {
return self.parse_expr_res(UNRESTRICTED);
}
/// Parse an expression, subject to the given restrictions
pub fn parse_expr_res(&mut self, r: Restrictions) -> P<Expr> {
let old = self.restrictions;
self.restrictions = r;
let e = self.parse_assign_expr();
self.restrictions = old;
return e;
}
/// Parse the RHS of a local variable declaration (e.g. '= 14;')
fn parse_initializer(&mut self) -> Option<P<Expr>> {
if self.token == token::EQ {
self.bump();
Some(self.parse_expr())
} else {
None
}
}
/// Parse patterns, separated by '|' s
fn parse_pats(&mut self) -> Vec<P<Pat>> {
let mut pats = Vec::new();
loop {
pats.push(self.parse_pat());
if self.token == token::BINOP(token::OR) { self.bump(); }
else { return pats; }
};
}
fn parse_pat_vec_elements(
&mut self,
) -> (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>) {
let mut before = Vec::new();
let mut slice = None;
let mut after = Vec::new();
let mut first = true;
let mut before_slice = true;
while self.token != token::RBRACKET {
if first {
first = false;
} else {
self.expect(&token::COMMA);
}
if before_slice {
if self.token == token::DOTDOT {
self.bump();
if self.token == token::COMMA ||
self.token == token::RBRACKET {
slice = Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatWild(PatWildMulti),
span: self.span,
}));
before_slice = false;
} else {
let _ = self.parse_pat();
let span = self.span;
self.obsolete(span, ObsoleteSubsliceMatch);
}
continue
}
}
let subpat = self.parse_pat();
if before_slice && self.token == token::DOTDOT {
self.bump();
slice = Some(subpat);
before_slice = false;
} else if before_slice {
before.push(subpat);
} else {
after.push(subpat);
}
}
(before, slice, after)
}
/// Parse the fields of a struct-like pattern
fn parse_pat_fields(&mut self) -> (Vec<ast::FieldPat> , bool) {
let mut fields = Vec::new();
let mut etc = false;
let mut first = true;
while self.token != token::RBRACE {
if first {
first = false;
} else {
self.expect(&token::COMMA);
// accept trailing commas
if self.token == token::RBRACE { break }
}
if self.token == token::DOTDOT {
self.bump();
if self.token != token::RBRACE {
let token_str = self.this_token_to_string();
self.fatal(format!("expected `{}`, found `{}`", "}",
token_str).as_slice())
}
etc = true;
break;
}
let bind_type = if self.eat_keyword(keywords::Mut) {
BindByValue(MutMutable)
} else if self.eat_keyword(keywords::Ref) {
BindByRef(self.parse_mutability())
} else {
BindByValue(MutImmutable)
};
let fieldname = self.parse_ident();
let subpat = if self.token == token::COLON {
match bind_type {
BindByRef(..) | BindByValue(MutMutable) => {
let token_str = self.this_token_to_string();
self.fatal(format!("unexpected `{}`",
token_str).as_slice())
}
_ => {}
}
self.bump();
self.parse_pat()
} else {
let fieldpath = codemap::Spanned{span:self.last_span, node: fieldname};
P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatIdent(bind_type, fieldpath, None),
span: self.last_span
})
};
fields.push(ast::FieldPat { ident: fieldname, pat: subpat });
}
return (fields, etc);
}
/// Parse a pattern.
pub fn parse_pat(&mut self) -> P<Pat> {
maybe_whole!(self, NtPat);
let lo = self.span.lo;
let mut hi;
let pat;
match self.token {
// parse _
token::UNDERSCORE => {
self.bump();
pat = PatWild(PatWildSingle);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::TILDE => {
// parse ~pat
self.bump();
let sub = self.parse_pat();
pat = PatBox(sub);
let last_span = self.last_span;
hi = last_span.hi;
self.obsolete(last_span, ObsoleteOwnedPattern);
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::BINOP(token::AND) | token::ANDAND => {
// parse &pat
let lo = self.span.lo;
self.expect_and();
let sub = self.parse_pat();
pat = PatRegion(sub);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::LPAREN => {
// parse (pat,pat,pat,...) as tuple
self.bump();
if self.token == token::RPAREN {
hi = self.span.hi;
self.bump();
let lit = P(codemap::Spanned {
node: LitNil,
span: mk_sp(lo, hi)});
let expr = self.mk_expr(lo, hi, ExprLit(lit));
pat = PatLit(expr);
} else {
let mut fields = vec!(self.parse_pat());
if self.look_ahead(1, |t| *t != token::RPAREN) {
while self.token == token::COMMA {
self.bump();
if self.token == token::RPAREN { break; }
fields.push(self.parse_pat());
}
}
if fields.len() == 1 { self.expect(&token::COMMA); }
self.expect(&token::RPAREN);
pat = PatTup(fields);
}
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::LBRACKET => {
// parse [pat,pat,...] as vector pattern
self.bump();
let (before, slice, after) =
self.parse_pat_vec_elements();
self.expect(&token::RBRACKET);
pat = ast::PatVec(before, slice, after);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
_ => {}
}
// at this point, token != _, ~, &, &&, (, [
if (!is_ident_or_path(&self.token) && self.token != token::MOD_SEP)
|| self.is_keyword(keywords::True)
|| self.is_keyword(keywords::False) {
// Parse an expression pattern or exp .. exp.
//
// These expressions are limited to literals (possibly
// preceded by unary-minus) or identifiers.
let val = self.parse_literal_maybe_minus();
if (self.token == token::DOTDOTDOT) &&
self.look_ahead(1, |t| {
*t != token::COMMA && *t != token::RBRACKET
}) {
self.bump();
let end = if is_ident_or_path(&self.token) {
let path = self.parse_path(LifetimeAndTypesWithColons)
.path;
let hi = self.span.hi;
self.mk_expr(lo, hi, ExprPath(path))
} else {
self.parse_literal_maybe_minus()
};
pat = PatRange(val, end);
} else {
pat = PatLit(val);
}
} else if self.eat_keyword(keywords::Mut) {
pat = self.parse_pat_ident(BindByValue(MutMutable));
} else if self.eat_keyword(keywords::Ref) {
// parse ref pat
let mutbl = self.parse_mutability();
pat = self.parse_pat_ident(BindByRef(mutbl));
} else if self.eat_keyword(keywords::Box) {
// `box PAT`
//
// FIXME(#13910): Rename to `PatBox` and extend to full DST
// support.
let sub = self.parse_pat();
pat = PatBox(sub);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
} else {
let can_be_enum_or_struct = self.look_ahead(1, |t| {
match *t {
token::LPAREN | token::LBRACKET | token::LT |
token::LBRACE | token::MOD_SEP => true,
_ => false,
}
});
if self.look_ahead(1, |t| *t == token::DOTDOTDOT) &&
self.look_ahead(2, |t| {
*t != token::COMMA && *t != token::RBRACKET
}) {
let start = self.parse_expr_res(RESTRICTION_NO_BAR_OP);
self.eat(&token::DOTDOTDOT);
let end = self.parse_expr_res(RESTRICTION_NO_BAR_OP);
pat = PatRange(start, end);
} else if is_plain_ident(&self.token) && !can_be_enum_or_struct {
let id = self.parse_ident();
let id_span = self.last_span;
let pth1 = codemap::Spanned{span:id_span, node: id};
if self.eat(&token::NOT) {
// macro invocation
let ket = token::close_delimiter_for(&self.token)
.unwrap_or_else(|| self.fatal("expected open delimiter"));
self.bump();
let tts = self.parse_seq_to_end(&ket,
seq_sep_none(),
|p| p.parse_token_tree());
let mac = MacInvocTT(ident_to_path(id_span,id), tts, EMPTY_CTXT);
pat = ast::PatMac(codemap::Spanned {node: mac, span: self.span});
} else {
let sub = if self.eat(&token::AT) {
// parse foo @ pat
Some(self.parse_pat())
} else {
// or just foo
None
};
pat = PatIdent(BindByValue(MutImmutable), pth1, sub);
}
} else {
// parse an enum pat
let enum_path = self.parse_path(LifetimeAndTypesWithColons)
.path;
match self.token {
token::LBRACE => {
self.bump();
let (fields, etc) =
self.parse_pat_fields();
self.bump();
pat = PatStruct(enum_path, fields, etc);
}
_ => {
let mut args: Vec<P<Pat>> = Vec::new();
match self.token {
token::LPAREN => {
let is_dotdot = self.look_ahead(1, |t| {
match *t {
token::DOTDOT => true,
_ => false,
}
});
if is_dotdot {
// This is a "top constructor only" pat
self.bump();
self.bump();
self.expect(&token::RPAREN);
pat = PatEnum(enum_path, None);
} else {
args = self.parse_enum_variant_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_pat()
);
pat = PatEnum(enum_path, Some(args));
}
},
_ => {
if !enum_path.global &&
enum_path.segments.len() == 1 &&
enum_path.segments
.get(0)
.lifetimes
.len() == 0 &&
enum_path.segments
.get(0)
.types
.len() == 0 {
// it could still be either an enum
// or an identifier pattern, resolve
// will sort it out:
pat = PatIdent(BindByValue(MutImmutable),
codemap::Spanned{
span: enum_path.span,
node: enum_path.segments.get(0)
.identifier},
None);
} else {
pat = PatEnum(enum_path, Some(args));
}
}
}
}
}
}
}
hi = self.last_span.hi;
P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi),
})
}
/// Parse ident or ident @ pat
/// used by the copy foo and ref foo patterns to give a good
/// error message when parsing mistakes like ref foo(a,b)
fn parse_pat_ident(&mut self,
binding_mode: ast::BindingMode)
-> ast::Pat_ {
if !is_plain_ident(&self.token) {
let span = self.span;
let tok_str = self.this_token_to_string();
self.span_fatal(span,
format!("expected identifier, found `{}`", tok_str).as_slice());
}
let ident = self.parse_ident();
let last_span = self.last_span;
let name = codemap::Spanned{span: last_span, node: ident};
let sub = if self.eat(&token::AT) {
Some(self.parse_pat())
} else {
None
};
// just to be friendly, if they write something like
// ref Some(i)
// we end up here with ( as the current token. This shortly
// leads to a parse error. Note that if there is no explicit
// binding mode then we do not end up here, because the lookahead
// will direct us over to parse_enum_variant()
if self.token == token::LPAREN {
let last_span = self.last_span;
self.span_fatal(
last_span,
"expected identifier, found enum pattern");
}
PatIdent(binding_mode, name, sub)
}
/// Parse a local variable declaration
fn parse_local(&mut self) -> P<Local> {
let lo = self.span.lo;
let pat = self.parse_pat();
let mut ty = P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyInfer,
span: mk_sp(lo, lo),
});
if self.eat(&token::COLON) {
ty = self.parse_ty(true);
}
let init = self.parse_initializer();
P(ast::Local {
ty: ty,
pat: pat,
init: init,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, self.last_span.hi),
source: LocalLet,
})
}
/// Parse a "let" stmt
fn parse_let(&mut self) -> P<Decl> {
let lo = self.span.lo;
let local = self.parse_local();
P(spanned(lo, self.last_span.hi, DeclLocal(local)))
}
/// Parse a structure field
fn parse_name_and_ty(&mut self, pr: Visibility,
attrs: Vec<Attribute> ) -> StructField {
let lo = self.span.lo;
if !is_plain_ident(&self.token) {
self.fatal("expected ident");
}
let name = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(true);
spanned(lo, self.last_span.hi, ast::StructField_ {
kind: NamedField(name, pr),
id: ast::DUMMY_NODE_ID,
ty: ty,
attrs: attrs,
})
}
/// Get an expected item after attributes error message.
fn expected_item_err(attrs: &[Attribute]) -> &'static str {
match attrs.last() {
Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
"expected item after doc comment"
}
_ => "expected item after attributes",
}
}
/// Parse a statement. may include decl.
/// Precondition: any attributes are parsed already
pub fn parse_stmt(&mut self, item_attrs: Vec<Attribute>) -> P<Stmt> {
maybe_whole!(self, NtStmt);
fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) {
// If we have attributes then we should have an item
if !attrs.is_empty() {
let last_span = p.last_span;
p.span_err(last_span, Parser::expected_item_err(attrs));
}
}
let lo = self.span.lo;
if self.is_keyword(keywords::Let) {
check_expected_item(self, item_attrs.as_slice());
self.expect_keyword(keywords::Let);
let decl = self.parse_let();
P(spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID)))
} else if is_ident(&self.token)
&& !token::is_any_keyword(&self.token)
&& self.look_ahead(1, |t| *t == token::NOT) {
// it's a macro invocation:
check_expected_item(self, item_attrs.as_slice());
// Potential trouble: if we allow macros with paths instead of
// idents, we'd need to look ahead past the whole path here...
let pth = self.parse_path(NoTypesAllowed).path;
self.bump();
let id = if token::close_delimiter_for(&self.token).is_some() {
token::special_idents::invalid // no special identifier
} else {
self.parse_ident()
};
// check that we're pointing at delimiters (need to check
// again after the `if`, because of `parse_ident`
// consuming more tokens).
let (bra, ket) = match token::close_delimiter_for(&self.token) {
Some(ket) => (self.token.clone(), ket),
None => {
// we only expect an ident if we didn't parse one
// above.
let ident_str = if id.name == token::special_idents::invalid.name {
"identifier, "
} else {
""
};
let tok_str = self.this_token_to_string();
self.fatal(format!("expected {}`(` or `{{`, found `{}`",
ident_str,
tok_str).as_slice())
}
};
let tts = self.parse_unspanned_seq(
&bra,
&ket,
seq_sep_none(),
|p| p.parse_token_tree()
);
let hi = self.span.hi;
if id.name == token::special_idents::invalid.name {
P(spanned(lo, hi, StmtMac(
spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT)), false)))
} else {
// if it has a special ident, it's definitely an item
P(spanned(lo, hi, StmtDecl(
P(spanned(lo, hi, DeclItem(
self.mk_item(
lo, hi, id /*id is good here*/,
ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))),
Inherited, Vec::new(/*no attrs*/))))),
ast::DUMMY_NODE_ID)))
}
} else {
let found_attrs = !item_attrs.is_empty();
let item_err = Parser::expected_item_err(item_attrs.as_slice());
match self.parse_item_or_view_item(item_attrs, false) {
IoviItem(i) => {
let hi = i.span.hi;
let decl = P(spanned(lo, hi, DeclItem(i)));
P(spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID)))
}
IoviViewItem(vi) => {
self.span_fatal(vi.span,
"view items must be declared at the top of the block");
}
IoviForeignItem(_) => {
self.fatal("foreign items are not allowed here");
}
IoviNone(_) => {
if found_attrs {
let last_span = self.last_span;
self.span_err(last_span, item_err);
}
// Remainder are line-expr stmts.
let e = self.parse_expr_res(RESTRICTION_STMT_EXPR);
P(spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID)))
}
}
}
}
/// Is this expression a successfully-parsed statement?
fn expr_is_complete(&mut self, e: &Expr) -> bool {
self.restrictions.contains(RESTRICTION_STMT_EXPR) &&
!classify::expr_requires_semi_to_be_stmt(e)
}
/// Parse a block. No inner attrs are allowed.
pub fn parse_block(&mut self) -> P<Block> {
maybe_whole!(no_clone self, NtBlock);
let lo = self.span.lo;
self.expect(&token::LBRACE);
return self.parse_block_tail_(lo, DefaultBlock, Vec::new());
}
/// Parse a block. Inner attrs are allowed.
fn parse_inner_attrs_and_block(&mut self)
-> (Vec<Attribute> , P<Block>) {
maybe_whole!(pair_empty self, NtBlock);
let lo = self.span.lo;
self.expect(&token::LBRACE);
let (inner, next) = self.parse_inner_attrs_and_next();
(inner, self.parse_block_tail_(lo, DefaultBlock, next))
}
/// Precondition: already parsed the '{' or '#{'
/// I guess that also means "already parsed the 'impure'" if
/// necessary, and this should take a qualifier.
/// Some blocks start with "#{"...
fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> P<Block> {
self.parse_block_tail_(lo, s, Vec::new())
}
/// Parse the rest of a block expression or function body
fn parse_block_tail_(&mut self, lo: BytePos, s: BlockCheckMode,
first_item_attrs: Vec<Attribute> ) -> P<Block> {
let mut stmts = Vec::new();
let mut expr = None;
// wouldn't it be more uniform to parse view items only, here?
let ParsedItemsAndViewItems {
attrs_remaining: attrs_remaining,
view_items: view_items,
items: items,
..
} = self.parse_items_and_view_items(first_item_attrs,
false, false);
for item in items.into_iter() {
let span = item.span;
let decl = P(spanned(span.lo, span.hi, DeclItem(item)));
stmts.push(P(spanned(span.lo, span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID))));
}
let mut attributes_box = attrs_remaining;
while self.token != token::RBRACE {
// parsing items even when they're not allowed lets us give
// better error messages and recover more gracefully.
attributes_box.push_all(self.parse_outer_attributes().as_slice());
match self.token {
token::SEMI => {
if !attributes_box.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(attributes_box.as_slice()));
attributes_box = Vec::new();
}
self.bump(); // empty
}
token::RBRACE => {
// fall through and out.
}
_ => {
let stmt = self.parse_stmt(attributes_box);
attributes_box = Vec::new();
stmt.and_then(|Spanned {node, span}| match node {
StmtExpr(e, stmt_id) => {
// expression without semicolon
if classify::expr_requires_semi_to_be_stmt(&*e) {
// Just check for errors and recover; do not eat semicolon yet.
self.commit_stmt(&[], &[token::SEMI, token::RBRACE]);
}
match self.token {
token::SEMI => {
self.bump();
let span_with_semi = Span {
lo: span.lo,
hi: self.last_span.hi,
expn_id: span.expn_id,
};
stmts.push(P(Spanned {
node: StmtSemi(e, stmt_id),
span: span_with_semi,
}));
}
token::RBRACE => {
expr = Some(e);
}
_ => {
stmts.push(P(Spanned {
node: StmtExpr(e, stmt_id),
span: span
}));
}
}
}
StmtMac(m, semi) => {
// statement macro; might be an expr
match self.token {
token::SEMI => {
stmts.push(P(Spanned {
node: StmtMac(m, true),
span: span,
}));
self.bump();
}
token::RBRACE => {
// if a block ends in `m!(arg)` without
// a `;`, it must be an expr
expr = Some(
self.mk_mac_expr(span.lo,
span.hi,
m.node));
}
_ => {
stmts.push(P(Spanned {
node: StmtMac(m, semi),
span: span
}));
}
}
}
_ => { // all other kinds of statements:
if classify::stmt_ends_with_semi(&node) {
self.commit_stmt_expecting(token::SEMI);
}
stmts.push(P(Spanned {
node: node,
span: span
}));
}
})
}
}
}
if !attributes_box.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(attributes_box.as_slice()));
}
let hi = self.span.hi;
self.bump();
P(ast::Block {
view_items: view_items,
stmts: stmts,
expr: expr,
id: ast::DUMMY_NODE_ID,
rules: s,
span: mk_sp(lo, hi),
})
}
// Parses a sequence of bounds if a `:` is found,
// otherwise returns empty list.
fn parse_colon_then_ty_param_bounds(&mut self)
-> OwnedSlice<TyParamBound>
{
if !self.eat(&token::COLON) {
OwnedSlice::empty()
} else {
self.parse_ty_param_bounds()
}
}
// matches bounds = ( boundseq )?
// where boundseq = ( bound + boundseq ) | bound
// and bound = 'region | ty
// NB: The None/Some distinction is important for issue #7264.
fn parse_ty_param_bounds(&mut self)
-> OwnedSlice<TyParamBound>
{
let mut result = vec!();
loop {
let lifetime_defs = if self.eat(&token::LT) {
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
Vec::new()
};
match self.token {
token::LIFETIME(lifetime) => {
if lifetime_defs.len() > 0 {
let span = self.last_span;
self.span_err(span, "lifetime declarations are not \
allowed here")
}
result.push(RegionTyParamBound(ast::Lifetime {
id: ast::DUMMY_NODE_ID,
span: self.span,
name: lifetime.name
}));
self.bump();
}
token::MOD_SEP | token::IDENT(..) => {
let path =
self.parse_path(LifetimeAndTypesWithoutColons).path;
if self.token == token::LPAREN {
self.bump();
let inputs = self.parse_seq_to_end(
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_arg_general(false));
let (return_style, output) = self.parse_ret_ty();
result.push(UnboxedFnTyParamBound(P(UnboxedFnBound {
path: path,
decl: P(FnDecl {
inputs: inputs,
output: output,
cf: return_style,
variadic: false,
}),
lifetimes: lifetime_defs,
ref_id: ast::DUMMY_NODE_ID,
})));
} else {
result.push(TraitTyParamBound(ast::TraitRef {
path: path,
ref_id: ast::DUMMY_NODE_ID,
lifetimes: lifetime_defs,
}))
}
}
_ => break,
}
if !self.eat(&token::BINOP(token::PLUS)) {
break;
}
}
return OwnedSlice::from_vec(result);
}
fn trait_ref_from_ident(ident: Ident, span: Span) -> ast::TraitRef {
let segment = ast::PathSegment {
identifier: ident,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
};
let path = ast::Path {
span: span,
global: false,
segments: vec![segment],
};
ast::TraitRef {
path: path,
ref_id: ast::DUMMY_NODE_ID,
lifetimes: Vec::new(),
}
}
/// Matches typaram = (unbound`?`)? IDENT optbounds ( EQ ty )?
fn parse_ty_param(&mut self) -> TyParam {
// This is a bit hacky. Currently we are only interested in a single
// unbound, and it may only be `Sized`. To avoid backtracking and other
// complications, we parse an ident, then check for `?`. If we find it,
// we use the ident as the unbound, otherwise, we use it as the name of
// type param.
let mut span = self.span;
let mut ident = self.parse_ident();
let mut unbound = None;
if self.eat(&token::QUESTION) {
let tref = Parser::trait_ref_from_ident(ident, span);
unbound = Some(TraitTyParamBound(tref));
span = self.span;
ident = self.parse_ident();
}
let bounds = self.parse_colon_then_ty_param_bounds();
let default = if self.token == token::EQ {
self.bump();
Some(self.parse_ty(true))
}
else { None };
TyParam {
ident: ident,
id: ast::DUMMY_NODE_ID,
bounds: bounds,
unbound: unbound,
default: default,
span: span,
}
}
/// Parse a set of optional generic type parameter declarations. Where
/// clauses are not parsed here, and must be added later via
/// `parse_where_clause()`.
///
/// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
/// | ( < lifetimes , typaramseq ( , )? > )
/// where typaramseq = ( typaram ) | ( typaram , typaramseq )
pub fn parse_generics(&mut self) -> ast::Generics {
if self.eat(&token::LT) {
let lifetime_defs = self.parse_lifetime_defs();
let mut seen_default = false;
let ty_params = self.parse_seq_to_gt(Some(token::COMMA), |p| {
p.forbid_lifetime();
let ty_param = p.parse_ty_param();
if ty_param.default.is_some() {
seen_default = true;
} else if seen_default {
let last_span = p.last_span;
p.span_err(last_span,
"type parameters with a default must be trailing");
}
ty_param
});
ast::Generics {
lifetimes: lifetime_defs,
ty_params: ty_params,
where_clause: WhereClause {
id: ast::DUMMY_NODE_ID,
predicates: Vec::new(),
}
}
} else {
ast_util::empty_generics()
}
}
fn parse_generic_values_after_lt(&mut self) -> (Vec<ast::Lifetime>, Vec<P<Ty>> ) {
let lifetimes = self.parse_lifetimes(token::COMMA);
let result = self.parse_seq_to_gt(
Some(token::COMMA),
|p| {
p.forbid_lifetime();
p.parse_ty(true)
}
);
(lifetimes, result.into_vec())
}
fn forbid_lifetime(&mut self) {
if Parser::token_is_lifetime(&self.token) {
let span = self.span;
self.span_fatal(span, "lifetime parameters must be declared \
prior to type parameters");
}
}
/// Parses an optional `where` clause and places it in `generics`.
fn parse_where_clause(&mut self, generics: &mut ast::Generics) {
if !self.eat_keyword(keywords::Where) {
return
}
let mut parsed_something = false;
loop {
let lo = self.span.lo;
let ident = match self.token {
token::IDENT(..) => self.parse_ident(),
_ => break,
};
self.expect(&token::COLON);
let bounds = self.parse_ty_param_bounds();
let hi = self.span.hi;
let span = mk_sp(lo, hi);
if bounds.len() == 0 {
self.span_err(span,
"each predicate in a `where` clause must have \
at least one bound in it");
}
generics.where_clause.predicates.push(ast::WherePredicate {
id: ast::DUMMY_NODE_ID,
span: span,
ident: ident,
bounds: bounds,
});
parsed_something = true;
if !self.eat(&token::COMMA) {
break
}
}
if !parsed_something {
let last_span = self.last_span;
self.span_err(last_span,
"a `where` clause must have at least one predicate \
in it");
}
}
fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
-> (Vec<Arg> , bool) {
let sp = self.span;
let mut args: Vec<Option<Arg>> =
self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| {
if p.token == token::DOTDOTDOT {
p.bump();
if allow_variadic {
if p.token != token::RPAREN {
let span = p.span;
p.span_fatal(span,
"`...` must be last in argument list for variadic function");
}
} else {
let span = p.span;
p.span_fatal(span,
"only foreign functions are allowed to be variadic");
}
None
} else {
Some(p.parse_arg_general(named_args))
}
}
);
let variadic = match args.pop() {
Some(None) => true,
Some(x) => {
// Need to put back that last arg
args.push(x);
false
}
None => false
};
if variadic && args.is_empty() {
self.span_err(sp,
"variadic function must be declared with at least one named argument");
}
let args = args.into_iter().map(|x| x.unwrap()).collect();
(args, variadic)
}
/// Parse the argument list and result type of a function declaration
pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> P<FnDecl> {
let (args, variadic) = self.parse_fn_args(true, allow_variadic);
let (ret_style, ret_ty) = self.parse_ret_ty();
P(FnDecl {
inputs: args,
output: ret_ty,
cf: ret_style,
variadic: variadic
})
}
fn is_self_ident(&mut self) -> bool {
match self.token {
token::IDENT(id, false) => id.name == special_idents::self_.name,
_ => false
}
}
fn expect_self_ident(&mut self) -> ast::Ident {
match self.token {
token::IDENT(id, false) if id.name == special_idents::self_.name => {
self.bump();
id
},
_ => {
let token_str = self.this_token_to_string();
self.fatal(format!("expected `self`, found `{}`",
token_str).as_slice())
}
}
}
/// Parse the argument list and result type of a function
/// that may have a self type.
fn parse_fn_decl_with_self(&mut self, parse_arg_fn: |&mut Parser| -> Arg)
-> (ExplicitSelf, P<FnDecl>) {
fn maybe_parse_borrowed_explicit_self(this: &mut Parser)
-> ast::ExplicitSelf_ {
// The following things are possible to see here:
//
// fn(&mut self)
// fn(&mut self)
// fn(&'lt self)
// fn(&'lt mut self)
//
// We already know that the current token is `&`.
if this.look_ahead(1, |t| token::is_keyword(keywords::Self, t)) {
this.bump();
SelfRegion(None, MutImmutable, this.expect_self_ident())
} else if this.look_ahead(1, |t| Parser::token_is_mutability(t)) &&
this.look_ahead(2,
|t| token::is_keyword(keywords::Self,
t)) {
this.bump();
let mutability = this.parse_mutability();
SelfRegion(None, mutability, this.expect_self_ident())
} else if this.look_ahead(1, |t| Parser::token_is_lifetime(t)) &&
this.look_ahead(2,
|t| token::is_keyword(keywords::Self,
t)) {
this.bump();
let lifetime = this.parse_lifetime();
SelfRegion(Some(lifetime), MutImmutable, this.expect_self_ident())
} else if this.look_ahead(1, |t| Parser::token_is_lifetime(t)) &&
this.look_ahead(2, |t| {
Parser::token_is_mutability(t)
}) &&
this.look_ahead(3, |t| token::is_keyword(keywords::Self,
t)) {
this.bump();
let lifetime = this.parse_lifetime();
let mutability = this.parse_mutability();
SelfRegion(Some(lifetime), mutability, this.expect_self_ident())
} else {
SelfStatic
}
}
self.expect(&token::LPAREN);
// A bit of complexity and lookahead is needed here in order to be
// backwards compatible.
let lo = self.span.lo;
let mut mutbl_self = MutImmutable;
let explicit_self = match self.token {
token::BINOP(token::AND) => {
maybe_parse_borrowed_explicit_self(self)
}
token::TILDE => {
// We need to make sure it isn't a type
if self.look_ahead(1, |t| token::is_keyword(keywords::Self, t)) {
self.bump();
drop(self.expect_self_ident());
let last_span = self.last_span;
self.obsolete(last_span, ObsoleteOwnedSelf)
}
SelfStatic
}
token::BINOP(token::STAR) => {
// Possibly "*self" or "*mut self" -- not supported. Try to avoid
// emitting cryptic "unexpected token" errors.
self.bump();
let _mutability = if Parser::token_is_mutability(&self.token) {
self.parse_mutability()
} else {
MutImmutable
};
if self.is_self_ident() {
let span = self.span;
self.span_err(span, "cannot pass self by unsafe pointer");
self.bump();
}
// error case, making bogus self ident:
SelfValue(special_idents::self_)
}
token::IDENT(..) => {
if self.is_self_ident() {
let self_ident = self.expect_self_ident();
// Determine whether this is the fully explicit form, `self:
// TYPE`.
if self.eat(&token::COLON) {
SelfExplicit(self.parse_ty(false), self_ident)
} else {
SelfValue(self_ident)
}
} else if Parser::token_is_mutability(&self.token) &&
self.look_ahead(1, |t| {
token::is_keyword(keywords::Self, t)
}) {
mutbl_self = self.parse_mutability();
let self_ident = self.expect_self_ident();
// Determine whether this is the fully explicit form,
// `self: TYPE`.
if self.eat(&token::COLON) {
SelfExplicit(self.parse_ty(false), self_ident)
} else {
SelfValue(self_ident)
}
} else if Parser::token_is_mutability(&self.token) &&
self.look_ahead(1, |t| *t == token::TILDE) &&
self.look_ahead(2, |t| {
token::is_keyword(keywords::Self, t)
}) {
mutbl_self = self.parse_mutability();
self.bump();
drop(self.expect_self_ident());
let last_span = self.last_span;
self.obsolete(last_span, ObsoleteOwnedSelf);
SelfStatic
} else {
SelfStatic
}
}
_ => SelfStatic,
};
let explicit_self_sp = mk_sp(lo, self.span.hi);
// shared fall-through for the three cases below. borrowing prevents simply
// writing this as a closure
macro_rules! parse_remaining_arguments {
($self_id:ident) =>
{
// If we parsed a self type, expect a comma before the argument list.
match self.token {
token::COMMA => {
self.bump();
let sep = seq_sep_trailing_allowed(token::COMMA);
let mut fn_inputs = self.parse_seq_to_before_end(
&token::RPAREN,
sep,
parse_arg_fn
);
fn_inputs.unshift(Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
fn_inputs
}
token::RPAREN => {
vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
}
_ => {
let token_str = self.this_token_to_string();
self.fatal(format!("expected `,` or `)`, found `{}`",
token_str).as_slice())
}
}
}
}
let fn_inputs = match explicit_self {
SelfStatic => {
let sep = seq_sep_trailing_allowed(token::COMMA);
self.parse_seq_to_before_end(&token::RPAREN, sep, parse_arg_fn)
}
SelfValue(id) => parse_remaining_arguments!(id),
SelfRegion(_,_,id) => parse_remaining_arguments!(id),
SelfExplicit(_,id) => parse_remaining_arguments!(id),
};
self.expect(&token::RPAREN);
let hi = self.span.hi;
let (ret_style, ret_ty) = self.parse_ret_ty();
let fn_decl = P(FnDecl {
inputs: fn_inputs,
output: ret_ty,
cf: ret_style,
variadic: false
});
(spanned(lo, hi, explicit_self), fn_decl)
}
// parse the |arg, arg| header on a lambda
fn parse_fn_block_decl(&mut self)
-> (P<FnDecl>, Option<UnboxedClosureKind>) {
let (optional_unboxed_closure_kind, inputs_captures) = {
if self.eat(&token::OROR) {
(None, Vec::new())
} else {
self.expect(&token::BINOP(token::OR));
let optional_unboxed_closure_kind =
self.parse_optional_unboxed_closure_kind();
let args = self.parse_seq_to_before_end(
&token::BINOP(token::OR),
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_fn_block_arg()
);
self.bump();
(optional_unboxed_closure_kind, args)
}
};
let (style, output) = if self.token == token::RARROW {
self.parse_ret_ty()
} else {
(Return, P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyInfer,
span: self.span,
}))
};
(P(FnDecl {
inputs: inputs_captures,
output: output,
cf: style,
variadic: false
}), optional_unboxed_closure_kind)
}
/// Parses the `(arg, arg) -> return_type` header on a procedure.
fn parse_proc_decl(&mut self) -> P<FnDecl> {
let inputs =
self.parse_unspanned_seq(&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_fn_block_arg());
let (style, output) = if self.token == token::RARROW {
self.parse_ret_ty()
} else {
(Return, P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyInfer,
span: self.span,
}))
};
P(FnDecl {
inputs: inputs,
output: output,
cf: style,
variadic: false
})
}
/// Parse the name and optional generic types of a function header.
fn parse_fn_header(&mut self) -> (Ident, ast::Generics) {
let id = self.parse_ident();
let generics = self.parse_generics();
(id, generics)
}
fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
node: Item_, vis: Visibility,
attrs: Vec<Attribute>) -> P<Item> {
P(Item {
ident: ident,
attrs: attrs,
id: ast::DUMMY_NODE_ID,
node: node,
vis: vis,
span: mk_sp(lo, hi)
})
}
/// Parse an item-position function declaration.
fn parse_item_fn(&mut self, fn_style: FnStyle, abi: abi::Abi) -> ItemInfo {
let (ident, mut generics) = self.parse_fn_header();
let decl = self.parse_fn_decl(false);
self.parse_where_clause(&mut generics);
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
(ident, ItemFn(decl, fn_style, abi, generics, body), Some(inner_attrs))
}
/// Parse a method in a trait impl
pub fn parse_method_with_outer_attributes(&mut self) -> P<Method> {
let attrs = self.parse_outer_attributes();
let visa = self.parse_visibility();
self.parse_method(attrs, visa)
}
/// Parse a method in a trait impl, starting with `attrs` attributes.
pub fn parse_method(&mut self,
attrs: Vec<Attribute>,
visa: Visibility)
-> P<Method> {
let lo = self.span.lo;
// code copied from parse_macro_use_or_failure... abstraction!
let (method_, hi, new_attrs) = {
if !token::is_any_keyword(&self.token)
&& self.look_ahead(1, |t| *t == token::NOT)
&& (self.look_ahead(2, |t| *t == token::LPAREN)
|| self.look_ahead(2, |t| *t == token::LBRACE)) {
// method macro.
let pth = self.parse_path(NoTypesAllowed).path;
self.expect(&token::NOT);
// eat a matched-delimiter token tree:
let tts = match token::close_delimiter_for(&self.token) {
Some(ket) => {
self.bump();
self.parse_seq_to_end(&ket,
seq_sep_none(),
|p| p.parse_token_tree())
}
None => self.fatal("expected open delimiter")
};
let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
let m: ast::Mac = codemap::Spanned { node: m_,
span: mk_sp(self.span.lo,
self.span.hi) };
(ast::MethMac(m), self.span.hi, attrs)
} else {
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else if attr::contains_name(attrs.as_slice(),
"rust_call_abi_hack") {
// FIXME(stage0, pcwalton): Remove this awful hack after a
// snapshot, and change to `extern "rust-call" fn`.
abi::RustCall
} else {
abi::Rust
};
let fn_style = self.parse_fn_style();
let ident = self.parse_ident();
let mut generics = self.parse_generics();
let (explicit_self, decl) = self.parse_fn_decl_with_self(|p| {
p.parse_arg()
});
self.parse_where_clause(&mut generics);
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
let body_span = body.span;
let new_attrs = attrs.append(inner_attrs.as_slice());
(ast::MethDecl(ident,
generics,
abi,
explicit_self,
fn_style,
decl,
body,
visa),
body_span.hi, new_attrs)
}
};
P(ast::Method {
attrs: new_attrs,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
node: method_,
})
}
/// Parse trait Foo { ... }
fn parse_item_trait(&mut self) -> ItemInfo {
let ident = self.parse_ident();
let mut tps = self.parse_generics();
let sized = self.parse_for_sized();
// Parse supertrait bounds.
let bounds = self.parse_colon_then_ty_param_bounds();
self.parse_where_clause(&mut tps);
let meths = self.parse_trait_items();
(ident, ItemTrait(tps, sized, bounds, meths), None)
}
fn parse_impl_items(&mut self) -> (Vec<ImplItem>, Vec<Attribute>) {
let mut impl_items = Vec::new();
self.expect(&token::LBRACE);
let (inner_attrs, mut method_attrs) =
self.parse_inner_attrs_and_next();
while !self.eat(&token::RBRACE) {
method_attrs.push_all_move(self.parse_outer_attributes());
let vis = self.parse_visibility();
if self.eat_keyword(keywords::Type) {
impl_items.push(TypeImplItem(P(self.parse_typedef(
method_attrs,
vis))))
} else {
impl_items.push(MethodImplItem(self.parse_method(
method_attrs,
vis)));
}
method_attrs = self.parse_outer_attributes();
}
(impl_items, inner_attrs)
}
/// Parses two variants (with the region/type params always optional):
/// impl<T> Foo { ... }
/// impl<T> ToString for ~[T] { ... }
fn parse_item_impl(&mut self) -> ItemInfo {
// First, parse type parameters if necessary.
let mut generics = self.parse_generics();
// Special case: if the next identifier that follows is '(', don't
// allow this to be parsed as a trait.
let could_be_trait = self.token != token::LPAREN;
// Parse the trait.
let mut ty = self.parse_ty(true);
// Parse traits, if necessary.
let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) {
// New-style trait. Reinterpret the type as a trait.
let opt_trait_ref = match ty.node {
TyPath(ref path, None, node_id) => {
Some(TraitRef {
path: (*path).clone(),
ref_id: node_id,
lifetimes: Vec::new(),
})
}
TyPath(_, Some(_), _) => {
self.span_err(ty.span,
"bounded traits are only valid in type position");
None
}
_ => {
self.span_err(ty.span, "not a trait");
None
}
};
ty = self.parse_ty(true);
opt_trait_ref
} else {
None
};
self.parse_where_clause(&mut generics);
let (impl_items, attrs) = self.parse_impl_items();
let ident = ast_util::impl_pretty_name(&opt_trait, &*ty);
(ident,
ItemImpl(generics, opt_trait, ty, impl_items),
Some(attrs))
}
/// Parse struct Foo { ... }
fn parse_item_struct(&mut self, is_virtual: bool) -> ItemInfo {
let class_name = self.parse_ident();
let mut generics = self.parse_generics();
let super_struct = if self.eat(&token::COLON) {
let ty = self.parse_ty(true);
match ty.node {
TyPath(_, None, _) => {
Some(ty)
}
_ => {
self.span_err(ty.span, "not a struct");
None
}
}
} else {
None
};
self.parse_where_clause(&mut generics);
let mut fields: Vec<StructField>;
let is_tuple_like;
if self.eat(&token::LBRACE) {
// It's a record-like struct.
is_tuple_like = false;
fields = Vec::new();
while self.token != token::RBRACE {
fields.push(self.parse_struct_decl_field());
}
if fields.len() == 0 {
self.fatal(format!("unit-like struct definition should be \
written as `struct {};`",
token::get_ident(class_name)).as_slice());
}
self.bump();
} else if self.token == token::LPAREN {
// It's a tuple-like struct.
is_tuple_like = true;
fields = self.parse_unspanned_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| {
let attrs = p.parse_outer_attributes();
let lo = p.span.lo;
let struct_field_ = ast::StructField_ {
kind: UnnamedField(p.parse_visibility()),
id: ast::DUMMY_NODE_ID,
ty: p.parse_ty(true),
attrs: attrs,
};
spanned(lo, p.span.hi, struct_field_)
});
if fields.len() == 0 {
self.fatal(format!("unit-like struct definition should be \
written as `struct {};`",
token::get_ident(class_name)).as_slice());
}
self.expect(&token::SEMI);
} else if self.eat(&token::SEMI) {
// It's a unit-like struct.
is_tuple_like = true;
fields = Vec::new();
} else {
let token_str = self.this_token_to_string();
self.fatal(format!("expected `{}`, `(`, or `;` after struct \
name, found `{}`", "{",
token_str).as_slice())
}
let _ = ast::DUMMY_NODE_ID; // FIXME: Workaround for crazy bug.
let new_id = ast::DUMMY_NODE_ID;
(class_name,
ItemStruct(P(ast::StructDef {
fields: fields,
ctor_id: if is_tuple_like { Some(new_id) } else { None },
super_struct: super_struct,
is_virtual: is_virtual,
}), generics),
None)
}
/// Parse a structure field declaration
pub fn parse_single_struct_field(&mut self,
vis: Visibility,
attrs: Vec<Attribute> )
-> StructField {
let a_var = self.parse_name_and_ty(vis, attrs);
match self.token {
token::COMMA => {
self.bump();
}
token::RBRACE => {}
_ => {
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal(span,
format!("expected `,`, or `}}`, found `{}`",
token_str).as_slice())
}
}
a_var
}
/// Parse an element of a struct definition
fn parse_struct_decl_field(&mut self) -> StructField {
let attrs = self.parse_outer_attributes();
if self.eat_keyword(keywords::Pub) {
return self.parse_single_struct_field(Public, attrs);
}
return self.parse_single_struct_field(Inherited, attrs);
}
/// Parse visibility: PUB, PRIV, or nothing
fn parse_visibility(&mut self) -> Visibility {
if self.eat_keyword(keywords::Pub) { Public }
else { Inherited }
}
fn parse_for_sized(&mut self) -> Option<ast::TyParamBound> {
if self.eat_keyword(keywords::For) {
let span = self.span;
let ident = self.parse_ident();
if !self.eat(&token::QUESTION) {
self.span_err(span,
"expected 'Sized?' after `for` in trait item");
return None;
}
let tref = Parser::trait_ref_from_ident(ident, span);
Some(TraitTyParamBound(tref))
} else {
None
}
}
/// Given a termination token and a vector of already-parsed
/// attributes (of length 0 or 1), parse all of the items in a module
fn parse_mod_items(&mut self,
term: token::Token,
first_item_attrs: Vec<Attribute>,
inner_lo: BytePos)
-> Mod {
// parse all of the items up to closing or an attribute.
// view items are legal here.
let ParsedItemsAndViewItems {
attrs_remaining: attrs_remaining,
view_items: view_items,
items: starting_items,
..
} = self.parse_items_and_view_items(first_item_attrs, true, true);
let mut items: Vec<P<Item>> = starting_items;
let attrs_remaining_len = attrs_remaining.len();
// don't think this other loop is even necessary....
let mut first = true;
while self.token != term {
let mut attrs = self.parse_outer_attributes();
if first {
attrs = attrs_remaining.clone().append(attrs.as_slice());
first = false;
}
debug!("parse_mod_items: parse_item_or_view_item(attrs={:?})",
attrs);
match self.parse_item_or_view_item(attrs,
true /* macros allowed */) {
IoviItem(item) => items.push(item),
IoviViewItem(view_item) => {
self.span_fatal(view_item.span,
"view items must be declared at the top of \
the module");
}
_ => {
let token_str = self.this_token_to_string();
self.fatal(format!("expected item, found `{}`",
token_str).as_slice())
}
}
}
if first && attrs_remaining_len > 0u {
// We parsed attributes for the first item but didn't find it
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(attrs_remaining.as_slice()));
}
ast::Mod {
inner: mk_sp(inner_lo, self.span.lo),
view_items: view_items,
items: items
}
}
fn parse_item_const(&mut self, m: Option<Mutability>) -> ItemInfo {
let id = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(true);
self.expect(&token::EQ);
let e = self.parse_expr();
self.commit_expr_expecting(&*e, token::SEMI);
let item = match m {
Some(m) => ItemStatic(ty, m, e),
None => ItemConst(ty, e),
};
(id, item, None)
}
/// Parse a `mod <foo> { ... }` or `mod <foo>;` item
fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> ItemInfo {
let id_span = self.span;
let id = self.parse_ident();
if self.token == token::SEMI {
self.bump();
// This mod is in an external file. Let's go get it!
let (m, attrs) = self.eval_src_mod(id, outer_attrs, id_span);
(id, m, Some(attrs))
} else {
self.push_mod_path(id, outer_attrs);
self.expect(&token::LBRACE);
let mod_inner_lo = self.span.lo;
let old_owns_directory = self.owns_directory;
self.owns_directory = true;
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_mod_items(token::RBRACE, next, mod_inner_lo);
self.expect(&token::RBRACE);
self.owns_directory = old_owns_directory;
self.pop_mod_path();
(id, ItemMod(m), Some(inner))
}
}
fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
let default_path = self.id_to_interned_str(id);
let file_path = match ::attr::first_attr_value_str_by_name(attrs,
"path") {
Some(d) => d,
None => default_path,
};
self.mod_path_stack.push(file_path)
}
fn pop_mod_path(&mut self) {
self.mod_path_stack.pop().unwrap();
}
/// Read a module from a source file.
fn eval_src_mod(&mut self,
id: ast::Ident,
outer_attrs: &[ast::Attribute],
id_sp: Span)
-> (ast::Item_, Vec<ast::Attribute> ) {
let mut prefix = Path::new(self.sess.span_diagnostic.cm.span_to_filename(self.span));
prefix.pop();
let mod_path = Path::new(".").join_many(self.mod_path_stack.as_slice());
let dir_path = prefix.join(&mod_path);
let mod_string = token::get_ident(id);
let (file_path, owns_directory) = match ::attr::first_attr_value_str_by_name(
outer_attrs, "path") {
Some(d) => (dir_path.join(d), true),
None => {
let mod_name = mod_string.get().to_string();
let default_path_str = format!("{}.rs", mod_name);
let secondary_path_str = format!("{}/mod.rs", mod_name);
let default_path = dir_path.join(default_path_str.as_slice());
let secondary_path = dir_path.join(secondary_path_str.as_slice());
let default_exists = default_path.exists();
let secondary_exists = secondary_path.exists();
if !self.owns_directory {
self.span_err(id_sp,
"cannot declare a new module at this location");
let this_module = match self.mod_path_stack.last() {
Some(name) => name.get().to_string(),
None => self.root_module_name.get_ref().clone(),
};
self.span_note(id_sp,
format!("maybe move this module `{0}` \
to its own directory via \
`{0}/mod.rs`",
this_module).as_slice());
if default_exists || secondary_exists {
self.span_note(id_sp,
format!("... or maybe `use` the module \
`{}` instead of possibly \
redeclaring it",
mod_name).as_slice());
}
self.abort_if_errors();
}
match (default_exists, secondary_exists) {
(true, false) => (default_path, false),
(false, true) => (secondary_path, true),
(false, false) => {
self.span_fatal(id_sp,
format!("file not found for module \
`{}`",
mod_name).as_slice());
}
(true, true) => {
self.span_fatal(
id_sp,
format!("file for module `{}` found at both {} \
and {}",
mod_name,
default_path_str,
secondary_path_str).as_slice());
}
}
}
};
self.eval_src_mod_from_path(file_path, owns_directory,
mod_string.get().to_string(), id_sp)
}
fn eval_src_mod_from_path(&mut self,
path: Path,
owns_directory: bool,
name: String,
id_sp: Span) -> (ast::Item_, Vec<ast::Attribute> ) {
let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
match included_mod_stack.iter().position(|p| *p == path) {
Some(i) => {
let mut err = String::from_str("circular modules: ");
let len = included_mod_stack.len();
for p in included_mod_stack.slice(i, len).iter() {
err.push_str(p.display().as_maybe_owned().as_slice());
err.push_str(" -> ");
}
err.push_str(path.display().as_maybe_owned().as_slice());
self.span_fatal(id_sp, err.as_slice());
}
None => ()
}
included_mod_stack.push(path.clone());
drop(included_mod_stack);
let mut p0 =
new_sub_parser_from_file(self.sess,
self.cfg.clone(),
&path,
owns_directory,
Some(name),
id_sp);
let mod_inner_lo = p0.span.lo;
let (mod_attrs, next) = p0.parse_inner_attrs_and_next();
let first_item_outer_attrs = next;
let m0 = p0.parse_mod_items(token::EOF, first_item_outer_attrs, mod_inner_lo);
self.sess.included_mod_stack.borrow_mut().pop();
return (ast::ItemMod(m0), mod_attrs);
}
/// Parse a function declaration from a foreign module
fn parse_item_foreign_fn(&mut self, vis: ast::Visibility,
attrs: Vec<Attribute>) -> P<ForeignItem> {
let lo = self.span.lo;
self.expect_keyword(keywords::Fn);
let (ident, mut generics) = self.parse_fn_header();
let decl = self.parse_fn_decl(true);
self.parse_where_clause(&mut generics);
let hi = self.span.hi;
self.expect(&token::SEMI);
P(ast::ForeignItem {
ident: ident,
attrs: attrs,
node: ForeignItemFn(decl, generics),
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis
})
}
/// Parse a static item from a foreign module
fn parse_item_foreign_static(&mut self, vis: ast::Visibility,
attrs: Vec<Attribute>) -> P<ForeignItem> {
let lo = self.span.lo;
self.expect_keyword(keywords::Static);
let mutbl = self.eat_keyword(keywords::Mut);
let ident = self.parse_ident();
self.expect(&token::COLON);
let ty = self.parse_ty(true);
let hi = self.span.hi;
self.expect(&token::SEMI);
P(ForeignItem {
ident: ident,
attrs: attrs,
node: ForeignItemStatic(ty, mutbl),
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis
})
}
/// Parse safe/unsafe and fn
fn parse_fn_style(&mut self) -> FnStyle {
if self.eat_keyword(keywords::Fn) { NormalFn }
else if self.eat_keyword(keywords::Unsafe) {
self.expect_keyword(keywords::Fn);
UnsafeFn
}
else { self.unexpected(); }
}
/// At this point, this is essentially a wrapper for
/// parse_foreign_items.
fn parse_foreign_mod_items(&mut self,
abi: abi::Abi,
first_item_attrs: Vec<Attribute> )
-> ForeignMod {
let ParsedItemsAndViewItems {
attrs_remaining: attrs_remaining,
view_items: view_items,
items: _,
foreign_items: foreign_items
} = self.parse_foreign_items(first_item_attrs, true);
if !attrs_remaining.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(attrs_remaining.as_slice()));
}
assert!(self.token == token::RBRACE);
ast::ForeignMod {
abi: abi,
view_items: view_items,
items: foreign_items
}
}
/// Parse extern crate links
///
/// # Example
///
/// extern crate url;
/// extern crate foo = "bar"; //deprecated
/// extern crate "bar" as foo;
fn parse_item_extern_crate(&mut self,
lo: BytePos,
visibility: Visibility,
attrs: Vec<Attribute> )
-> ItemOrViewItem {
let (maybe_path, ident) = match self.token {
token::IDENT(..) => {
let the_ident = self.parse_ident();
self.expect_one_of(&[], &[token::EQ, token::SEMI]);
let path = if self.token == token::EQ {
self.bump();
let path = self.parse_str();
let span = self.span;
self.obsolete(span, ObsoleteExternCrateRenaming);
Some(path)
} else {None};
self.expect(&token::SEMI);
(path, the_ident)
},
token::LIT_STR(..) | token::LIT_STR_RAW(..) => {
let path = self.parse_str();
self.expect_keyword(keywords::As);
let the_ident = self.parse_ident();
self.expect(&token::SEMI);
(Some(path), the_ident)
},
_ => {
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal(span,
format!("expected extern crate name but \
found `{}`",
token_str).as_slice());
}
};
IoviViewItem(ast::ViewItem {
node: ViewItemExternCrate(ident, maybe_path, ast::DUMMY_NODE_ID),
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
})
}
/// Parse `extern` for foreign ABIs
/// modules.
///
/// `extern` is expected to have been
/// consumed before calling this method
///
/// # Examples:
///
/// extern "C" {}
/// extern {}
fn parse_item_foreign_mod(&mut self,
lo: BytePos,
opt_abi: Option<abi::Abi>,
visibility: Visibility,
attrs: Vec<Attribute> )
-> ItemOrViewItem {
self.expect(&token::LBRACE);
let abi = opt_abi.unwrap_or(abi::C);
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_foreign_mod_items(abi, next);
self.expect(&token::RBRACE);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
special_idents::invalid,
ItemForeignMod(m),
visibility,
maybe_append(attrs, Some(inner)));
return IoviItem(item);
}
/// Parse type Foo = Bar;
fn parse_item_type(&mut self) -> ItemInfo {
let ident = self.parse_ident();
let mut tps = self.parse_generics();
self.parse_where_clause(&mut tps);
self.expect(&token::EQ);
let ty = self.parse_ty(true);
self.expect(&token::SEMI);
(ident, ItemTy(ty, tps), None)
}
/// Parse a structure-like enum variant definition
/// this should probably be renamed or refactored...
fn parse_struct_def(&mut self) -> P<StructDef> {
let mut fields: Vec<StructField> = Vec::new();
while self.token != token::RBRACE {
fields.push(self.parse_struct_decl_field());
}
self.bump();
P(StructDef {
fields: fields,
ctor_id: None,
super_struct: None,
is_virtual: false,
})
}
/// Parse the part of an "enum" decl following the '{'
fn parse_enum_def(&mut self, _generics: &ast::Generics) -> EnumDef {
let mut variants = Vec::new();
let mut all_nullary = true;
let mut any_disr = None;
while self.token != token::RBRACE {
let variant_attrs = self.parse_outer_attributes();
let vlo = self.span.lo;
let vis = self.parse_visibility();
let ident;
let kind;
let mut args = Vec::new();
let mut disr_expr = None;
ident = self.parse_ident();
if self.eat(&token::LBRACE) {
// Parse a struct variant.
all_nullary = false;
kind = StructVariantKind(self.parse_struct_def());
} else if self.token == token::LPAREN {
all_nullary = false;
let arg_tys = self.parse_enum_variant_seq(
&token::LPAREN,
&token::RPAREN,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_ty(true)
);
for ty in arg_tys.into_iter() {
args.push(ast::VariantArg {
ty: ty,
id: ast::DUMMY_NODE_ID,
});
}
kind = TupleVariantKind(args);
} else if self.eat(&token::EQ) {
disr_expr = Some(self.parse_expr());
any_disr = disr_expr.as_ref().map(|expr| expr.span);
kind = TupleVariantKind(args);
} else {
kind = TupleVariantKind(Vec::new());
}
let vr = ast::Variant_ {
name: ident,
attrs: variant_attrs,
kind: kind,
id: ast::DUMMY_NODE_ID,
disr_expr: disr_expr,
vis: vis,
};
variants.push(P(spanned(vlo, self.last_span.hi, vr)));
if !self.eat(&token::COMMA) { break; }
}
self.expect(&token::RBRACE);
match any_disr {
Some(disr_span) if !all_nullary =>
self.span_err(disr_span,
"discriminator values can only be used with a c-like enum"),
_ => ()
}
ast::EnumDef { variants: variants }
}
/// Parse an "enum" declaration
fn parse_item_enum(&mut self) -> ItemInfo {
let id = self.parse_ident();
let mut generics = self.parse_generics();
self.parse_where_clause(&mut generics);
self.expect(&token::LBRACE);
let enum_definition = self.parse_enum_def(&generics);
(id, ItemEnum(enum_definition, generics), None)
}
fn fn_expr_lookahead(tok: &token::Token) -> bool {
match *tok {
token::LPAREN | token::AT | token::TILDE | token::BINOP(_) => true,
_ => false
}
}
/// Parses a string as an ABI spec on an extern type or module. Consumes
/// the `extern` keyword, if one is found.
fn parse_opt_abi(&mut self) -> Option<abi::Abi> {
match self.token {
token::LIT_STR(s) | token::LIT_STR_RAW(s, _) => {
self.bump();
let the_string = s.as_str();
match abi::lookup(the_string) {
Some(abi) => Some(abi),
None => {
let last_span = self.last_span;
self.span_err(
last_span,
format!("illegal ABI: expected one of [{}], \
found `{}`",
abi::all_names().connect(", "),
the_string).as_slice());
None
}
}
}
_ => None,
}
}
/// Parse one of the items or view items allowed by the
/// flags; on failure, return IoviNone.
/// NB: this function no longer parses the items inside an
/// extern crate.
fn parse_item_or_view_item(&mut self,
attrs: Vec<Attribute> ,
macros_allowed: bool)
-> ItemOrViewItem {
let nt_item = match self.token {
INTERPOLATED(token::NtItem(ref item)) => {
Some((**item).clone())
}
_ => None
};
match nt_item {
Some(mut item) => {
self.bump();
let mut attrs = attrs;
mem::swap(&mut item.attrs, &mut attrs);
item.attrs.extend(attrs.into_iter());
return IoviItem(P(item));
}
None => {}
}
let lo = self.span.lo;
let visibility = self.parse_visibility();
// must be a view item:
if self.eat_keyword(keywords::Use) {
// USE ITEM (IoviViewItem)
let view_item = self.parse_use();
self.expect(&token::SEMI);
return IoviViewItem(ast::ViewItem {
node: view_item,
attrs: attrs,
vis: visibility,
span: mk_sp(lo, self.last_span.hi)
});
}
// either a view item or an item:
if self.eat_keyword(keywords::Extern) {
let next_is_mod = self.eat_keyword(keywords::Mod);
if next_is_mod || self.eat_keyword(keywords::Crate) {
if next_is_mod {
let last_span = self.last_span;
self.span_err(mk_sp(lo, last_span.hi),
format!("`extern mod` is obsolete, use \
`extern crate` instead \
to refer to external \
crates.").as_slice())
}
return self.parse_item_extern_crate(lo, visibility, attrs);
}
let opt_abi = self.parse_opt_abi();
if self.eat_keyword(keywords::Fn) {
// EXTERN FUNCTION ITEM
let abi = opt_abi.unwrap_or(abi::C);
let (ident, item_, extra_attrs) =
self.parse_item_fn(NormalFn, abi);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
} else if self.token == token::LBRACE {
return self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs);
}
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal(span,
format!("expected `{}` or `fn`, found `{}`", "{",
token_str).as_slice());
}
let is_virtual = self.eat_keyword(keywords::Virtual);
if is_virtual && !self.is_keyword(keywords::Struct) {
let span = self.span;
self.span_err(span,
"`virtual` keyword may only be used with `struct`");
}
// the rest are all guaranteed to be items:
if self.is_keyword(keywords::Static) {
// STATIC ITEM
self.bump();
let m = if self.eat_keyword(keywords::Mut) {MutMutable} else {MutImmutable};
let (ident, item_, extra_attrs) = self.parse_item_const(Some(m));
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.is_keyword(keywords::Const) {
// CONST ITEM
self.bump();
if self.eat_keyword(keywords::Mut) {
let last_span = self.last_span;
self.span_err(last_span, "const globals cannot be mutable, \
did you mean to declare a static?");
}
let (ident, item_, extra_attrs) = self.parse_item_const(None);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.is_keyword(keywords::Fn) &&
self.look_ahead(1, |f| !Parser::fn_expr_lookahead(f)) {
// FUNCTION ITEM
self.bump();
let (ident, item_, extra_attrs) =
self.parse_item_fn(NormalFn, abi::Rust);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.is_keyword(keywords::Unsafe)
&& self.look_ahead(1u, |t| *t != token::LBRACE) {
// UNSAFE FUNCTION ITEM
self.bump();
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
self.expect_keyword(keywords::Fn);
let (ident, item_, extra_attrs) =
self.parse_item_fn(UnsafeFn, abi);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Mod) {
// MODULE ITEM
let (ident, item_, extra_attrs) =
self.parse_item_mod(attrs.as_slice());
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Type) {
// TYPE ITEM
let (ident, item_, extra_attrs) = self.parse_item_type();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Enum) {
// ENUM ITEM
let (ident, item_, extra_attrs) = self.parse_item_enum();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Trait) {
// TRAIT ITEM
let (ident, item_, extra_attrs) = self.parse_item_trait();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Impl) {
// IMPL ITEM
let (ident, item_, extra_attrs) = self.parse_item_impl();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
if self.eat_keyword(keywords::Struct) {
// STRUCT ITEM
let (ident, item_, extra_attrs) = self.parse_item_struct(is_virtual);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return IoviItem(item);
}
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
}
/// Parse a foreign item; on failure, return IoviNone.
fn parse_foreign_item(&mut self,
attrs: Vec<Attribute> ,
macros_allowed: bool)
-> ItemOrViewItem {
maybe_whole!(iovi self, NtItem);
let lo = self.span.lo;
let visibility = self.parse_visibility();
if self.is_keyword(keywords::Static) {
// FOREIGN STATIC ITEM
let item = self.parse_item_foreign_static(visibility, attrs);
return IoviForeignItem(item);
}
if self.is_keyword(keywords::Fn) || self.is_keyword(keywords::Unsafe) {
// FOREIGN FUNCTION ITEM
let item = self.parse_item_foreign_fn(visibility, attrs);
return IoviForeignItem(item);
}
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
}
/// This is the fall-through for parsing items.
fn parse_macro_use_or_failure(
&mut self,
attrs: Vec<Attribute> ,
macros_allowed: bool,
lo: BytePos,
visibility: Visibility
) -> ItemOrViewItem {
if macros_allowed && !token::is_any_keyword(&self.token)
&& self.look_ahead(1, |t| *t == token::NOT)
&& (self.look_ahead(2, |t| is_plain_ident(t))
|| self.look_ahead(2, |t| *t == token::LPAREN)
|| self.look_ahead(2, |t| *t == token::LBRACE)) {
// MACRO INVOCATION ITEM
// item macro.
let pth = self.parse_path(NoTypesAllowed).path;
self.expect(&token::NOT);
// a 'special' identifier (like what `macro_rules!` uses)
// is optional. We should eventually unify invoc syntax
// and remove this.
let id = if is_plain_ident(&self.token) {
self.parse_ident()
} else {
token::special_idents::invalid // no special identifier
};
// eat a matched-delimiter token tree:
let tts = match token::close_delimiter_for(&self.token) {
Some(ket) => {
self.bump();
self.parse_seq_to_end(&ket,
seq_sep_none(),
|p| p.parse_token_tree())
}
None => self.fatal("expected open delimiter")
};
// single-variant-enum... :
let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
let m: ast::Mac = codemap::Spanned { node: m,
span: mk_sp(self.span.lo,
self.span.hi) };
let item_ = ItemMac(m);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
id,
item_,
visibility,
attrs);
return IoviItem(item);
}
// FAILURE TO PARSE ITEM
if visibility != Inherited {
let mut s = String::from_str("unmatched visibility `");
if visibility == Public {
s.push_str("pub")
} else {
s.push_str("priv")
}
s.push_char('`');
let last_span = self.last_span;
self.span_fatal(last_span, s.as_slice());
}
return IoviNone(attrs);
}
pub fn parse_item_with_outer_attributes(&mut self) -> Option<P<Item>> {
let attrs = self.parse_outer_attributes();
self.parse_item(attrs)
}
pub fn parse_item(&mut self, attrs: Vec<Attribute>) -> Option<P<Item>> {
match self.parse_item_or_view_item(attrs, true) {
IoviNone(_) => None,
IoviViewItem(_) =>
self.fatal("view items are not allowed here"),
IoviForeignItem(_) =>
self.fatal("foreign items are not allowed here"),
IoviItem(item) => Some(item)
}
}
/// Parse, e.g., "use a::b::{z,y}"
fn parse_use(&mut self) -> ViewItem_ {
return ViewItemUse(self.parse_view_path());
}
/// Matches view_path : MOD? IDENT EQ non_global_path
/// | MOD? non_global_path MOD_SEP LBRACE RBRACE
/// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
/// | MOD? non_global_path MOD_SEP STAR
/// | MOD? non_global_path
fn parse_view_path(&mut self) -> P<ViewPath> {
let lo = self.span.lo;
if self.token == token::LBRACE {
// use {foo,bar}
let idents = self.parse_unspanned_seq(
&token::LBRACE, &token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_path_list_item());
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: Vec::new()
};
return P(spanned(lo, self.span.hi,
ViewPathList(path, idents, ast::DUMMY_NODE_ID)));
}
let first_ident = self.parse_ident();
let mut path = vec!(first_ident);
match self.token {
token::EQ => {
// x = foo::bar
self.bump();
let path_lo = self.span.lo;
path = vec!(self.parse_ident());
while self.token == token::MOD_SEP {
self.bump();
let id = self.parse_ident();
path.push(id);
}
let span = mk_sp(path_lo, self.span.hi);
self.obsolete(span, ObsoleteImportRenaming);
let path = ast::Path {
span: span,
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
}
}).collect()
};
return P(spanned(lo, self.span.hi,
ViewPathSimple(first_ident, path,
ast::DUMMY_NODE_ID)));
}
token::MOD_SEP => {
// foo::bar or foo::{a,b,c} or foo::*
while self.token == token::MOD_SEP {
self.bump();
match self.token {
token::IDENT(i, _) => {
self.bump();
path.push(i);
}
// foo::bar::{a,b,c}
token::LBRACE => {
let idents = self.parse_unspanned_seq(
&token::LBRACE,
&token::RBRACE,
seq_sep_trailing_allowed(token::COMMA),
|p| p.parse_path_list_item()
);
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
}
}).collect()
};
return P(spanned(lo, self.span.hi,
ViewPathList(path, idents, ast::DUMMY_NODE_ID)));
}
// foo::bar::*
token::BINOP(token::STAR) => {
self.bump();
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
}
}).collect()
};
return P(spanned(lo, self.span.hi,
ViewPathGlob(path, ast::DUMMY_NODE_ID)));
}
_ => break
}
}
}
_ => ()
}
let mut rename_to = *path.get(path.len() - 1u);
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
}
}).collect()
};
if self.eat_keyword(keywords::As) {
rename_to = self.parse_ident()
}
P(spanned(lo, self.last_span.hi,
ViewPathSimple(rename_to, path, ast::DUMMY_NODE_ID)))
}
/// Parses a sequence of items. Stops when it finds program
/// text that can't be parsed as an item
/// - mod_items uses extern_mod_allowed = true
/// - block_tail_ uses extern_mod_allowed = false
fn parse_items_and_view_items(&mut self,
first_item_attrs: Vec<Attribute> ,
mut extern_mod_allowed: bool,
macros_allowed: bool)
-> ParsedItemsAndViewItems {
let mut attrs = first_item_attrs.append(self.parse_outer_attributes().as_slice());
// First, parse view items.
let mut view_items : Vec<ast::ViewItem> = Vec::new();
let mut items = Vec::new();
// I think this code would probably read better as a single
// loop with a mutable three-state-variable (for extern crates,
// view items, and regular items) ... except that because
// of macros, I'd like to delay that entire check until later.
loop {
match self.parse_item_or_view_item(attrs, macros_allowed) {
IoviNone(attrs) => {
return ParsedItemsAndViewItems {
attrs_remaining: attrs,
view_items: view_items,
items: items,
foreign_items: Vec::new()
}
}
IoviViewItem(view_item) => {
match view_item.node {
ViewItemUse(..) => {
// `extern crate` must precede `use`.
extern_mod_allowed = false;
}
ViewItemExternCrate(..) if !extern_mod_allowed => {
self.span_err(view_item.span,
"\"extern crate\" declarations are \
not allowed here");
}
ViewItemExternCrate(..) => {}
}
view_items.push(view_item);
}
IoviItem(item) => {
items.push(item);
attrs = self.parse_outer_attributes();
break;
}
IoviForeignItem(_) => {
fail!();
}
}
attrs = self.parse_outer_attributes();
}
// Next, parse items.
loop {
match self.parse_item_or_view_item(attrs, macros_allowed) {
IoviNone(returned_attrs) => {
attrs = returned_attrs;
break
}
IoviViewItem(view_item) => {
attrs = self.parse_outer_attributes();
self.span_err(view_item.span,
"`use` and `extern crate` declarations must precede items");
}
IoviItem(item) => {
attrs = self.parse_outer_attributes();
items.push(item)
}
IoviForeignItem(_) => {
fail!();
}
}
}
ParsedItemsAndViewItems {
attrs_remaining: attrs,
view_items: view_items,
items: items,
foreign_items: Vec::new()
}
}
/// Parses a sequence of foreign items. Stops when it finds program
/// text that can't be parsed as an item
fn parse_foreign_items(&mut self, first_item_attrs: Vec<Attribute> ,
macros_allowed: bool)
-> ParsedItemsAndViewItems {
let mut attrs = first_item_attrs.append(self.parse_outer_attributes().as_slice());
let mut foreign_items = Vec::new();
loop {
match self.parse_foreign_item(attrs, macros_allowed) {
IoviNone(returned_attrs) => {
if self.token == token::RBRACE {
attrs = returned_attrs;
break
}
self.unexpected();
},
IoviViewItem(view_item) => {
// I think this can't occur:
self.span_err(view_item.span,
"`use` and `extern crate` declarations must precede items");
}
IoviItem(item) => {
// FIXME #5668: this will occur for a macro invocation:
self.span_fatal(item.span, "macros cannot expand to foreign items");
}
IoviForeignItem(foreign_item) => {
foreign_items.push(foreign_item);
}
}
attrs = self.parse_outer_attributes();
}
ParsedItemsAndViewItems {
attrs_remaining: attrs,
view_items: Vec::new(),
items: Vec::new(),
foreign_items: foreign_items
}
}
/// Parses a source module as a crate. This is the main
/// entry point for the parser.
pub fn parse_crate_mod(&mut self) -> Crate {
let lo = self.span.lo;
// parse the crate's inner attrs, maybe (oops) one
// of the attrs of an item:
let (inner, next) = self.parse_inner_attrs_and_next();
let first_item_outer_attrs = next;
// parse the items inside the crate:
let m = self.parse_mod_items(token::EOF, first_item_outer_attrs, lo);
ast::Crate {
module: m,
attrs: inner,
config: self.cfg.clone(),
span: mk_sp(lo, self.span.lo),
exported_macros: Vec::new(),
}
}
pub fn parse_optional_str(&mut self)
-> Option<(InternedString, ast::StrStyle)> {
let (s, style) = match self.token {
token::LIT_STR(s) => (self.id_to_interned_str(s.ident()), ast::CookedStr),
token::LIT_STR_RAW(s, n) => {
(self.id_to_interned_str(s.ident()), ast::RawStr(n))
}
_ => return None
};
self.bump();
Some((s, style))
}
pub fn parse_str(&mut self) -> (InternedString, StrStyle) {
match self.parse_optional_str() {
Some(s) => { s }
_ => self.fatal("expected string literal")
}
}
}