1
Fork 0
rust/src/librustdoc/clean/utils.rs
Matthias Krüger a1a6588162 don't into self
don't into()-convert types to themselves
2023-02-16 18:30:25 +01:00

614 lines
22 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::clean::auto_trait::AutoTraitFinder;
use crate::clean::blanket_impl::BlanketImplFinder;
use crate::clean::render_macro_matchers::render_macro_matcher;
use crate::clean::{
clean_doc_module, clean_middle_const, clean_middle_region, clean_middle_ty, inline, Crate,
ExternalCrate, Generic, GenericArg, GenericArgs, ImportSource, Item, ItemKind, Lifetime, Path,
PathSegment, Primitive, PrimitiveType, Term, Type, TypeBinding, TypeBindingKind,
};
use crate::core::DocContext;
use crate::html::format::visibility_to_src_with_space;
use rustc_ast as ast;
use rustc_ast::tokenstream::TokenTree;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_middle::mir;
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::ty::subst::{GenericArgKind, SubstsRef};
use rustc_middle::ty::{self, DefIdTree, TyCtxt};
use rustc_span::symbol::{kw, sym, Symbol};
use std::fmt::Write as _;
use std::mem;
use thin_vec::{thin_vec, ThinVec};
#[cfg(test)]
mod tests;
pub(crate) fn krate(cx: &mut DocContext<'_>) -> Crate {
let module = crate::visit_ast::RustdocVisitor::new(cx).visit();
// Clean the crate, translating the entire librustc_ast AST to one that is
// understood by rustdoc.
let mut module = clean_doc_module(&module, cx);
match *module.kind {
ItemKind::ModuleItem(ref module) => {
for it in &module.items {
// `compiler_builtins` should be masked too, but we can't apply
// `#[doc(masked)]` to the injected `extern crate` because it's unstable.
if it.is_extern_crate()
&& (it.attrs.has_doc_flag(sym::masked)
|| cx.tcx.is_compiler_builtins(it.item_id.krate()))
{
cx.cache.masked_crates.insert(it.item_id.krate());
}
}
}
_ => unreachable!(),
}
let local_crate = ExternalCrate { crate_num: LOCAL_CRATE };
let primitives = local_crate.primitives(cx.tcx);
let keywords = local_crate.keywords(cx.tcx);
{
let ItemKind::ModuleItem(ref mut m) = *module.kind
else { unreachable!() };
m.items.extend(primitives.iter().map(|&(def_id, prim)| {
Item::from_def_id_and_parts(
def_id,
Some(prim.as_sym()),
ItemKind::PrimitiveItem(prim),
cx,
)
}));
m.items.extend(keywords.into_iter().map(|(def_id, kw)| {
Item::from_def_id_and_parts(def_id, Some(kw), ItemKind::KeywordItem, cx)
}));
}
Crate { module, external_traits: cx.external_traits.clone() }
}
pub(crate) fn substs_to_args<'tcx>(
cx: &mut DocContext<'tcx>,
substs: ty::Binder<'tcx, &[ty::subst::GenericArg<'tcx>]>,
mut skip_first: bool,
) -> Vec<GenericArg> {
let mut ret_val =
Vec::with_capacity(substs.skip_binder().len().saturating_sub(if skip_first {
1
} else {
0
}));
ret_val.extend(substs.iter().filter_map(|kind| match kind.skip_binder().unpack() {
GenericArgKind::Lifetime(lt) => {
Some(GenericArg::Lifetime(clean_middle_region(lt).unwrap_or(Lifetime::elided())))
}
GenericArgKind::Type(_) if skip_first => {
skip_first = false;
None
}
GenericArgKind::Type(ty) => {
Some(GenericArg::Type(clean_middle_ty(kind.rebind(ty), cx, None)))
}
GenericArgKind::Const(ct) => {
Some(GenericArg::Const(Box::new(clean_middle_const(kind.rebind(ct), cx))))
}
}));
ret_val
}
fn external_generic_args<'tcx>(
cx: &mut DocContext<'tcx>,
did: DefId,
has_self: bool,
bindings: ThinVec<TypeBinding>,
substs: ty::Binder<'tcx, SubstsRef<'tcx>>,
) -> GenericArgs {
let args = substs_to_args(cx, substs.map_bound(|substs| &substs[..]), has_self);
if cx.tcx.fn_trait_kind_from_def_id(did).is_some() {
let ty = substs
.iter()
.nth(if has_self { 1 } else { 0 })
.unwrap()
.map_bound(|arg| arg.expect_ty());
let inputs =
// The trait's first substitution is the one after self, if there is one.
match ty.skip_binder().kind() {
ty::Tuple(tys) => tys.iter().map(|t| clean_middle_ty(ty.rebind(t), cx, None)).collect::<Vec<_>>().into(),
_ => return GenericArgs::AngleBracketed { args: args.into(), bindings },
};
let output = bindings.into_iter().next().and_then(|binding| match binding.kind {
TypeBindingKind::Equality { term: Term::Type(ty) } if ty != Type::Tuple(Vec::new()) => {
Some(Box::new(ty))
}
_ => None,
});
GenericArgs::Parenthesized { inputs, output }
} else {
GenericArgs::AngleBracketed { args: args.into(), bindings }
}
}
pub(super) fn external_path<'tcx>(
cx: &mut DocContext<'tcx>,
did: DefId,
has_self: bool,
bindings: ThinVec<TypeBinding>,
substs: ty::Binder<'tcx, SubstsRef<'tcx>>,
) -> Path {
let def_kind = cx.tcx.def_kind(did);
let name = cx.tcx.item_name(did);
Path {
res: Res::Def(def_kind, did),
segments: thin_vec![PathSegment {
name,
args: external_generic_args(cx, did, has_self, bindings, substs),
}],
}
}
/// Remove the generic arguments from a path.
pub(crate) fn strip_path_generics(mut path: Path) -> Path {
for ps in path.segments.iter_mut() {
ps.args = GenericArgs::AngleBracketed { args: Default::default(), bindings: ThinVec::new() }
}
path
}
pub(crate) fn qpath_to_string(p: &hir::QPath<'_>) -> String {
let segments = match *p {
hir::QPath::Resolved(_, path) => &path.segments,
hir::QPath::TypeRelative(_, segment) => return segment.ident.to_string(),
hir::QPath::LangItem(lang_item, ..) => return lang_item.name().to_string(),
};
let mut s = String::new();
for (i, seg) in segments.iter().enumerate() {
if i > 0 {
s.push_str("::");
}
if seg.ident.name != kw::PathRoot {
s.push_str(seg.ident.as_str());
}
}
s
}
pub(crate) fn build_deref_target_impls(
cx: &mut DocContext<'_>,
items: &[Item],
ret: &mut Vec<Item>,
) {
let tcx = cx.tcx;
for item in items {
let target = match *item.kind {
ItemKind::AssocTypeItem(ref t, _) => &t.type_,
_ => continue,
};
if let Some(prim) = target.primitive_type() {
let _prof_timer = cx.tcx.sess.prof.generic_activity("build_primitive_inherent_impls");
for did in prim.impls(tcx).filter(|did| !did.is_local()) {
inline::build_impl(cx, None, did, None, ret);
}
} else if let Type::Path { path } = target {
let did = path.def_id();
if !did.is_local() {
inline::build_impls(cx, None, did, None, ret);
}
}
}
}
pub(crate) fn name_from_pat(p: &hir::Pat<'_>) -> Symbol {
use rustc_hir::*;
debug!("trying to get a name from pattern: {:?}", p);
Symbol::intern(&match p.kind {
PatKind::Wild | PatKind::Struct(..) => return kw::Underscore,
PatKind::Binding(_, _, ident, _) => return ident.name,
PatKind::TupleStruct(ref p, ..) | PatKind::Path(ref p) => qpath_to_string(p),
PatKind::Or(pats) => {
pats.iter().map(|p| name_from_pat(p).to_string()).collect::<Vec<String>>().join(" | ")
}
PatKind::Tuple(elts, _) => format!(
"({})",
elts.iter().map(|p| name_from_pat(p).to_string()).collect::<Vec<String>>().join(", ")
),
PatKind::Box(p) => return name_from_pat(&*p),
PatKind::Ref(p, _) => return name_from_pat(&*p),
PatKind::Lit(..) => {
warn!(
"tried to get argument name from PatKind::Lit, which is silly in function arguments"
);
return Symbol::intern("()");
}
PatKind::Range(..) => return kw::Underscore,
PatKind::Slice(begin, ref mid, end) => {
let begin = begin.iter().map(|p| name_from_pat(p).to_string());
let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter();
let end = end.iter().map(|p| name_from_pat(p).to_string());
format!("[{}]", begin.chain(mid).chain(end).collect::<Vec<_>>().join(", "))
}
})
}
pub(crate) fn print_const(cx: &DocContext<'_>, n: ty::Const<'_>) -> String {
match n.kind() {
ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, substs: _ }) => {
let s = if let Some(def) = def.as_local() {
print_const_expr(cx.tcx, cx.tcx.hir().body_owned_by(def.did))
} else {
inline::print_inlined_const(cx.tcx, def.did)
};
s
}
// array lengths are obviously usize
ty::ConstKind::Value(ty::ValTree::Leaf(scalar))
if *n.ty().kind() == ty::Uint(ty::UintTy::Usize) =>
{
scalar.to_string()
}
_ => n.to_string(),
}
}
pub(crate) fn print_evaluated_const(
tcx: TyCtxt<'_>,
def_id: DefId,
underscores_and_type: bool,
) -> Option<String> {
tcx.const_eval_poly(def_id).ok().and_then(|val| {
let ty = tcx.type_of(def_id);
match (val, ty.kind()) {
(_, &ty::Ref(..)) => None,
(ConstValue::Scalar(_), &ty::Adt(_, _)) => None,
(ConstValue::Scalar(_), _) => {
let const_ = mir::ConstantKind::from_value(val, ty);
Some(print_const_with_custom_print_scalar(tcx, const_, underscores_and_type))
}
_ => None,
}
})
}
fn format_integer_with_underscore_sep(num: &str) -> String {
let num_chars: Vec<_> = num.chars().collect();
let mut num_start_index = if num_chars.get(0) == Some(&'-') { 1 } else { 0 };
let chunk_size = match num[num_start_index..].as_bytes() {
[b'0', b'b' | b'x', ..] => {
num_start_index += 2;
4
}
[b'0', b'o', ..] => {
num_start_index += 2;
let remaining_chars = num_chars.len() - num_start_index;
if remaining_chars <= 6 {
// don't add underscores to Unix permissions like 0755 or 100755
return num.to_string();
}
3
}
_ => 3,
};
num_chars[..num_start_index]
.iter()
.chain(num_chars[num_start_index..].rchunks(chunk_size).rev().intersperse(&['_']).flatten())
.collect()
}
fn print_const_with_custom_print_scalar<'tcx>(
tcx: TyCtxt<'tcx>,
ct: mir::ConstantKind<'tcx>,
underscores_and_type: bool,
) -> String {
// Use a slightly different format for integer types which always shows the actual value.
// For all other types, fallback to the original `pretty_print_const`.
match (ct, ct.ty().kind()) {
(mir::ConstantKind::Val(ConstValue::Scalar(int), _), ty::Uint(ui)) => {
if underscores_and_type {
format!("{}{}", format_integer_with_underscore_sep(&int.to_string()), ui.name_str())
} else {
int.to_string()
}
}
(mir::ConstantKind::Val(ConstValue::Scalar(int), _), ty::Int(i)) => {
let ty = ct.ty();
let size = tcx.layout_of(ty::ParamEnv::empty().and(ty)).unwrap().size;
let data = int.assert_bits(size);
let sign_extended_data = size.sign_extend(data) as i128;
if underscores_and_type {
format!(
"{}{}",
format_integer_with_underscore_sep(&sign_extended_data.to_string()),
i.name_str()
)
} else {
sign_extended_data.to_string()
}
}
_ => ct.to_string(),
}
}
pub(crate) fn is_literal_expr(tcx: TyCtxt<'_>, hir_id: hir::HirId) -> bool {
if let hir::Node::Expr(expr) = tcx.hir().get(hir_id) {
if let hir::ExprKind::Lit(_) = &expr.kind {
return true;
}
if let hir::ExprKind::Unary(hir::UnOp::Neg, expr) = &expr.kind &&
let hir::ExprKind::Lit(_) = &expr.kind
{
return true;
}
}
false
}
/// Build a textual representation of an unevaluated constant expression.
///
/// If the const expression is too complex, an underscore `_` is returned.
/// For const arguments, it's `{ _ }` to be precise.
/// This means that the output is not necessarily valid Rust code.
///
/// Currently, only
///
/// * literals (optionally with a leading `-`)
/// * unit `()`
/// * blocks (`{ … }`) around simple expressions and
/// * paths without arguments
///
/// are considered simple enough. Simple blocks are included since they are
/// necessary to disambiguate unit from the unit type.
/// This list might get extended in the future.
///
/// Without this censoring, in a lot of cases the output would get too large
/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
/// Further, private and `doc(hidden)` fields of structs would get leaked
/// since HIR datatypes like the `body` parameter do not contain enough
/// semantic information for this function to be able to hide them
/// at least not without significant performance overhead.
///
/// Whenever possible, prefer to evaluate the constant first and try to
/// use a different method for pretty-printing. Ideally this function
/// should only ever be used as a fallback.
pub(crate) fn print_const_expr(tcx: TyCtxt<'_>, body: hir::BodyId) -> String {
let hir = tcx.hir();
let value = &hir.body(body).value;
#[derive(PartialEq, Eq)]
enum Classification {
Literal,
Simple,
Complex,
}
use Classification::*;
fn classify(expr: &hir::Expr<'_>) -> Classification {
match &expr.kind {
hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
}
hir::ExprKind::Lit(_) => Literal,
hir::ExprKind::Tup([]) => Simple,
hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
if classify(expr) == Complex { Complex } else { Simple }
}
// Paths with a self-type or arguments are too “complex” following our measure since
// they may leak private fields of structs (with feature `adt_const_params`).
// Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
// Paths without arguments are definitely harmless though.
hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
}
// FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
// contains const arguments. Is there a *concise* way to check for this?
hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
// FIXME: Can they contain const arguments and thus leak private struct fields?
hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple,
_ => Complex,
}
}
let classification = classify(value);
if classification == Literal
&& !value.span.from_expansion()
&& let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) {
// For literals, we avoid invoking the pretty-printer and use the source snippet instead to
// preserve certain stylistic choices the user likely made for the sake legibility like
//
// * hexadecimal notation
// * underscores
// * character escapes
//
// FIXME: This passes through `-/*spacer*/0` verbatim.
snippet
} else if classification == Simple {
// Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
// other formatting artifacts.
rustc_hir_pretty::id_to_string(&hir, body.hir_id)
} else if tcx.def_kind(hir.body_owner_def_id(body).to_def_id()) == DefKind::AnonConst {
// FIXME: Omit the curly braces if the enclosing expression is an array literal
// with a repeated element (an `ExprKind::Repeat`) as in such case it
// would not actually need any disambiguation.
"{ _ }".to_owned()
} else {
"_".to_owned()
}
}
/// Given a type Path, resolve it to a Type using the TyCtxt
pub(crate) fn resolve_type(cx: &mut DocContext<'_>, path: Path) -> Type {
debug!("resolve_type({:?})", path);
match path.res {
Res::PrimTy(p) => Primitive(PrimitiveType::from(p)),
Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } if path.segments.len() == 1 => {
Generic(kw::SelfUpper)
}
Res::Def(DefKind::TyParam, _) if path.segments.len() == 1 => Generic(path.segments[0].name),
_ => {
let _ = register_res(cx, path.res);
Type::Path { path }
}
}
}
pub(crate) fn get_auto_trait_and_blanket_impls(
cx: &mut DocContext<'_>,
item_def_id: DefId,
) -> impl Iterator<Item = Item> {
let auto_impls = cx
.sess()
.prof
.generic_activity("get_auto_trait_impls")
.run(|| AutoTraitFinder::new(cx).get_auto_trait_impls(item_def_id));
let blanket_impls = cx
.sess()
.prof
.generic_activity("get_blanket_impls")
.run(|| BlanketImplFinder { cx }.get_blanket_impls(item_def_id));
auto_impls.into_iter().chain(blanket_impls)
}
/// If `res` has a documentation page associated, store it in the cache.
///
/// This is later used by [`href()`] to determine the HTML link for the item.
///
/// [`href()`]: crate::html::format::href
pub(crate) fn register_res(cx: &mut DocContext<'_>, res: Res) -> DefId {
use DefKind::*;
debug!("register_res({:?})", res);
let (kind, did) = match res {
Res::Def(
kind @ (AssocTy | AssocFn | AssocConst | Variant | Fn | TyAlias | Enum | Trait | Struct
| Union | Mod | ForeignTy | Const | Static(_) | Macro(..) | TraitAlias),
did,
) => (kind.into(), did),
_ => panic!("register_res: unexpected {:?}", res),
};
if did.is_local() {
return did;
}
inline::record_extern_fqn(cx, did, kind);
did
}
pub(crate) fn resolve_use_source(cx: &mut DocContext<'_>, path: Path) -> ImportSource {
ImportSource {
did: if path.res.opt_def_id().is_none() { None } else { Some(register_res(cx, path.res)) },
path,
}
}
pub(crate) fn enter_impl_trait<'tcx, F, R>(cx: &mut DocContext<'tcx>, f: F) -> R
where
F: FnOnce(&mut DocContext<'tcx>) -> R,
{
let old_bounds = mem::take(&mut cx.impl_trait_bounds);
let r = f(cx);
assert!(cx.impl_trait_bounds.is_empty());
cx.impl_trait_bounds = old_bounds;
r
}
/// Find the nearest parent module of a [`DefId`].
pub(crate) fn find_nearest_parent_module(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
if def_id.is_top_level_module() {
// The crate root has no parent. Use it as the root instead.
Some(def_id)
} else {
let mut current = def_id;
// The immediate parent might not always be a module.
// Find the first parent which is.
while let Some(parent) = tcx.opt_parent(current) {
if tcx.def_kind(parent) == DefKind::Mod {
return Some(parent);
}
current = parent;
}
None
}
}
/// Checks for the existence of `hidden` in the attribute below if `flag` is `sym::hidden`:
///
/// ```
/// #[doc(hidden)]
/// pub fn foo() {}
/// ```
///
/// This function exists because it runs on `hir::Attributes` whereas the other is a
/// `clean::Attributes` method.
pub(crate) fn has_doc_flag(tcx: TyCtxt<'_>, did: DefId, flag: Symbol) -> bool {
tcx.get_attrs(did, sym::doc).any(|attr| {
attr.meta_item_list().map_or(false, |l| rustc_attr::list_contains_name(&l, flag))
})
}
/// A link to `doc.rust-lang.org` that includes the channel name. Use this instead of manual links
/// so that the channel is consistent.
///
/// Set by `bootstrap::Builder::doc_rust_lang_org_channel` in order to keep tests passing on beta/stable.
pub(crate) const DOC_RUST_LANG_ORG_CHANNEL: &str = env!("DOC_RUST_LANG_ORG_CHANNEL");
/// Render a sequence of macro arms in a format suitable for displaying to the user
/// as part of an item declaration.
pub(super) fn render_macro_arms<'a>(
tcx: TyCtxt<'_>,
matchers: impl Iterator<Item = &'a TokenTree>,
arm_delim: &str,
) -> String {
let mut out = String::new();
for matcher in matchers {
writeln!(out, " {} => {{ ... }}{}", render_macro_matcher(tcx, matcher), arm_delim)
.unwrap();
}
out
}
pub(super) fn display_macro_source(
cx: &mut DocContext<'_>,
name: Symbol,
def: &ast::MacroDef,
def_id: DefId,
vis: ty::Visibility<DefId>,
) -> String {
let tts: Vec<_> = def.body.tokens.clone().into_trees().collect();
// Extract the spans of all matchers. They represent the "interface" of the macro.
let matchers = tts.chunks(4).map(|arm| &arm[0]);
if def.macro_rules {
format!("macro_rules! {} {{\n{}}}", name, render_macro_arms(cx.tcx, matchers, ";"))
} else {
if matchers.len() <= 1 {
format!(
"{}macro {}{} {{\n ...\n}}",
visibility_to_src_with_space(Some(vis), cx.tcx, def_id),
name,
matchers.map(|matcher| render_macro_matcher(cx.tcx, matcher)).collect::<String>(),
)
} else {
format!(
"{}macro {} {{\n{}}}",
visibility_to_src_with_space(Some(vis), cx.tcx, def_id),
name,
render_macro_arms(cx.tcx, matchers, ","),
)
}
}
}