141 lines
5.8 KiB
Rust
141 lines
5.8 KiB
Rust
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
|
|
use crate::traits::{self, ObligationCtxt, SelectionContext};
|
|
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_infer::traits::Obligation;
|
|
use rustc_macros::extension;
|
|
use rustc_middle::arena::ArenaAllocatable;
|
|
use rustc_middle::infer::canonical::{Canonical, CanonicalQueryResponse, QueryResponse};
|
|
use rustc_middle::traits::query::NoSolution;
|
|
use rustc_middle::traits::ObligationCause;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeVisitableExt};
|
|
use rustc_middle::ty::{GenericArg, Upcast};
|
|
use rustc_span::DUMMY_SP;
|
|
|
|
use std::fmt::Debug;
|
|
|
|
pub use rustc_infer::infer::*;
|
|
|
|
#[extension(pub trait InferCtxtExt<'tcx>)]
|
|
impl<'tcx> InferCtxt<'tcx> {
|
|
fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
let ty = self.resolve_vars_if_possible(ty);
|
|
|
|
if !(param_env, ty).has_infer() {
|
|
return ty.is_copy_modulo_regions(self.tcx, param_env);
|
|
}
|
|
|
|
let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None);
|
|
|
|
// This can get called from typeck (by euv), and `moves_by_default`
|
|
// rightly refuses to work with inference variables, but
|
|
// moves_by_default has a cache, which we want to use in other
|
|
// cases.
|
|
traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id)
|
|
}
|
|
|
|
fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
|
|
let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
|
|
traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item)
|
|
}
|
|
|
|
/// Check whether a `ty` implements given trait(trait_def_id) without side-effects.
|
|
///
|
|
/// The inputs are:
|
|
///
|
|
/// - the def-id of the trait
|
|
/// - the type parameters of the trait, including the self-type
|
|
/// - the parameter environment
|
|
///
|
|
/// Invokes `evaluate_obligation`, so in the event that evaluating
|
|
/// `Ty: Trait` causes overflow, EvaluatedToAmbigStackDependent will be returned.
|
|
#[instrument(level = "debug", skip(self, params), ret)]
|
|
fn type_implements_trait(
|
|
&self,
|
|
trait_def_id: DefId,
|
|
params: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> traits::EvaluationResult {
|
|
let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params);
|
|
|
|
let obligation = traits::Obligation {
|
|
cause: traits::ObligationCause::dummy(),
|
|
param_env,
|
|
recursion_depth: 0,
|
|
predicate: trait_ref.upcast(self.tcx),
|
|
};
|
|
self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr)
|
|
}
|
|
|
|
/// Returns `Some` if a type implements a trait shallowly, without side-effects,
|
|
/// along with any errors that would have been reported upon further obligation
|
|
/// processing.
|
|
///
|
|
/// - If this returns `Some([])`, then the trait holds modulo regions.
|
|
/// - If this returns `Some([errors..])`, then the trait has an impl for
|
|
/// the self type, but some nested obligations do not hold.
|
|
/// - If this returns `None`, no implementation that applies could be found.
|
|
///
|
|
/// FIXME(-Znext-solver): Due to the recursive nature of the new solver,
|
|
/// this will probably only ever return `Some([])` or `None`.
|
|
fn type_implements_trait_shallow(
|
|
&self,
|
|
trait_def_id: DefId,
|
|
ty: Ty<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> Option<Vec<traits::FulfillmentError<'tcx>>> {
|
|
self.probe(|_snapshot| {
|
|
let mut selcx = SelectionContext::new(self);
|
|
match selcx.select(&Obligation::new(
|
|
self.tcx,
|
|
ObligationCause::dummy(),
|
|
param_env,
|
|
ty::TraitRef::new(self.tcx, trait_def_id, [ty]),
|
|
)) {
|
|
Ok(Some(selection)) => {
|
|
let ocx = ObligationCtxt::new(self);
|
|
ocx.register_obligations(selection.nested_obligations());
|
|
Some(ocx.select_all_or_error())
|
|
}
|
|
Ok(None) | Err(_) => None,
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
#[extension(pub trait InferCtxtBuilderExt<'tcx>)]
|
|
impl<'tcx> InferCtxtBuilder<'tcx> {
|
|
/// The "main method" for a canonicalized trait query. Given the
|
|
/// canonical key `canonical_key`, this method will create a new
|
|
/// inference context, instantiate the key, and run your operation
|
|
/// `op`. The operation should yield up a result (of type `R`) as
|
|
/// well as a set of trait obligations that must be fully
|
|
/// satisfied. These obligations will be processed and the
|
|
/// canonical result created.
|
|
///
|
|
/// Returns `NoSolution` in the event of any error.
|
|
///
|
|
/// (It might be mildly nicer to implement this on `TyCtxt`, and
|
|
/// not `InferCtxtBuilder`, but that is a bit tricky right now.
|
|
/// In part because we would need a `for<'tcx>` sort of
|
|
/// bound for the closure and in part because it is convenient to
|
|
/// have `'tcx` be free on this function so that we can talk about
|
|
/// `K: TypeFoldable<TyCtxt<'tcx>>`.)
|
|
fn enter_canonical_trait_query<K, R>(
|
|
self,
|
|
canonical_key: &Canonical<'tcx, K>,
|
|
operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result<R, NoSolution>,
|
|
) -> Result<CanonicalQueryResponse<'tcx, R>, NoSolution>
|
|
where
|
|
K: TypeFoldable<TyCtxt<'tcx>>,
|
|
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
|
|
Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>,
|
|
{
|
|
let (infcx, key, canonical_inference_vars) =
|
|
self.build_with_canonical(DUMMY_SP, canonical_key);
|
|
let ocx = ObligationCtxt::new(&infcx);
|
|
let value = operation(&ocx, key)?;
|
|
ocx.make_canonicalized_query_response(canonical_inference_vars, value)
|
|
}
|
|
}
|