rust/compiler/rustc_middle/src/ty/layout.rs
Esteban Küber d12ecaed55 Teach structured errors to display short Ty
Make it so that every structured error annotated with `#[derive(Diagnostic)]` that has a field of type `Ty<'_>`, the printing of that value into a `String` will look at the thread-local storage `TyCtxt` in order to shorten to a length appropriate with the terminal width. When this happen, the resulting error will have a note with the file where the full type name was written to.

```
error[E0618]: expected function, found `((..., ..., ..., ...), ..., ..., ...)``
 --> long.rs:7:5
  |
6 | fn foo(x: D) { //~ `x` has type `(...
  |        - `x` has type `((..., ..., ..., ...), ..., ..., ...)`
7 |     x(); //~ ERROR expected function, found `(...
  |     ^--
  |     |
  |     call expression requires function
  |
  = note: the full name for the type has been written to 'long.long-type-14182675702747116984.txt'
  = note: consider using `--verbose` to print the full type name to the console
```
2025-02-25 16:56:03 +00:00

1432 lines
56 KiB
Rust

use std::num::NonZero;
use std::ops::Bound;
use std::{cmp, fmt};
use rustc_abi::{
AddressSpace, Align, BackendRepr, ExternAbi, FieldIdx, FieldsShape, HasDataLayout, LayoutData,
PointeeInfo, PointerKind, Primitive, ReprOptions, Scalar, Size, TagEncoding, TargetDataLayout,
TyAbiInterface, VariantIdx, Variants,
};
use rustc_error_messages::DiagMessage;
use rustc_errors::{
Diag, DiagArgValue, DiagCtxtHandle, Diagnostic, EmissionGuarantee, IntoDiagArg, Level,
};
use rustc_hashes::Hash64;
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_macros::{HashStable, TyDecodable, TyEncodable, extension};
use rustc_session::config::OptLevel;
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span, Symbol, sym};
use rustc_target::callconv::FnAbi;
use rustc_target::spec::{
HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, PanicStrategy, Target, WasmCAbi, X86Abi,
};
use tracing::debug;
use {rustc_abi as abi, rustc_hir as hir};
use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use crate::query::TyCtxtAt;
use crate::ty::normalize_erasing_regions::NormalizationError;
use crate::ty::{self, CoroutineArgsExt, Ty, TyCtxt, TypeVisitableExt};
#[extension(pub trait IntegerExt)]
impl abi::Integer {
#[inline]
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> {
use abi::Integer::{I8, I16, I32, I64, I128};
match (*self, signed) {
(I8, false) => tcx.types.u8,
(I16, false) => tcx.types.u16,
(I32, false) => tcx.types.u32,
(I64, false) => tcx.types.u64,
(I128, false) => tcx.types.u128,
(I8, true) => tcx.types.i8,
(I16, true) => tcx.types.i16,
(I32, true) => tcx.types.i32,
(I64, true) => tcx.types.i64,
(I128, true) => tcx.types.i128,
}
}
fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> abi::Integer {
use abi::Integer::{I8, I16, I32, I64, I128};
match ity {
ty::IntTy::I8 => I8,
ty::IntTy::I16 => I16,
ty::IntTy::I32 => I32,
ty::IntTy::I64 => I64,
ty::IntTy::I128 => I128,
ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(),
}
}
fn from_uint_ty<C: HasDataLayout>(cx: &C, ity: ty::UintTy) -> abi::Integer {
use abi::Integer::{I8, I16, I32, I64, I128};
match ity {
ty::UintTy::U8 => I8,
ty::UintTy::U16 => I16,
ty::UintTy::U32 => I32,
ty::UintTy::U64 => I64,
ty::UintTy::U128 => I128,
ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(),
}
}
/// Finds the appropriate Integer type and signedness for the given
/// signed discriminant range and `#[repr]` attribute.
/// N.B.: `u128` values above `i128::MAX` will be treated as signed, but
/// that shouldn't affect anything, other than maybe debuginfo.
fn repr_discr<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
repr: &ReprOptions,
min: i128,
max: i128,
) -> (abi::Integer, bool) {
// Theoretically, negative values could be larger in unsigned representation
// than the unsigned representation of the signed minimum. However, if there
// are any negative values, the only valid unsigned representation is u128
// which can fit all i128 values, so the result remains unaffected.
let unsigned_fit = abi::Integer::fit_unsigned(cmp::max(min as u128, max as u128));
let signed_fit = cmp::max(abi::Integer::fit_signed(min), abi::Integer::fit_signed(max));
if let Some(ity) = repr.int {
let discr = abi::Integer::from_attr(&tcx, ity);
let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
if discr < fit {
bug!(
"Integer::repr_discr: `#[repr]` hint too small for \
discriminant range of enum `{}`",
ty
)
}
return (discr, ity.is_signed());
}
let at_least = if repr.c() {
// This is usually I32, however it can be different on some platforms,
// notably hexagon and arm-none/thumb-none
tcx.data_layout().c_enum_min_size
} else {
// repr(Rust) enums try to be as small as possible
abi::Integer::I8
};
// If there are no negative values, we can use the unsigned fit.
if min >= 0 {
(cmp::max(unsigned_fit, at_least), false)
} else {
(cmp::max(signed_fit, at_least), true)
}
}
}
#[extension(pub trait FloatExt)]
impl abi::Float {
#[inline]
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
use abi::Float::*;
match *self {
F16 => tcx.types.f16,
F32 => tcx.types.f32,
F64 => tcx.types.f64,
F128 => tcx.types.f128,
}
}
fn from_float_ty(fty: ty::FloatTy) -> Self {
use abi::Float::*;
match fty {
ty::FloatTy::F16 => F16,
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
ty::FloatTy::F128 => F128,
}
}
}
#[extension(pub trait PrimitiveExt)]
impl Primitive {
#[inline]
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
Primitive::Int(i, signed) => i.to_ty(tcx, signed),
Primitive::Float(f) => f.to_ty(tcx),
// FIXME(erikdesjardins): handle non-default addrspace ptr sizes
Primitive::Pointer(_) => Ty::new_mut_ptr(tcx, tcx.types.unit),
}
}
/// Return an *integer* type matching this primitive.
/// Useful in particular when dealing with enum discriminants.
#[inline]
fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
Primitive::Int(i, signed) => i.to_ty(tcx, signed),
// FIXME(erikdesjardins): handle non-default addrspace ptr sizes
Primitive::Pointer(_) => {
let signed = false;
tcx.data_layout().ptr_sized_integer().to_ty(tcx, signed)
}
Primitive::Float(_) => bug!("floats do not have an int type"),
}
}
}
/// The first half of a wide pointer.
///
/// - For a trait object, this is the address of the box.
/// - For a slice, this is the base address.
pub const WIDE_PTR_ADDR: usize = 0;
/// The second half of a wide pointer.
///
/// - For a trait object, this is the address of the vtable.
/// - For a slice, this is the length.
pub const WIDE_PTR_EXTRA: usize = 1;
/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
/// Used in `check_validity_requirement` to indicate the kind of initialization
/// that is checked to be valid
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
pub enum ValidityRequirement {
Inhabited,
Zero,
/// The return value of mem::uninitialized, 0x01
/// (unless -Zstrict-init-checks is on, in which case it's the same as Uninit).
UninitMitigated0x01Fill,
/// True uninitialized memory.
Uninit,
}
impl ValidityRequirement {
pub fn from_intrinsic(intrinsic: Symbol) -> Option<Self> {
match intrinsic {
sym::assert_inhabited => Some(Self::Inhabited),
sym::assert_zero_valid => Some(Self::Zero),
sym::assert_mem_uninitialized_valid => Some(Self::UninitMitigated0x01Fill),
_ => None,
}
}
}
impl fmt::Display for ValidityRequirement {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Inhabited => f.write_str("is inhabited"),
Self::Zero => f.write_str("allows being left zeroed"),
Self::UninitMitigated0x01Fill => f.write_str("allows being filled with 0x01"),
Self::Uninit => f.write_str("allows being left uninitialized"),
}
}
}
#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
pub enum LayoutError<'tcx> {
/// A type doesn't have a sensible layout.
///
/// This variant is used for layout errors that don't necessarily cause
/// compile errors.
///
/// For example, this can happen if a struct contains an unsized type in a
/// non-tail field, but has an unsatisfiable bound like `str: Sized`.
Unknown(Ty<'tcx>),
/// The size of a type exceeds [`TargetDataLayout::obj_size_bound`].
SizeOverflow(Ty<'tcx>),
/// The layout can vary due to a generic parameter.
///
/// Unlike `Unknown`, this variant is a "soft" error and indicates that the layout
/// may become computable after further instantiating the generic parameter(s).
TooGeneric(Ty<'tcx>),
/// An alias failed to normalize.
///
/// This variant is necessary, because, due to trait solver incompleteness, it is
/// possible than an alias that was rigid during analysis fails to normalize after
/// revealing opaque types.
///
/// See `tests/ui/layout/normalization-failure.rs` for an example.
NormalizationFailure(Ty<'tcx>, NormalizationError<'tcx>),
/// A non-layout error is reported elsewhere.
ReferencesError(ErrorGuaranteed),
/// A type has cyclic layout, i.e. the type contains itself without indirection.
Cycle(ErrorGuaranteed),
}
impl<'tcx> LayoutError<'tcx> {
pub fn diagnostic_message(&self) -> DiagMessage {
use LayoutError::*;
use crate::fluent_generated::*;
match self {
Unknown(_) => middle_layout_unknown,
SizeOverflow(_) => middle_layout_size_overflow,
TooGeneric(_) => middle_layout_too_generic,
NormalizationFailure(_, _) => middle_layout_normalization_failure,
Cycle(_) => middle_layout_cycle,
ReferencesError(_) => middle_layout_references_error,
}
}
pub fn into_diagnostic(self) -> crate::error::LayoutError<'tcx> {
use LayoutError::*;
use crate::error::LayoutError as E;
match self {
Unknown(ty) => E::Unknown { ty },
SizeOverflow(ty) => E::Overflow { ty },
TooGeneric(ty) => E::TooGeneric { ty },
NormalizationFailure(ty, e) => {
E::NormalizationFailure { ty, failure_ty: e.get_type_for_failure() }
}
Cycle(_) => E::Cycle,
ReferencesError(_) => E::ReferencesError,
}
}
}
// FIXME: Once the other errors that embed this error have been converted to translatable
// diagnostics, this Display impl should be removed.
impl<'tcx> fmt::Display for LayoutError<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
LayoutError::Unknown(ty) => write!(f, "the type `{ty}` has an unknown layout"),
LayoutError::TooGeneric(ty) => {
write!(f, "the type `{ty}` does not have a fixed layout")
}
LayoutError::SizeOverflow(ty) => {
write!(f, "values of the type `{ty}` are too big for the target architecture")
}
LayoutError::NormalizationFailure(t, e) => write!(
f,
"unable to determine layout for `{}` because `{}` cannot be normalized",
t,
e.get_type_for_failure()
),
LayoutError::Cycle(_) => write!(f, "a cycle occurred during layout computation"),
LayoutError::ReferencesError(_) => write!(f, "the type has an unknown layout"),
}
}
}
impl<'tcx> IntoDiagArg for LayoutError<'tcx> {
fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> DiagArgValue {
self.to_string().into_diag_arg(&mut None)
}
}
#[derive(Clone, Copy)]
pub struct LayoutCx<'tcx> {
pub calc: abi::LayoutCalculator<TyCtxt<'tcx>>,
pub typing_env: ty::TypingEnv<'tcx>,
}
impl<'tcx> LayoutCx<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> Self {
Self { calc: abi::LayoutCalculator::new(tcx), typing_env }
}
}
/// Type size "skeleton", i.e., the only information determining a type's size.
/// While this is conservative, (aside from constant sizes, only pointers,
/// newtypes thereof and null pointer optimized enums are allowed), it is
/// enough to statically check common use cases of transmute.
#[derive(Copy, Clone, Debug)]
pub enum SizeSkeleton<'tcx> {
/// Any statically computable Layout.
/// Alignment can be `None` if unknown.
Known(Size, Option<Align>),
/// This is a generic const expression (i.e. N * 2), which may contain some parameters.
/// It must be of type usize, and represents the size of a type in bytes.
/// It is not required to be evaluatable to a concrete value, but can be used to check
/// that another SizeSkeleton is of equal size.
Generic(ty::Const<'tcx>),
/// A potentially-wide pointer.
Pointer {
/// If true, this pointer is never null.
non_zero: bool,
/// The type which determines the unsized metadata, if any,
/// of this pointer. Either a type parameter or a projection
/// depending on one, with regions erased.
tail: Ty<'tcx>,
},
}
impl<'tcx> SizeSkeleton<'tcx> {
pub fn compute(
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
) -> Result<SizeSkeleton<'tcx>, &'tcx LayoutError<'tcx>> {
debug_assert!(!ty.has_non_region_infer());
// First try computing a static layout.
let err = match tcx.layout_of(typing_env.as_query_input(ty)) {
Ok(layout) => {
if layout.is_sized() {
return Ok(SizeSkeleton::Known(layout.size, Some(layout.align.abi)));
} else {
// Just to be safe, don't claim a known layout for unsized types.
return Err(tcx.arena.alloc(LayoutError::Unknown(ty)));
}
}
Err(err @ LayoutError::TooGeneric(_)) => err,
// We can't extract SizeSkeleton info from other layout errors
Err(
e @ LayoutError::Cycle(_)
| e @ LayoutError::Unknown(_)
| e @ LayoutError::SizeOverflow(_)
| e @ LayoutError::NormalizationFailure(..)
| e @ LayoutError::ReferencesError(_),
) => return Err(e),
};
match *ty.kind() {
ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
let non_zero = !ty.is_raw_ptr();
let tail = tcx.struct_tail_raw(
pointee,
|ty| match tcx.try_normalize_erasing_regions(typing_env, ty) {
Ok(ty) => ty,
Err(e) => Ty::new_error_with_message(
tcx,
DUMMY_SP,
format!(
"normalization failed for {} but no errors reported",
e.get_type_for_failure()
),
),
},
|| {},
);
match tail.kind() {
ty::Param(_) | ty::Alias(ty::Projection | ty::Inherent, _) => {
debug_assert!(tail.has_non_region_param());
Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) })
}
ty::Error(guar) => {
// Fixes ICE #124031
return Err(tcx.arena.alloc(LayoutError::ReferencesError(*guar)));
}
_ => bug!(
"SizeSkeleton::compute({ty}): layout errored ({err:?}), yet \
tail `{tail}` is not a type parameter or a projection",
),
}
}
ty::Array(inner, len) if tcx.features().transmute_generic_consts() => {
let len_eval = len.try_to_target_usize(tcx);
if len_eval == Some(0) {
return Ok(SizeSkeleton::Known(Size::from_bytes(0), None));
}
match SizeSkeleton::compute(inner, tcx, typing_env)? {
// This may succeed because the multiplication of two types may overflow
// but a single size of a nested array will not.
SizeSkeleton::Known(s, a) => {
if let Some(c) = len_eval {
let size = s
.bytes()
.checked_mul(c)
.ok_or_else(|| &*tcx.arena.alloc(LayoutError::SizeOverflow(ty)))?;
// Alignment is unchanged by arrays.
return Ok(SizeSkeleton::Known(Size::from_bytes(size), a));
}
Err(err)
}
SizeSkeleton::Pointer { .. } | SizeSkeleton::Generic(_) => Err(err),
}
}
ty::Adt(def, args) => {
// Only newtypes and enums w/ nullable pointer optimization.
if def.is_union() || def.variants().is_empty() || def.variants().len() > 2 {
return Err(err);
}
// Get a zero-sized variant or a pointer newtype.
let zero_or_ptr_variant = |i| {
let i = VariantIdx::from_usize(i);
let fields =
def.variant(i).fields.iter().map(|field| {
SizeSkeleton::compute(field.ty(tcx, args), tcx, typing_env)
});
let mut ptr = None;
for field in fields {
let field = field?;
match field {
SizeSkeleton::Known(size, align) => {
let is_1zst = size.bytes() == 0
&& align.is_some_and(|align| align.bytes() == 1);
if !is_1zst {
return Err(err);
}
}
SizeSkeleton::Pointer { .. } => {
if ptr.is_some() {
return Err(err);
}
ptr = Some(field);
}
SizeSkeleton::Generic(_) => {
return Err(err);
}
}
}
Ok(ptr)
};
let v0 = zero_or_ptr_variant(0)?;
// Newtype.
if def.variants().len() == 1 {
if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
return Ok(SizeSkeleton::Pointer {
non_zero: non_zero
|| match tcx.layout_scalar_valid_range(def.did()) {
(Bound::Included(start), Bound::Unbounded) => start > 0,
(Bound::Included(start), Bound::Included(end)) => {
0 < start && start < end
}
_ => false,
},
tail,
});
} else {
return Err(err);
}
}
let v1 = zero_or_ptr_variant(1)?;
// Nullable pointer enum optimization.
match (v0, v1) {
(Some(SizeSkeleton::Pointer { non_zero: true, tail }), None)
| (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
Ok(SizeSkeleton::Pointer { non_zero: false, tail })
}
_ => Err(err),
}
}
ty::Alias(..) => {
let normalized = tcx.normalize_erasing_regions(typing_env, ty);
if ty == normalized {
Err(err)
} else {
SizeSkeleton::compute(normalized, tcx, typing_env)
}
}
// Pattern types are always the same size as their base.
ty::Pat(base, _) => SizeSkeleton::compute(base, tcx, typing_env),
_ => Err(err),
}
}
pub fn same_size(self, other: SizeSkeleton<'tcx>) -> bool {
match (self, other) {
(SizeSkeleton::Known(a, _), SizeSkeleton::Known(b, _)) => a == b,
(SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => {
a == b
}
// constants are always pre-normalized into a canonical form so this
// only needs to check if their pointers are identical.
(SizeSkeleton::Generic(a), SizeSkeleton::Generic(b)) => a == b,
_ => false,
}
}
}
pub trait HasTyCtxt<'tcx>: HasDataLayout {
fn tcx(&self) -> TyCtxt<'tcx>;
}
pub trait HasTypingEnv<'tcx> {
fn typing_env(&self) -> ty::TypingEnv<'tcx>;
/// FIXME(#132279): This method should not be used as in the future
/// everything should take a `TypingEnv` instead. Remove it as that point.
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.typing_env().param_env
}
}
impl<'tcx> HasDataLayout for TyCtxt<'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.data_layout
}
}
impl<'tcx> HasTargetSpec for TyCtxt<'tcx> {
fn target_spec(&self) -> &Target {
&self.sess.target
}
}
impl<'tcx> HasWasmCAbiOpt for TyCtxt<'tcx> {
fn wasm_c_abi_opt(&self) -> WasmCAbi {
self.sess.opts.unstable_opts.wasm_c_abi
}
}
impl<'tcx> HasX86AbiOpt for TyCtxt<'tcx> {
fn x86_abi_opt(&self) -> X86Abi {
X86Abi {
regparm: self.sess.opts.unstable_opts.regparm,
reg_struct_return: self.sess.opts.unstable_opts.reg_struct_return,
}
}
}
impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
*self
}
}
impl<'tcx> HasDataLayout for TyCtxtAt<'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.data_layout
}
}
impl<'tcx> HasTargetSpec for TyCtxtAt<'tcx> {
fn target_spec(&self) -> &Target {
&self.sess.target
}
}
impl<'tcx> HasTyCtxt<'tcx> for TyCtxtAt<'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
**self
}
}
impl<'tcx> HasTypingEnv<'tcx> for LayoutCx<'tcx> {
fn typing_env(&self) -> ty::TypingEnv<'tcx> {
self.typing_env
}
}
impl<'tcx> HasDataLayout for LayoutCx<'tcx> {
fn data_layout(&self) -> &TargetDataLayout {
self.calc.cx.data_layout()
}
}
impl<'tcx> HasTargetSpec for LayoutCx<'tcx> {
fn target_spec(&self) -> &Target {
self.calc.cx.target_spec()
}
}
impl<'tcx> HasWasmCAbiOpt for LayoutCx<'tcx> {
fn wasm_c_abi_opt(&self) -> WasmCAbi {
self.calc.cx.wasm_c_abi_opt()
}
}
impl<'tcx> HasX86AbiOpt for LayoutCx<'tcx> {
fn x86_abi_opt(&self) -> X86Abi {
self.calc.cx.x86_abi_opt()
}
}
impl<'tcx> HasTyCtxt<'tcx> for LayoutCx<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.calc.cx
}
}
pub trait MaybeResult<T> {
type Error;
fn from(x: Result<T, Self::Error>) -> Self;
fn to_result(self) -> Result<T, Self::Error>;
}
impl<T> MaybeResult<T> for T {
type Error = !;
fn from(Ok(x): Result<T, Self::Error>) -> Self {
x
}
fn to_result(self) -> Result<T, Self::Error> {
Ok(self)
}
}
impl<T, E> MaybeResult<T> for Result<T, E> {
type Error = E;
fn from(x: Result<T, Self::Error>) -> Self {
x
}
fn to_result(self) -> Result<T, Self::Error> {
self
}
}
pub type TyAndLayout<'tcx> = rustc_abi::TyAndLayout<'tcx, Ty<'tcx>>;
/// Trait for contexts that want to be able to compute layouts of types.
/// This automatically gives access to `LayoutOf`, through a blanket `impl`.
pub trait LayoutOfHelpers<'tcx>: HasDataLayout + HasTyCtxt<'tcx> + HasTypingEnv<'tcx> {
/// The `TyAndLayout`-wrapping type (or `TyAndLayout` itself), which will be
/// returned from `layout_of` (see also `handle_layout_err`).
type LayoutOfResult: MaybeResult<TyAndLayout<'tcx>> = TyAndLayout<'tcx>;
/// `Span` to use for `tcx.at(span)`, from `layout_of`.
// FIXME(eddyb) perhaps make this mandatory to get contexts to track it better?
#[inline]
fn layout_tcx_at_span(&self) -> Span {
DUMMY_SP
}
/// Helper used for `layout_of`, to adapt `tcx.layout_of(...)` into a
/// `Self::LayoutOfResult` (which does not need to be a `Result<...>`).
///
/// Most `impl`s, which propagate `LayoutError`s, should simply return `err`,
/// but this hook allows e.g. codegen to return only `TyAndLayout` from its
/// `cx.layout_of(...)`, without any `Result<...>` around it to deal with
/// (and any `LayoutError`s are turned into fatal errors or ICEs).
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
span: Span,
ty: Ty<'tcx>,
) -> <Self::LayoutOfResult as MaybeResult<TyAndLayout<'tcx>>>::Error;
}
/// Blanket extension trait for contexts that can compute layouts of types.
pub trait LayoutOf<'tcx>: LayoutOfHelpers<'tcx> {
/// Computes the layout of a type. Note that this implicitly
/// executes in `TypingMode::PostAnalysis`, and will normalize the input type.
#[inline]
fn layout_of(&self, ty: Ty<'tcx>) -> Self::LayoutOfResult {
self.spanned_layout_of(ty, DUMMY_SP)
}
/// Computes the layout of a type, at `span`. Note that this implicitly
/// executes in `TypingMode::PostAnalysis`, and will normalize the input type.
// FIXME(eddyb) avoid passing information like this, and instead add more
// `TyCtxt::at`-like APIs to be able to do e.g. `cx.at(span).layout_of(ty)`.
#[inline]
fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::LayoutOfResult {
let span = if !span.is_dummy() { span } else { self.layout_tcx_at_span() };
let tcx = self.tcx().at(span);
MaybeResult::from(
tcx.layout_of(self.typing_env().as_query_input(ty))
.map_err(|err| self.handle_layout_err(*err, span, ty)),
)
}
}
impl<'tcx, C: LayoutOfHelpers<'tcx>> LayoutOf<'tcx> for C {}
impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx> {
type LayoutOfResult = Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>>;
#[inline]
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
_: Span,
_: Ty<'tcx>,
) -> &'tcx LayoutError<'tcx> {
self.tcx().arena.alloc(err)
}
}
impl<'tcx, C> TyAbiInterface<'tcx, C> for Ty<'tcx>
where
C: HasTyCtxt<'tcx> + HasTypingEnv<'tcx>,
{
fn ty_and_layout_for_variant(
this: TyAndLayout<'tcx>,
cx: &C,
variant_index: VariantIdx,
) -> TyAndLayout<'tcx> {
let layout = match this.variants {
Variants::Single { index }
// If all variants but one are uninhabited, the variant layout is the enum layout.
if index == variant_index =>
{
this.layout
}
Variants::Single { .. } | Variants::Empty => {
// Single-variant and no-variant enums *can* have other variants, but those are
// uninhabited. Produce a layout that has the right fields for that variant, so that
// the rest of the compiler can project fields etc as usual.
let tcx = cx.tcx();
let typing_env = cx.typing_env();
// Deny calling for_variant more than once for non-Single enums.
if let Ok(original_layout) = tcx.layout_of(typing_env.as_query_input(this.ty)) {
assert_eq!(original_layout.variants, this.variants);
}
let fields = match this.ty.kind() {
ty::Adt(def, _) if def.variants().is_empty() =>
bug!("for_variant called on zero-variant enum {}", this.ty),
ty::Adt(def, _) => def.variant(variant_index).fields.len(),
_ => bug!("`ty_and_layout_for_variant` on unexpected type {}", this.ty),
};
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: variant_index },
fields: match NonZero::new(fields) {
Some(fields) => FieldsShape::Union(fields),
None => FieldsShape::Arbitrary { offsets: IndexVec::new(), memory_index: IndexVec::new() },
},
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: tcx.data_layout.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: tcx.data_layout.i8_align.abi,
randomization_seed: Hash64::ZERO,
})
}
Variants::Multiple { ref variants, .. } => cx.tcx().mk_layout(variants[variant_index].clone()),
};
assert_eq!(*layout.variants(), Variants::Single { index: variant_index });
TyAndLayout { ty: this.ty, layout }
}
fn ty_and_layout_field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> TyAndLayout<'tcx> {
enum TyMaybeWithLayout<'tcx> {
Ty(Ty<'tcx>),
TyAndLayout(TyAndLayout<'tcx>),
}
fn field_ty_or_layout<'tcx>(
this: TyAndLayout<'tcx>,
cx: &(impl HasTyCtxt<'tcx> + HasTypingEnv<'tcx>),
i: usize,
) -> TyMaybeWithLayout<'tcx> {
let tcx = cx.tcx();
let tag_layout = |tag: Scalar| -> TyAndLayout<'tcx> {
TyAndLayout {
layout: tcx.mk_layout(LayoutData::scalar(cx, tag)),
ty: tag.primitive().to_ty(tcx),
}
};
match *this.ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::FnPtr(..)
| ty::Never
| ty::FnDef(..)
| ty::CoroutineWitness(..)
| ty::Foreign(..)
| ty::Pat(_, _)
| ty::Dynamic(_, _, ty::Dyn) => {
bug!("TyAndLayout::field({:?}): not applicable", this)
}
ty::UnsafeBinder(bound_ty) => {
let ty = tcx.instantiate_bound_regions_with_erased(bound_ty.into());
field_ty_or_layout(TyAndLayout { ty, ..this }, cx, i)
}
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
assert!(i < this.fields.count());
// Reuse the wide `*T` type as its own thin pointer data field.
// This provides information about, e.g., DST struct pointees
// (which may have no non-DST form), and will work as long
// as the `Abi` or `FieldsShape` is checked by users.
if i == 0 {
let nil = tcx.types.unit;
let unit_ptr_ty = if this.ty.is_raw_ptr() {
Ty::new_mut_ptr(tcx, nil)
} else {
Ty::new_mut_ref(tcx, tcx.lifetimes.re_static, nil)
};
// NOTE: using an fully monomorphized typing env and `unwrap`-ing
// the `Result` should always work because the type is always either
// `*mut ()` or `&'static mut ()`.
let typing_env = ty::TypingEnv::fully_monomorphized();
return TyMaybeWithLayout::TyAndLayout(TyAndLayout {
ty: this.ty,
..tcx.layout_of(typing_env.as_query_input(unit_ptr_ty)).unwrap()
});
}
let mk_dyn_vtable = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
let min_count = ty::vtable_min_entries(
tcx,
principal.map(|principal| {
tcx.instantiate_bound_regions_with_erased(principal)
}),
);
Ty::new_imm_ref(
tcx,
tcx.lifetimes.re_static,
// FIXME: properly type (e.g. usize and fn pointers) the fields.
Ty::new_array(tcx, tcx.types.usize, min_count.try_into().unwrap()),
)
};
let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
// Projection eagerly bails out when the pointee references errors,
// fall back to structurally deducing metadata.
&& !pointee.references_error()
{
let metadata = tcx.normalize_erasing_regions(
cx.typing_env(),
Ty::new_projection(tcx, metadata_def_id, [pointee]),
);
// Map `Metadata = DynMetadata<dyn Trait>` back to a vtable, since it
// offers better information than `std::ptr::metadata::VTable`,
// and we rely on this layout information to trigger a panic in
// `std::mem::uninitialized::<&dyn Trait>()`, for example.
if let ty::Adt(def, args) = metadata.kind()
&& tcx.is_lang_item(def.did(), LangItem::DynMetadata)
&& let ty::Dynamic(data, _, ty::Dyn) = args.type_at(0).kind()
{
mk_dyn_vtable(data.principal())
} else {
metadata
}
} else {
match tcx.struct_tail_for_codegen(pointee, cx.typing_env()).kind() {
ty::Slice(_) | ty::Str => tcx.types.usize,
ty::Dynamic(data, _, ty::Dyn) => mk_dyn_vtable(data.principal()),
_ => bug!("TyAndLayout::field({:?}): not applicable", this),
}
};
TyMaybeWithLayout::Ty(metadata)
}
// Arrays and slices.
ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element),
ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8),
// Tuples, coroutines and closures.
ty::Closure(_, args) => field_ty_or_layout(
TyAndLayout { ty: args.as_closure().tupled_upvars_ty(), ..this },
cx,
i,
),
ty::CoroutineClosure(_, args) => field_ty_or_layout(
TyAndLayout { ty: args.as_coroutine_closure().tupled_upvars_ty(), ..this },
cx,
i,
),
ty::Coroutine(def_id, args) => match this.variants {
Variants::Empty => unreachable!(),
Variants::Single { index } => TyMaybeWithLayout::Ty(
args.as_coroutine()
.state_tys(def_id, tcx)
.nth(index.as_usize())
.unwrap()
.nth(i)
.unwrap(),
),
Variants::Multiple { tag, tag_field, .. } => {
if i == tag_field {
return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
}
TyMaybeWithLayout::Ty(args.as_coroutine().prefix_tys()[i])
}
},
ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i]),
// ADTs.
ty::Adt(def, args) => {
match this.variants {
Variants::Single { index } => {
let field = &def.variant(index).fields[FieldIdx::from_usize(i)];
TyMaybeWithLayout::Ty(field.ty(tcx, args))
}
Variants::Empty => panic!("there is no field in Variants::Empty types"),
// Discriminant field for enums (where applicable).
Variants::Multiple { tag, .. } => {
assert_eq!(i, 0);
return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
}
}
}
ty::Dynamic(_, _, ty::DynStar) => {
if i == 0 {
TyMaybeWithLayout::Ty(Ty::new_mut_ptr(tcx, tcx.types.unit))
} else if i == 1 {
// FIXME(dyn-star) same FIXME as above applies here too
TyMaybeWithLayout::Ty(Ty::new_imm_ref(
tcx,
tcx.lifetimes.re_static,
Ty::new_array(tcx, tcx.types.usize, 3),
))
} else {
bug!("no field {i} on dyn*")
}
}
ty::Alias(..)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Param(_)
| ty::Infer(_)
| ty::Error(_) => bug!("TyAndLayout::field: unexpected type `{}`", this.ty),
}
}
match field_ty_or_layout(this, cx, i) {
TyMaybeWithLayout::Ty(field_ty) => {
cx.tcx().layout_of(cx.typing_env().as_query_input(field_ty)).unwrap_or_else(|e| {
bug!(
"failed to get layout for `{field_ty}`: {e:?},\n\
despite it being a field (#{i}) of an existing layout: {this:#?}",
)
})
}
TyMaybeWithLayout::TyAndLayout(field_layout) => field_layout,
}
}
/// Compute the information for the pointer stored at the given offset inside this type.
/// This will recurse into fields of ADTs to find the inner pointer.
fn ty_and_layout_pointee_info_at(
this: TyAndLayout<'tcx>,
cx: &C,
offset: Size,
) -> Option<PointeeInfo> {
let tcx = cx.tcx();
let typing_env = cx.typing_env();
let pointee_info = match *this.ty.kind() {
ty::RawPtr(p_ty, _) if offset.bytes() == 0 => {
tcx.layout_of(typing_env.as_query_input(p_ty)).ok().map(|layout| PointeeInfo {
size: layout.size,
align: layout.align.abi,
safe: None,
})
}
ty::FnPtr(..) if offset.bytes() == 0 => {
tcx.layout_of(typing_env.as_query_input(this.ty)).ok().map(|layout| PointeeInfo {
size: layout.size,
align: layout.align.abi,
safe: None,
})
}
ty::Ref(_, ty, mt) if offset.bytes() == 0 => {
// Use conservative pointer kind if not optimizing. This saves us the
// Freeze/Unpin queries, and can save time in the codegen backend (noalias
// attributes in LLVM have compile-time cost even in unoptimized builds).
let optimize = tcx.sess.opts.optimize != OptLevel::No;
let kind = match mt {
hir::Mutability::Not => {
PointerKind::SharedRef { frozen: optimize && ty.is_freeze(tcx, typing_env) }
}
hir::Mutability::Mut => {
PointerKind::MutableRef { unpin: optimize && ty.is_unpin(tcx, typing_env) }
}
};
tcx.layout_of(typing_env.as_query_input(ty)).ok().map(|layout| PointeeInfo {
size: layout.size,
align: layout.align.abi,
safe: Some(kind),
})
}
_ => {
let mut data_variant = match &this.variants {
// Within the discriminant field, only the niche itself is
// always initialized, so we only check for a pointer at its
// offset.
//
// Our goal here is to check whether this represents a
// "dereferenceable or null" pointer, so we need to ensure
// that there is only one other variant, and it must be null.
// Below, we will then check whether the pointer is indeed
// dereferenceable.
Variants::Multiple {
tag_encoding:
TagEncoding::Niche { untagged_variant, niche_variants, niche_start },
tag_field,
variants,
..
} if variants.len() == 2 && this.fields.offset(*tag_field) == offset => {
let tagged_variant = if untagged_variant.as_u32() == 0 {
VariantIdx::from_u32(1)
} else {
VariantIdx::from_u32(0)
};
assert_eq!(tagged_variant, *niche_variants.start());
if *niche_start == 0 {
// The other variant is encoded as "null", so we can recurse searching for
// a pointer here. This relies on the fact that the codegen backend
// only adds "dereferenceable" if there's also a "nonnull" proof,
// and that null is aligned for all alignments so it's okay to forward
// the pointer's alignment.
Some(this.for_variant(cx, *untagged_variant))
} else {
None
}
}
Variants::Multiple { .. } => None,
_ => Some(this),
};
if let Some(variant) = data_variant {
// We're not interested in any unions.
if let FieldsShape::Union(_) = variant.fields {
data_variant = None;
}
}
let mut result = None;
if let Some(variant) = data_variant {
// FIXME(erikdesjardins): handle non-default addrspace ptr sizes
// (requires passing in the expected address space from the caller)
let ptr_end = offset + Primitive::Pointer(AddressSpace::DATA).size(cx);
for i in 0..variant.fields.count() {
let field_start = variant.fields.offset(i);
if field_start <= offset {
let field = variant.field(cx, i);
result = field.to_result().ok().and_then(|field| {
if ptr_end <= field_start + field.size {
// We found the right field, look inside it.
let field_info =
field.pointee_info_at(cx, offset - field_start);
field_info
} else {
None
}
});
if result.is_some() {
break;
}
}
}
}
// Fixup info for the first field of a `Box`. Recursive traversal will have found
// the raw pointer, so size and align are set to the boxed type, but `pointee.safe`
// will still be `None`.
if let Some(ref mut pointee) = result {
if offset.bytes() == 0
&& let Some(boxed_ty) = this.ty.boxed_ty()
{
debug_assert!(pointee.safe.is_none());
let optimize = tcx.sess.opts.optimize != OptLevel::No;
pointee.safe = Some(PointerKind::Box {
unpin: optimize && boxed_ty.is_unpin(tcx, typing_env),
global: this.ty.is_box_global(tcx),
});
}
}
result
}
};
debug!(
"pointee_info_at (offset={:?}, type kind: {:?}) => {:?}",
offset,
this.ty.kind(),
pointee_info
);
pointee_info
}
fn is_adt(this: TyAndLayout<'tcx>) -> bool {
matches!(this.ty.kind(), ty::Adt(..))
}
fn is_never(this: TyAndLayout<'tcx>) -> bool {
matches!(this.ty.kind(), ty::Never)
}
fn is_tuple(this: TyAndLayout<'tcx>) -> bool {
matches!(this.ty.kind(), ty::Tuple(..))
}
fn is_unit(this: TyAndLayout<'tcx>) -> bool {
matches!(this.ty.kind(), ty::Tuple(list) if list.len() == 0)
}
fn is_transparent(this: TyAndLayout<'tcx>) -> bool {
matches!(this.ty.kind(), ty::Adt(def, _) if def.repr().transparent())
}
}
/// Calculates whether a function's ABI can unwind or not.
///
/// This takes two primary parameters:
///
/// * `fn_def_id` - the `DefId` of the function. If this is provided then we can
/// determine more precisely if the function can unwind. If this is not provided
/// then we will only infer whether the function can unwind or not based on the
/// ABI of the function. For example, a function marked with `#[rustc_nounwind]`
/// is known to not unwind even if it's using Rust ABI.
///
/// * `abi` - this is the ABI that the function is defined with. This is the
/// primary factor for determining whether a function can unwind or not.
///
/// Note that in this case unwinding is not necessarily panicking in Rust. Rust
/// panics are implemented with unwinds on most platform (when
/// `-Cpanic=unwind`), but this also accounts for `-Cpanic=abort` build modes.
/// Notably unwinding is disallowed for more non-Rust ABIs unless it's
/// specifically in the name (e.g. `"C-unwind"`). Unwinding within each ABI is
/// defined for each ABI individually, but it always corresponds to some form of
/// stack-based unwinding (the exact mechanism of which varies
/// platform-by-platform).
///
/// Rust functions are classified whether or not they can unwind based on the
/// active "panic strategy". In other words Rust functions are considered to
/// unwind in `-Cpanic=unwind` mode and cannot unwind in `-Cpanic=abort` mode.
/// Note that Rust supports intermingling panic=abort and panic=unwind code, but
/// only if the final panic mode is panic=abort. In this scenario any code
/// previously compiled assuming that a function can unwind is still correct, it
/// just never happens to actually unwind at runtime.
///
/// This function's answer to whether or not a function can unwind is quite
/// impactful throughout the compiler. This affects things like:
///
/// * Calling a function which can't unwind means codegen simply ignores any
/// associated unwinding cleanup.
/// * Calling a function which can unwind from a function which can't unwind
/// causes the `abort_unwinding_calls` MIR pass to insert a landing pad that
/// aborts the process.
/// * This affects whether functions have the LLVM `nounwind` attribute, which
/// affects various optimizations and codegen.
#[inline]
#[tracing::instrument(level = "debug", skip(tcx))]
pub fn fn_can_unwind(tcx: TyCtxt<'_>, fn_def_id: Option<DefId>, abi: ExternAbi) -> bool {
if let Some(did) = fn_def_id {
// Special attribute for functions which can't unwind.
if tcx.codegen_fn_attrs(did).flags.contains(CodegenFnAttrFlags::NEVER_UNWIND) {
return false;
}
// With `-C panic=abort`, all non-FFI functions are required to not unwind.
//
// Note that this is true regardless ABI specified on the function -- a `extern "C-unwind"`
// function defined in Rust is also required to abort.
if tcx.sess.panic_strategy() == PanicStrategy::Abort && !tcx.is_foreign_item(did) {
return false;
}
// With -Z panic-in-drop=abort, drop_in_place never unwinds.
//
// This is not part of `codegen_fn_attrs` as it can differ between crates
// and therefore cannot be computed in core.
if tcx.sess.opts.unstable_opts.panic_in_drop == PanicStrategy::Abort
&& tcx.is_lang_item(did, LangItem::DropInPlace)
{
return false;
}
}
// Otherwise if this isn't special then unwinding is generally determined by
// the ABI of the itself. ABIs like `C` have variants which also
// specifically allow unwinding (`C-unwind`), but not all platform-specific
// ABIs have such an option. Otherwise the only other thing here is Rust
// itself, and those ABIs are determined by the panic strategy configured
// for this compilation.
use ExternAbi::*;
match abi {
C { unwind }
| System { unwind }
| Cdecl { unwind }
| Stdcall { unwind }
| Fastcall { unwind }
| Vectorcall { unwind }
| Thiscall { unwind }
| Aapcs { unwind }
| Win64 { unwind }
| SysV64 { unwind } => unwind,
PtxKernel
| Msp430Interrupt
| X86Interrupt
| GpuKernel
| EfiApi
| AvrInterrupt
| AvrNonBlockingInterrupt
| RiscvInterruptM
| RiscvInterruptS
| CCmseNonSecureCall
| CCmseNonSecureEntry
| Unadjusted => false,
Rust | RustCall | RustCold | RustIntrinsic => {
tcx.sess.panic_strategy() == PanicStrategy::Unwind
}
}
}
/// Error produced by attempting to compute or adjust a `FnAbi`.
#[derive(Copy, Clone, Debug, HashStable)]
pub enum FnAbiError<'tcx> {
/// Error produced by a `layout_of` call, while computing `FnAbi` initially.
Layout(LayoutError<'tcx>),
}
impl<'a, 'b, G: EmissionGuarantee> Diagnostic<'a, G> for FnAbiError<'b> {
fn into_diag(self, dcx: DiagCtxtHandle<'a>, level: Level) -> Diag<'a, G> {
match self {
Self::Layout(e) => e.into_diagnostic().into_diag(dcx, level),
}
}
}
// FIXME(eddyb) maybe use something like this for an unified `fn_abi_of`, not
// just for error handling.
#[derive(Debug)]
pub enum FnAbiRequest<'tcx> {
OfFnPtr { sig: ty::PolyFnSig<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
OfInstance { instance: ty::Instance<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
}
/// Trait for contexts that want to be able to compute `FnAbi`s.
/// This automatically gives access to `FnAbiOf`, through a blanket `impl`.
pub trait FnAbiOfHelpers<'tcx>: LayoutOfHelpers<'tcx> {
/// The `&FnAbi`-wrapping type (or `&FnAbi` itself), which will be
/// returned from `fn_abi_of_*` (see also `handle_fn_abi_err`).
type FnAbiOfResult: MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>> = &'tcx FnAbi<'tcx, Ty<'tcx>>;
/// Helper used for `fn_abi_of_*`, to adapt `tcx.fn_abi_of_*(...)` into a
/// `Self::FnAbiOfResult` (which does not need to be a `Result<...>`).
///
/// Most `impl`s, which propagate `FnAbiError`s, should simply return `err`,
/// but this hook allows e.g. codegen to return only `&FnAbi` from its
/// `cx.fn_abi_of_*(...)`, without any `Result<...>` around it to deal with
/// (and any `FnAbiError`s are turned into fatal errors or ICEs).
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
span: Span,
fn_abi_request: FnAbiRequest<'tcx>,
) -> <Self::FnAbiOfResult as MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>>::Error;
}
/// Blanket extension trait for contexts that can compute `FnAbi`s.
pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> {
/// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
///
/// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
/// instead, where the instance is an `InstanceKind::Virtual`.
#[inline]
fn fn_abi_of_fn_ptr(
&self,
sig: ty::PolyFnSig<'tcx>,
extra_args: &'tcx ty::List<Ty<'tcx>>,
) -> Self::FnAbiOfResult {
// FIXME(eddyb) get a better `span` here.
let span = self.layout_tcx_at_span();
let tcx = self.tcx().at(span);
MaybeResult::from(
tcx.fn_abi_of_fn_ptr(self.typing_env().as_query_input((sig, extra_args))).map_err(
|err| self.handle_fn_abi_err(*err, span, FnAbiRequest::OfFnPtr { sig, extra_args }),
),
)
}
/// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
/// direct calls to an `fn`.
///
/// NB: that includes virtual calls, which are represented by "direct calls"
/// to an `InstanceKind::Virtual` instance (of `<dyn Trait as Trait>::fn`).
#[inline]
#[tracing::instrument(level = "debug", skip(self))]
fn fn_abi_of_instance(
&self,
instance: ty::Instance<'tcx>,
extra_args: &'tcx ty::List<Ty<'tcx>>,
) -> Self::FnAbiOfResult {
// FIXME(eddyb) get a better `span` here.
let span = self.layout_tcx_at_span();
let tcx = self.tcx().at(span);
MaybeResult::from(
tcx.fn_abi_of_instance(self.typing_env().as_query_input((instance, extra_args)))
.map_err(|err| {
// HACK(eddyb) at least for definitions of/calls to `Instance`s,
// we can get some kind of span even if one wasn't provided.
// However, we don't do this early in order to avoid calling
// `def_span` unconditionally (which may have a perf penalty).
let span =
if !span.is_dummy() { span } else { tcx.def_span(instance.def_id()) };
self.handle_fn_abi_err(
*err,
span,
FnAbiRequest::OfInstance { instance, extra_args },
)
}),
)
}
}
impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {}
impl<'tcx> TyCtxt<'tcx> {
pub fn offset_of_subfield<I>(
self,
typing_env: ty::TypingEnv<'tcx>,
mut layout: TyAndLayout<'tcx>,
indices: I,
) -> Size
where
I: Iterator<Item = (VariantIdx, FieldIdx)>,
{
let cx = LayoutCx::new(self, typing_env);
let mut offset = Size::ZERO;
for (variant, field) in indices {
layout = layout.for_variant(&cx, variant);
let index = field.index();
offset += layout.fields.offset(index);
layout = layout.field(&cx, index);
if !layout.is_sized() {
// If it is not sized, then the tail must still have at least a known static alignment.
let tail = self.struct_tail_for_codegen(layout.ty, typing_env);
if !matches!(tail.kind(), ty::Slice(..)) {
bug!(
"offset of not-statically-aligned field (type {:?}) cannot be computed statically",
layout.ty
);
}
}
}
offset
}
}