1
Fork 0
rust/compiler/rustc_const_eval/src/util/check_validity_requirement.rs

170 lines
6.8 KiB
Rust

use rustc_abi::{BackendRepr, FieldsShape, Scalar, Variants};
use rustc_middle::bug;
use rustc_middle::ty::layout::{
HasTyCtxt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, ValidityRequirement,
};
use rustc_middle::ty::{PseudoCanonicalInput, Ty, TyCtxt};
use crate::const_eval::{CanAccessMutGlobal, CheckAlignment, CompileTimeMachine};
use crate::interpret::{InterpCx, MemoryKind};
/// Determines if this type permits "raw" initialization by just transmuting some memory into an
/// instance of `T`.
///
/// `init_kind` indicates if the memory is zero-initialized or left uninitialized. We assume
/// uninitialized memory is mitigated by filling it with 0x01, which reduces the chance of causing
/// LLVM UB.
///
/// By default we check whether that operation would cause *LLVM UB*, i.e., whether the LLVM IR we
/// generate has UB or not. This is a mitigation strategy, which is why we are okay with accepting
/// Rust UB as long as there is no risk of miscompilations. The `strict_init_checks` can be set to
/// do a full check against Rust UB instead (in which case we will also ignore the 0x01-filling and
/// to the full uninit check).
pub fn check_validity_requirement<'tcx>(
tcx: TyCtxt<'tcx>,
kind: ValidityRequirement,
input: PseudoCanonicalInput<'tcx, Ty<'tcx>>,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let layout = tcx.layout_of(input)?;
// There is nothing strict or lax about inhabitedness.
if kind == ValidityRequirement::Inhabited {
return Ok(!layout.is_uninhabited());
}
let layout_cx = LayoutCx::new(tcx, input.typing_env);
if kind == ValidityRequirement::Uninit || tcx.sess.opts.unstable_opts.strict_init_checks {
check_validity_requirement_strict(layout, &layout_cx, kind)
} else {
check_validity_requirement_lax(layout, &layout_cx, kind)
}
}
/// Implements the 'strict' version of the [`check_validity_requirement`] checks; see that function
/// for details.
fn check_validity_requirement_strict<'tcx>(
ty: TyAndLayout<'tcx>,
cx: &LayoutCx<'tcx>,
kind: ValidityRequirement,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let machine = CompileTimeMachine::new(CanAccessMutGlobal::No, CheckAlignment::Error);
let mut cx = InterpCx::new(cx.tcx(), rustc_span::DUMMY_SP, cx.typing_env, machine);
let allocated = cx
.allocate(ty, MemoryKind::Machine(crate::const_eval::MemoryKind::Heap))
.expect("OOM: failed to allocate for uninit check");
if kind == ValidityRequirement::Zero {
cx.write_bytes_ptr(
allocated.ptr(),
std::iter::repeat(0_u8).take(ty.layout.size().bytes_usize()),
)
.expect("failed to write bytes for zero valid check");
}
// Assume that if it failed, it's a validation failure.
// This does *not* actually check that references are dereferenceable, but since all types that
// require dereferenceability also require non-null, we don't actually get any false negatives
// due to this.
// The value we are validating is temporary and discarded at the end of this function, so
// there is no point in reseting provenance and padding.
Ok(cx
.validate_operand(
&allocated.into(),
/*recursive*/ false,
/*reset_provenance_and_padding*/ false,
)
.discard_err()
.is_some())
}
/// Implements the 'lax' (default) version of the [`check_validity_requirement`] checks; see that
/// function for details.
fn check_validity_requirement_lax<'tcx>(
this: TyAndLayout<'tcx>,
cx: &LayoutCx<'tcx>,
init_kind: ValidityRequirement,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let scalar_allows_raw_init = move |s: Scalar| -> bool {
match init_kind {
ValidityRequirement::Inhabited => {
bug!("ValidityRequirement::Inhabited should have been handled above")
}
ValidityRequirement::Zero => {
// The range must contain 0.
s.valid_range(cx).contains(0)
}
ValidityRequirement::UninitMitigated0x01Fill => {
// The range must include an 0x01-filled buffer.
let mut val: u128 = 0x01;
for _ in 1..s.size(cx).bytes() {
// For sizes >1, repeat the 0x01.
val = (val << 8) | 0x01;
}
s.valid_range(cx).contains(val)
}
ValidityRequirement::Uninit => {
bug!("ValidityRequirement::Uninit should have been handled above")
}
}
};
// Check the ABI.
let valid = match this.backend_repr {
BackendRepr::Uninhabited => false, // definitely UB
BackendRepr::Scalar(s) => scalar_allows_raw_init(s),
BackendRepr::ScalarPair(s1, s2) => scalar_allows_raw_init(s1) && scalar_allows_raw_init(s2),
BackendRepr::Vector { element: s, count } => count == 0 || scalar_allows_raw_init(s),
BackendRepr::Memory { .. } => true, // Fields are checked below.
};
if !valid {
// This is definitely not okay.
return Ok(false);
}
// Special magic check for references and boxes (i.e., special pointer types).
if let Some(pointee) = this.ty.builtin_deref(false) {
let pointee = cx.layout_of(pointee)?;
// We need to ensure that the LLVM attributes `aligned` and `dereferenceable(size)` are satisfied.
if pointee.align.abi.bytes() > 1 {
// 0x01-filling is not aligned.
return Ok(false);
}
if pointee.size.bytes() > 0 {
// A 'fake' integer pointer is not sufficiently dereferenceable.
return Ok(false);
}
}
// If we have not found an error yet, we need to recursively descend into fields.
match &this.fields {
FieldsShape::Primitive | FieldsShape::Union { .. } => {}
FieldsShape::Array { .. } => {
// Arrays never have scalar layout in LLVM, so if the array is not actually
// accessed, there is no LLVM UB -- therefore we can skip this.
}
FieldsShape::Arbitrary { offsets, .. } => {
for idx in 0..offsets.len() {
if !check_validity_requirement_lax(this.field(cx, idx), cx, init_kind)? {
// We found a field that is unhappy with this kind of initialization.
return Ok(false);
}
}
}
}
match &this.variants {
Variants::Empty => return Ok(false),
Variants::Single { .. } => {
// All fields of this single variant have already been checked above, there is nothing
// else to do.
}
Variants::Multiple { .. } => {
// We cannot tell LLVM anything about the details of this multi-variant layout, so
// invalid values "hidden" inside the variant cannot cause LLVM trouble.
}
}
Ok(true)
}