rust/src/librustdoc/html/static/js/search.js
binarycat cd46ff6c05 rustdoc search: allow queries to end in an empty path segment
fixes https://github.com/rust-lang/rust/issues/129707

this can be used to show all items in a module,
or all associated items for a type.
currently sufferes slightly due to case insensitivity,
so `Option::` will also show items in the `option::` module.

it disables the checking of the last path element,
otherwise only items with short names will be shown
2024-11-15 16:32:40 -06:00

5275 lines
205 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ignore-tidy-filelength
/* global addClass, getNakedUrl, getSettingValue */
/* global onEachLazy, removeClass, searchState, browserSupportsHistoryApi, exports */
"use strict";
// polyfill
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/toSpliced
if (!Array.prototype.toSpliced) {
// Can't use arrow functions, because we want `this`
Array.prototype.toSpliced = function() {
const me = this.slice();
Array.prototype.splice.apply(me, arguments);
return me;
};
}
function onEachBtwn(arr, func, funcBtwn) {
let skipped = true;
for (const value of arr) {
if (!skipped) {
funcBtwn(value);
}
skipped = func(value);
}
}
// ==================== Core search logic begin ====================
// This mapping table should match the discriminants of
// `rustdoc::formats::item_type::ItemType` type in Rust.
const itemTypes = [
"keyword",
"primitive",
"mod",
"externcrate",
"import",
"struct", // 5
"enum",
"fn",
"type",
"static",
"trait", // 10
"impl",
"tymethod",
"method",
"structfield",
"variant", // 15
"macro",
"associatedtype",
"constant",
"associatedconstant",
"union", // 20
"foreigntype",
"existential",
"attr",
"derive",
"traitalias", // 25
"generic",
];
// used for special search precedence
const TY_PRIMITIVE = itemTypes.indexOf("primitive");
const TY_GENERIC = itemTypes.indexOf("generic");
const TY_IMPORT = itemTypes.indexOf("import");
const TY_TRAIT = itemTypes.indexOf("trait");
const ROOT_PATH = typeof window !== "undefined" ? window.rootPath : "../";
// Hard limit on how deep to recurse into generics when doing type-driven search.
// This needs limited, partially because
// a search for `Ty` shouldn't match `WithInfcx<ParamEnvAnd<Vec<ConstTy<Interner<Ty=Ty>>>>>`,
// but mostly because this is the simplest and most principled way to limit the number
// of permutations we need to check.
const UNBOXING_LIMIT = 5;
// used for search query verification
const REGEX_IDENT = /\p{ID_Start}\p{ID_Continue}*|_\p{ID_Continue}+/uy;
const REGEX_INVALID_TYPE_FILTER = /[^a-z]/ui;
const MAX_RESULTS = 200;
const NO_TYPE_FILTER = -1;
/**
* The [edit distance] is a metric for measuring the difference between two strings.
*
* [edit distance]: https://en.wikipedia.org/wiki/Edit_distance
*/
/*
* This function was translated, mostly line-for-line, from
* https://github.com/rust-lang/rust/blob/ff4b772f805ec1e/compiler/rustc_span/src/edit_distance.rs
*
* The current implementation is the restricted Damerau-Levenshtein algorithm. It is restricted
* because it does not permit modifying characters that have already been transposed. The specific
* algorithm should not matter to the caller of the methods, which is why it is not noted in the
* documentation.
*/
const editDistanceState = {
current: [],
prev: [],
prevPrev: [],
calculate: function calculate(a, b, limit) {
// Ensure that `b` is the shorter string, minimizing memory use.
if (a.length < b.length) {
const aTmp = a;
a = b;
b = aTmp;
}
const minDist = a.length - b.length;
// If we know the limit will be exceeded, we can return early.
if (minDist > limit) {
return limit + 1;
}
// Strip common prefix.
// We know that `b` is the shorter string, so we don't need to check
// `a.length`.
while (b.length > 0 && b[0] === a[0]) {
a = a.substring(1);
b = b.substring(1);
}
// Strip common suffix.
while (b.length > 0 && b[b.length - 1] === a[a.length - 1]) {
a = a.substring(0, a.length - 1);
b = b.substring(0, b.length - 1);
}
// If either string is empty, the distance is the length of the other.
// We know that `b` is the shorter string, so we don't need to check `a`.
if (b.length === 0) {
return minDist;
}
const aLength = a.length;
const bLength = b.length;
for (let i = 0; i <= bLength; ++i) {
this.current[i] = 0;
this.prev[i] = i;
this.prevPrev[i] = Number.MAX_VALUE;
}
// row by row
for (let i = 1; i <= aLength; ++i) {
this.current[0] = i;
const aIdx = i - 1;
// column by column
for (let j = 1; j <= bLength; ++j) {
const bIdx = j - 1;
// There is no cost to substitute a character with itself.
const substitutionCost = a[aIdx] === b[bIdx] ? 0 : 1;
this.current[j] = Math.min(
// deletion
this.prev[j] + 1,
// insertion
this.current[j - 1] + 1,
// substitution
this.prev[j - 1] + substitutionCost,
);
if ((i > 1) && (j > 1) && (a[aIdx] === b[bIdx - 1]) && (a[aIdx - 1] === b[bIdx])) {
// transposition
this.current[j] = Math.min(
this.current[j],
this.prevPrev[j - 2] + 1,
);
}
}
// Rotate the buffers, reusing the memory
const prevPrevTmp = this.prevPrev;
this.prevPrev = this.prev;
this.prev = this.current;
this.current = prevPrevTmp;
}
// `prev` because we already rotated the buffers.
const distance = this.prev[bLength];
return distance <= limit ? distance : (limit + 1);
},
};
function editDistance(a, b, limit) {
return editDistanceState.calculate(a, b, limit);
}
function isEndCharacter(c) {
return "=,>-])".indexOf(c) !== -1;
}
/**
* Returns `true` if the given `c` character is a separator.
*
* @param {string} c
*
* @return {boolean}
*/
function isSeparatorCharacter(c) {
return c === "," || c === "=";
}
/**
* Returns `true` if the current parser position is starting with "->".
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isReturnArrow(parserState) {
return parserState.userQuery.slice(parserState.pos, parserState.pos + 2) === "->";
}
/**
* Increase current parser position until it doesn't find a whitespace anymore.
*
* @param {ParserState} parserState
*/
function skipWhitespace(parserState) {
while (parserState.pos < parserState.userQuery.length) {
const c = parserState.userQuery[parserState.pos];
if (c !== " ") {
break;
}
parserState.pos += 1;
}
}
/**
* Returns `true` if the previous character is `lookingFor`.
*
* @param {ParserState} parserState
* @param {String} lookingFor
*
* @return {boolean}
*/
function prevIs(parserState, lookingFor) {
let pos = parserState.pos;
while (pos > 0) {
const c = parserState.userQuery[pos - 1];
if (c === lookingFor) {
return true;
} else if (c !== " ") {
break;
}
pos -= 1;
}
return false;
}
/**
* Returns `true` if the last element in the `elems` argument has generics.
*
* @param {Array<QueryElement>} elems
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isLastElemGeneric(elems, parserState) {
return (elems.length > 0 && elems[elems.length - 1].generics.length > 0) ||
prevIs(parserState, ">");
}
function getFilteredNextElem(query, parserState, elems, isInGenerics) {
const start = parserState.pos;
if (parserState.userQuery[parserState.pos] === ":" && !isPathStart(parserState)) {
throw ["Expected type filter before ", ":"];
}
getNextElem(query, parserState, elems, isInGenerics);
if (parserState.userQuery[parserState.pos] === ":" && !isPathStart(parserState)) {
if (parserState.typeFilter !== null) {
throw [
"Unexpected ",
":",
" (expected path after type filter ",
parserState.typeFilter + ":",
")",
];
}
if (elems.length === 0) {
throw ["Expected type filter before ", ":"];
} else if (query.literalSearch) {
throw ["Cannot use quotes on type filter"];
}
// The type filter doesn't count as an element since it's a modifier.
const typeFilterElem = elems.pop();
checkExtraTypeFilterCharacters(start, parserState);
parserState.typeFilter = typeFilterElem.normalizedPathLast;
parserState.pos += 1;
parserState.totalElems -= 1;
query.literalSearch = false;
getNextElem(query, parserState, elems, isInGenerics);
}
}
/**
* This function parses the next query element until it finds `endChar`,
* calling `getNextElem` to collect each element.
*
* If there is no `endChar`, this function will implicitly stop at the end
* without raising an error.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {Array<QueryElement>} elems - This is where the new {QueryElement} will be added.
* @param {string} endChar - This function will stop when it'll encounter this
* character.
* @returns {{foundSeparator: bool}}
*/
function getItemsBefore(query, parserState, elems, endChar) {
let foundStopChar = true;
let foundSeparator = false;
// If this is a generic, keep the outer item's type filter around.
const oldTypeFilter = parserState.typeFilter;
parserState.typeFilter = null;
const oldIsInBinding = parserState.isInBinding;
parserState.isInBinding = null;
// ML-style Higher Order Function notation
//
// a way to search for any closure or fn pointer regardless of
// which closure trait is used
//
// Looks like this:
//
// `option<t>, (t -> u) -> option<u>`
// ^^^^^^
//
// The Rust-style closure notation is implemented in getNextElem
let hofParameters = null;
let extra = "";
if (endChar === ">") {
extra = "<";
} else if (endChar === "]") {
extra = "[";
} else if (endChar === ")") {
extra = "(";
} else if (endChar === "") {
extra = "->";
} else {
extra = endChar;
}
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (c === endChar) {
if (parserState.isInBinding) {
throw ["Unexpected ", endChar, " after ", "="];
}
break;
} else if (endChar !== "" && isReturnArrow(parserState)) {
// ML-style HOF notation only works when delimited in something,
// otherwise a function arrow starts the return type of the top
if (parserState.isInBinding) {
throw ["Unexpected ", "->", " after ", "="];
}
hofParameters = [...elems];
elems.length = 0;
parserState.pos += 2;
foundStopChar = true;
foundSeparator = false;
continue;
} else if (c === " ") {
parserState.pos += 1;
continue;
} else if (isSeparatorCharacter(c)) {
parserState.pos += 1;
foundStopChar = true;
foundSeparator = true;
continue;
} else if (c === ":" && isPathStart(parserState)) {
throw ["Unexpected ", "::", ": paths cannot start with ", "::"];
} else if (isEndCharacter(c)) {
throw ["Unexpected ", c, " after ", extra];
}
if (!foundStopChar) {
let extra = [];
if (isLastElemGeneric(query.elems, parserState)) {
extra = [" after ", ">"];
} else if (prevIs(parserState, "\"")) {
throw ["Cannot have more than one element if you use quotes"];
}
if (endChar !== "") {
throw [
"Expected ",
",",
", ",
"=",
", or ",
endChar,
...extra,
", found ",
c,
];
}
throw [
"Expected ",
",",
" or ",
"=",
...extra,
", found ",
c,
];
}
const posBefore = parserState.pos;
getFilteredNextElem(query, parserState, elems, endChar !== "");
if (endChar !== "" && parserState.pos >= parserState.length) {
throw ["Unclosed ", extra];
}
// This case can be encountered if `getNextElem` encountered a "stop character"
// right from the start. For example if you have `,,` or `<>`. In this case,
// we simply move up the current position to continue the parsing.
if (posBefore === parserState.pos) {
parserState.pos += 1;
}
foundStopChar = false;
}
if (parserState.pos >= parserState.length && endChar !== "") {
throw ["Unclosed ", extra];
}
// We are either at the end of the string or on the `endChar` character, let's move
// forward in any case.
parserState.pos += 1;
if (hofParameters) {
// Commas in a HOF don't cause wrapping parens to become a tuple.
// If you want a one-tuple with a HOF in it, write `((a -> b),)`.
foundSeparator = false;
// HOFs can't have directly nested bindings.
if ([...elems, ...hofParameters].some(x => x.bindingName)
|| parserState.isInBinding) {
throw ["Unexpected ", "=", " within ", "->"];
}
// HOFs are represented the same way closures are.
// The arguments are wrapped in a tuple, and the output
// is a binding, even though the compiler doesn't technically
// represent fn pointers that way.
const hofElem = makePrimitiveElement("->", {
generics: hofParameters,
bindings: new Map([["output", [...elems]]]),
typeFilter: null,
});
elems.length = 0;
elems[0] = hofElem;
}
parserState.typeFilter = oldTypeFilter;
parserState.isInBinding = oldIsInBinding;
return { foundSeparator };
}
/**
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {Array<QueryElement>} elems - This is where the new {QueryElement} will be added.
* @param {boolean} isInGenerics
*/
function getNextElem(query, parserState, elems, isInGenerics) {
const generics = [];
skipWhitespace(parserState);
let start = parserState.pos;
let end;
if ("[(".indexOf(parserState.userQuery[parserState.pos]) !== -1) {
let endChar = ")";
let name = "()";
let friendlyName = "tuple";
if (parserState.userQuery[parserState.pos] === "[") {
endChar = "]";
name = "[]";
friendlyName = "slice";
}
parserState.pos += 1;
const { foundSeparator } = getItemsBefore(query, parserState, generics, endChar);
const typeFilter = parserState.typeFilter;
const bindingName = parserState.isInBinding;
parserState.typeFilter = null;
parserState.isInBinding = null;
for (const gen of generics) {
if (gen.bindingName !== null) {
throw ["Type parameter ", "=", ` cannot be within ${friendlyName} `, name];
}
}
if (name === "()" && !foundSeparator && generics.length === 1
&& typeFilter === null) {
elems.push(generics[0]);
} else if (name === "()" && generics.length === 1 && generics[0].name === "->") {
// `primitive:(a -> b)` parser to `primitive:"->"<output=b, (a,)>`
// not `primitive:"()"<"->"<output=b, (a,)>>`
generics[0].typeFilter = typeFilter;
elems.push(generics[0]);
} else {
if (typeFilter !== null && typeFilter !== "primitive") {
throw [
"Invalid search type: primitive ",
name,
" and ",
typeFilter,
" both specified",
];
}
parserState.totalElems += 1;
if (isInGenerics) {
parserState.genericsElems += 1;
}
elems.push(makePrimitiveElement(name, { bindingName, generics }));
}
} else if (parserState.userQuery[parserState.pos] === "&") {
if (parserState.typeFilter !== null && parserState.typeFilter !== "primitive") {
throw [
"Invalid search type: primitive ",
"&",
" and ",
parserState.typeFilter,
" both specified",
];
}
parserState.typeFilter = null;
parserState.pos += 1;
let c = parserState.userQuery[parserState.pos];
while (c === " " && parserState.pos < parserState.length) {
parserState.pos += 1;
c = parserState.userQuery[parserState.pos];
}
const generics = [];
if (parserState.userQuery.slice(parserState.pos, parserState.pos + 3) === "mut") {
generics.push(makePrimitiveElement("mut", { typeFilter: "keyword" }));
parserState.pos += 3;
c = parserState.userQuery[parserState.pos];
}
while (c === " " && parserState.pos < parserState.length) {
parserState.pos += 1;
c = parserState.userQuery[parserState.pos];
}
if (!isEndCharacter(c) && parserState.pos < parserState.length) {
getFilteredNextElem(query, parserState, generics, isInGenerics);
}
elems.push(makePrimitiveElement("reference", { generics }));
} else {
const isStringElem = parserState.userQuery[start] === "\"";
// We handle the strings on their own mostly to make code easier to follow.
if (isStringElem) {
start += 1;
getStringElem(query, parserState, isInGenerics);
end = parserState.pos - 1;
} else {
end = getIdentEndPosition(parserState);
}
if (parserState.pos < parserState.length &&
parserState.userQuery[parserState.pos] === "<"
) {
if (start >= end) {
throw ["Found generics without a path"];
}
parserState.pos += 1;
getItemsBefore(query, parserState, generics, ">");
} else if (parserState.pos < parserState.length &&
parserState.userQuery[parserState.pos] === "("
) {
if (start >= end) {
throw ["Found generics without a path"];
}
if (parserState.isInBinding) {
throw ["Unexpected ", "(", " after ", "="];
}
parserState.pos += 1;
const typeFilter = parserState.typeFilter;
parserState.typeFilter = null;
getItemsBefore(query, parserState, generics, ")");
skipWhitespace(parserState);
if (isReturnArrow(parserState)) {
parserState.pos += 2;
skipWhitespace(parserState);
getFilteredNextElem(query, parserState, generics, isInGenerics);
generics[generics.length - 1].bindingName = makePrimitiveElement("output");
} else {
generics.push(makePrimitiveElement(null, {
bindingName: makePrimitiveElement("output"),
typeFilter: null,
}));
}
parserState.typeFilter = typeFilter;
}
if (isStringElem) {
skipWhitespace(parserState);
}
if (start >= end && generics.length === 0) {
return;
}
if (parserState.userQuery[parserState.pos] === "=") {
if (parserState.isInBinding) {
throw ["Cannot write ", "=", " twice in a binding"];
}
if (!isInGenerics) {
throw ["Type parameter ", "=", " must be within generics list"];
}
const name = parserState.userQuery.slice(start, end).trim();
if (name === "!") {
throw ["Type parameter ", "=", " key cannot be ", "!", " never type"];
}
if (name.includes("!")) {
throw ["Type parameter ", "=", " key cannot be ", "!", " macro"];
}
if (name.includes("::")) {
throw ["Type parameter ", "=", " key cannot contain ", "::", " path"];
}
if (name.includes(":")) {
throw ["Type parameter ", "=", " key cannot contain ", ":", " type"];
}
parserState.isInBinding = { name, generics };
} else {
elems.push(
createQueryElement(
query,
parserState,
parserState.userQuery.slice(start, end),
generics,
isInGenerics,
),
);
}
}
}
/**
* Checks that the type filter doesn't have unwanted characters like `<>` (which are ignored
* if empty).
*
* @param {ParserState} parserState
*/
function checkExtraTypeFilterCharacters(start, parserState) {
const query = parserState.userQuery.slice(start, parserState.pos).trim();
const match = query.match(REGEX_INVALID_TYPE_FILTER);
if (match) {
throw [
"Unexpected ",
match[0],
" in type filter (before ",
":",
")",
];
}
}
/**
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {string} name - Name of the query element.
* @param {Array<QueryElement>} generics - List of generics of this query element.
*
* @return {QueryElement} - The newly created `QueryElement`.
*/
function createQueryElement(query, parserState, name, generics, isInGenerics) {
const path = name.trim();
if (path.length === 0 && generics.length === 0) {
throw ["Unexpected ", parserState.userQuery[parserState.pos]];
}
if (query.literalSearch && parserState.totalElems - parserState.genericsElems > 0) {
throw ["Cannot have more than one element if you use quotes"];
}
const typeFilter = parserState.typeFilter;
parserState.typeFilter = null;
if (name.trim() === "!") {
if (typeFilter !== null && typeFilter !== "primitive") {
throw [
"Invalid search type: primitive never type ",
"!",
" and ",
typeFilter,
" both specified",
];
}
if (generics.length !== 0) {
throw [
"Never type ",
"!",
" does not accept generic parameters",
];
}
const bindingName = parserState.isInBinding;
parserState.isInBinding = null;
return makePrimitiveElement("never", { bindingName });
}
const quadcolon = /::\s*::/.exec(path);
if (path.startsWith("::")) {
throw ["Paths cannot start with ", "::"];
} else if (quadcolon !== null) {
throw ["Unexpected ", quadcolon[0]];
}
const pathSegments = path.split(/(?:::\s*)|(?:\s+(?:::\s*)?)/).map(x => x.toLowerCase());
// In case we only have something like `<p>`, there is no name.
if (pathSegments.length === 0
|| (pathSegments.length === 1 && pathSegments[0] === "")) {
if (generics.length > 0 || prevIs(parserState, ">")) {
throw ["Found generics without a path"];
} else {
throw ["Unexpected ", parserState.userQuery[parserState.pos]];
}
}
for (const [i, pathSegment] of pathSegments.entries()) {
if (pathSegment === "!") {
if (i !== 0) {
throw ["Never type ", "!", " is not associated item"];
}
pathSegments[i] = "never";
}
}
parserState.totalElems += 1;
if (isInGenerics) {
parserState.genericsElems += 1;
}
const bindingName = parserState.isInBinding;
parserState.isInBinding = null;
const bindings = new Map();
const pathLast = pathSegments[pathSegments.length - 1];
return {
name: name.trim(),
id: null,
fullPath: pathSegments,
pathWithoutLast: pathSegments.slice(0, pathSegments.length - 1),
pathLast,
normalizedPathLast: pathLast.replace(/_/g, ""),
generics: generics.filter(gen => {
// Syntactically, bindings are parsed as generics,
// but the query engine treats them differently.
if (gen.bindingName !== null) {
if (gen.name !== null) {
gen.bindingName.generics.unshift(gen);
}
bindings.set(
gen.bindingName.name.toLowerCase().replace(/_/g, ""),
gen.bindingName.generics,
);
return false;
}
return true;
}),
bindings,
typeFilter,
bindingName,
};
}
function makePrimitiveElement(name, extra) {
return Object.assign({
name,
id: null,
fullPath: [name],
pathWithoutLast: [],
pathLast: name,
normalizedPathLast: name,
generics: [],
bindings: new Map(),
typeFilter: "primitive",
bindingName: null,
}, extra);
}
/**
* If we encounter a `"`, then we try to extract the string
* from it until we find another `"`.
*
* This function will throw an error in the following cases:
* * There is already another string element.
* * We are parsing a generic argument.
* * There is more than one element.
* * There is no closing `"`.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {boolean} isInGenerics
*/
function getStringElem(query, parserState, isInGenerics) {
if (isInGenerics) {
throw ["Unexpected ", "\"", " in generics"];
} else if (query.literalSearch) {
throw ["Cannot have more than one literal search element"];
} else if (parserState.totalElems - parserState.genericsElems > 0) {
throw ["Cannot use literal search when there is more than one element"];
}
parserState.pos += 1;
const start = parserState.pos;
const end = getIdentEndPosition(parserState);
if (parserState.pos >= parserState.length) {
throw ["Unclosed ", "\""];
} else if (parserState.userQuery[end] !== "\"") {
throw ["Unexpected ", parserState.userQuery[end], " in a string element"];
} else if (start === end) {
throw ["Cannot have empty string element"];
}
// To skip the quote at the end.
parserState.pos += 1;
query.literalSearch = true;
}
/**
* This function goes through all characters until it reaches an invalid ident
* character or the end of the query. It returns the position of the last
* character of the ident.
*
* @param {ParserState} parserState
*
* @return {integer}
*/
function getIdentEndPosition(parserState) {
let afterIdent = consumeIdent(parserState);
let end = parserState.pos;
let macroExclamation = -1;
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (c === "!") {
if (macroExclamation !== -1) {
throw ["Cannot have more than one ", "!", " in an ident"];
} else if (parserState.pos + 1 < parserState.length) {
const pos = parserState.pos;
parserState.pos++;
const beforeIdent = consumeIdent(parserState);
parserState.pos = pos;
if (beforeIdent) {
throw ["Unexpected ", "!", ": it can only be at the end of an ident"];
}
}
if (afterIdent) macroExclamation = parserState.pos;
} else if (isPathSeparator(c)) {
if (c === ":") {
if (!isPathStart(parserState)) {
break;
}
// Skip current ":".
parserState.pos += 1;
} else {
while (parserState.pos + 1 < parserState.length) {
const next_c = parserState.userQuery[parserState.pos + 1];
if (next_c !== " ") {
break;
}
parserState.pos += 1;
}
}
if (macroExclamation !== -1) {
throw ["Cannot have associated items in macros"];
}
} else if (
c === "[" ||
c === "(" ||
isEndCharacter(c) ||
isSpecialStartCharacter(c) ||
isSeparatorCharacter(c)
) {
break;
} else if (parserState.pos > 0) {
throw ["Unexpected ", c, " after ", parserState.userQuery[parserState.pos - 1],
" (not a valid identifier)"];
} else {
throw ["Unexpected ", c, " (not a valid identifier)"];
}
parserState.pos += 1;
afterIdent = consumeIdent(parserState);
end = parserState.pos;
}
if (macroExclamation !== -1) {
if (parserState.typeFilter === null) {
parserState.typeFilter = "macro";
} else if (parserState.typeFilter !== "macro") {
throw [
"Invalid search type: macro ",
"!",
" and ",
parserState.typeFilter,
" both specified",
];
}
end = macroExclamation;
}
return end;
}
function isSpecialStartCharacter(c) {
return "<\"".indexOf(c) !== -1;
}
/**
* Returns `true` if the current parser position is starting with "::".
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isPathStart(parserState) {
return parserState.userQuery.slice(parserState.pos, parserState.pos + 2) === "::";
}
/**
* If the current parser position is at the beginning of an identifier,
* move the position to the end of it and return `true`. Otherwise, return `false`.
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function consumeIdent(parserState) {
REGEX_IDENT.lastIndex = parserState.pos;
const match = parserState.userQuery.match(REGEX_IDENT);
if (match) {
parserState.pos += match[0].length;
return true;
}
return false;
}
/**
* Returns `true` if the given `c` character is a path separator. For example
* `:` in `a::b` or a whitespace in `a b`.
*
* @param {string} c
*
* @return {boolean}
*/
function isPathSeparator(c) {
return c === ":" || c === " ";
}
class VlqHexDecoder {
constructor(string, cons) {
this.string = string;
this.cons = cons;
this.offset = 0;
this.backrefQueue = [];
}
// call after consuming `{`
decodeList() {
let c = this.string.charCodeAt(this.offset);
const ret = [];
while (c !== 125) { // 125 = "}"
ret.push(this.decode());
c = this.string.charCodeAt(this.offset);
}
this.offset += 1; // eat cb
return ret;
}
// consumes and returns a list or integer
decode() {
let n = 0;
let c = this.string.charCodeAt(this.offset);
if (c === 123) { // 123 = "{"
this.offset += 1;
return this.decodeList();
}
while (c < 96) { // 96 = "`"
n = (n << 4) | (c & 0xF);
this.offset += 1;
c = this.string.charCodeAt(this.offset);
}
// last character >= la
n = (n << 4) | (c & 0xF);
const [sign, value] = [n & 1, n >> 1];
this.offset += 1;
return sign ? -value : value;
}
next() {
const c = this.string.charCodeAt(this.offset);
// sixteen characters after "0" are backref
if (c >= 48 && c < 64) { // 48 = "0", 64 = "@"
this.offset += 1;
return this.backrefQueue[c - 48];
}
// special exception: 0 doesn't use backref encoding
// it's already one character, and it's always nullish
if (c === 96) { // 96 = "`"
this.offset += 1;
return this.cons(0);
}
const result = this.cons(this.decode());
this.backrefQueue.unshift(result);
if (this.backrefQueue.length > 16) {
this.backrefQueue.pop();
}
return result;
}
}
class RoaringBitmap {
constructor(str) {
const strdecoded = atob(str);
const u8array = new Uint8Array(strdecoded.length);
for (let j = 0; j < strdecoded.length; ++j) {
u8array[j] = strdecoded.charCodeAt(j);
}
const has_runs = u8array[0] === 0x3b;
const size = has_runs ?
((u8array[2] | (u8array[3] << 8)) + 1) :
((u8array[4] | (u8array[5] << 8) | (u8array[6] << 16) | (u8array[7] << 24)));
let i = has_runs ? 4 : 8;
let is_run;
if (has_runs) {
const is_run_len = Math.floor((size + 7) / 8);
is_run = u8array.slice(i, i + is_run_len);
i += is_run_len;
} else {
is_run = new Uint8Array();
}
this.keys = [];
this.cardinalities = [];
for (let j = 0; j < size; ++j) {
this.keys.push(u8array[i] | (u8array[i + 1] << 8));
i += 2;
this.cardinalities.push((u8array[i] | (u8array[i + 1] << 8)) + 1);
i += 2;
}
this.containers = [];
let offsets = null;
if (!has_runs || this.keys.length >= 4) {
offsets = [];
for (let j = 0; j < size; ++j) {
offsets.push(u8array[i] | (u8array[i + 1] << 8) | (u8array[i + 2] << 16) |
(u8array[i + 3] << 24));
i += 4;
}
}
for (let j = 0; j < size; ++j) {
if (offsets && offsets[j] !== i) {
console.log(this.containers);
throw new Error(`corrupt bitmap ${j}: ${i} / ${offsets[j]}`);
}
if (is_run[j >> 3] & (1 << (j & 0x7))) {
const runcount = (u8array[i] | (u8array[i + 1] << 8));
i += 2;
this.containers.push(new RoaringBitmapRun(
runcount,
u8array.slice(i, i + (runcount * 4)),
));
i += runcount * 4;
} else if (this.cardinalities[j] >= 4096) {
this.containers.push(new RoaringBitmapBits(u8array.slice(i, i + 8192)));
i += 8192;
} else {
const end = this.cardinalities[j] * 2;
this.containers.push(new RoaringBitmapArray(
this.cardinalities[j],
u8array.slice(i, i + end),
));
i += end;
}
}
}
contains(keyvalue) {
const key = keyvalue >> 16;
const value = keyvalue & 0xFFFF;
for (let i = 0; i < this.keys.length; ++i) {
if (this.keys[i] === key) {
return this.containers[i].contains(value);
}
}
return false;
}
}
class RoaringBitmapRun {
constructor(runcount, array) {
this.runcount = runcount;
this.array = array;
}
contains(value) {
const l = this.runcount * 4;
for (let i = 0; i < l; i += 4) {
const start = this.array[i] | (this.array[i + 1] << 8);
const lenm1 = this.array[i + 2] | (this.array[i + 3] << 8);
if (value >= start && value <= (start + lenm1)) {
return true;
}
}
return false;
}
}
class RoaringBitmapArray {
constructor(cardinality, array) {
this.cardinality = cardinality;
this.array = array;
}
contains(value) {
const l = this.cardinality * 2;
for (let i = 0; i < l; i += 2) {
const start = this.array[i] | (this.array[i + 1] << 8);
if (value === start) {
return true;
}
}
return false;
}
}
class RoaringBitmapBits {
constructor(array) {
this.array = array;
}
contains(value) {
return !!(this.array[value >> 3] & (1 << (value & 7)));
}
}
/**
* A prefix tree, used for name-based search.
*
* This data structure is used to drive prefix matches,
* such as matching the query "link" to `LinkedList`,
* and Lev-distance matches, such as matching the
* query "hahsmap" to `HashMap`. Substring matches,
* such as "list" to `LinkedList`, are done with a
* tailTable that deep-links into this trie.
*
* children
* : A [sparse array] of subtrees. The array index
* is a charCode.
*
* [sparse array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
* Indexed_collections#sparse_arrays
*
* matches
* : A list of search index IDs for this node.
*
* @typedef {{
* children: [NameTrie],
* matches: [number],
* }}
*/
class NameTrie {
constructor() {
this.children = [];
this.matches = [];
}
insert(name, id, tailTable) {
this.insertSubstring(name, 0, id, tailTable);
}
insertSubstring(name, substart, id, tailTable) {
const l = name.length;
if (substart === l) {
this.matches.push(id);
} else {
const sb = name.charCodeAt(substart);
let child;
if (this.children[sb] !== undefined) {
child = this.children[sb];
} else {
child = new NameTrie();
this.children[sb] = child;
let sste;
if (substart >= 2) {
const tail = name.substring(substart - 2, substart + 1);
if (tailTable.has(tail)) {
sste = tailTable.get(tail);
} else {
sste = [];
tailTable.set(tail, sste);
}
sste.push(child);
}
}
child.insertSubstring(name, substart + 1, id, tailTable);
}
}
search(name, tailTable) {
const results = new Set();
this.searchSubstringPrefix(name, 0, results);
if (results.size < MAX_RESULTS && name.length >= 3) {
const levParams = name.length >= 6 ?
new Lev2TParametricDescription(name.length) :
new Lev1TParametricDescription(name.length);
this.searchLev(name, 0, levParams, results);
const tail = name.substring(0, 3);
if (tailTable.has(tail)) {
for (const entry of tailTable.get(tail)) {
entry.searchSubstringPrefix(name, 3, results);
}
}
}
return [...results];
}
searchSubstringPrefix(name, substart, results) {
const l = name.length;
if (substart === l) {
for (const match of this.matches) {
results.add(match);
}
// breadth-first traversal orders prefix matches by length
let unprocessedChildren = [];
for (const child of this.children) {
if (child) {
unprocessedChildren.push(child);
}
}
let nextSet = [];
while (unprocessedChildren.length !== 0) {
const next = unprocessedChildren.pop();
for (const child of next.children) {
if (child) {
nextSet.push(child);
}
}
for (const match of next.matches) {
results.add(match);
}
if (unprocessedChildren.length === 0) {
const tmp = unprocessedChildren;
unprocessedChildren = nextSet;
nextSet = tmp;
}
}
} else {
const sb = name.charCodeAt(substart);
if (this.children[sb] !== undefined) {
this.children[sb].searchSubstringPrefix(name, substart + 1, results);
}
}
}
searchLev(name, substart, levParams, results) {
const stack = [[this, 0]];
const n = levParams.n;
while (stack.length !== 0) {
const [trie, levState] = stack.pop();
for (const [charCode, child] of trie.children.entries()) {
if (!child) {
continue;
}
const levPos = levParams.getPosition(levState);
const vector = levParams.getVector(
name,
charCode,
levPos,
Math.min(name.length, levPos + (2 * n) + 1),
);
const newLevState = levParams.transition(
levState,
levPos,
vector,
);
if (newLevState >= 0) {
stack.push([child, newLevState]);
if (levParams.isAccept(newLevState)) {
for (const match of child.matches) {
results.add(match);
}
}
}
}
}
}
}
class DocSearch {
constructor(rawSearchIndex, rootPath, searchState) {
/**
* @type {Map<String, RoaringBitmap>}
*/
this.searchIndexDeprecated = new Map();
/**
* @type {Map<String, RoaringBitmap>}
*/
this.searchIndexEmptyDesc = new Map();
/**
* @type {Uint32Array}
*/
this.functionTypeFingerprint = null;
/**
* Map from normalized type names to integers. Used to make type search
* more efficient.
*
* @type {Map<string, {id: integer, assocOnly: boolean}>}
*/
this.typeNameIdMap = new Map();
/**
* Map from type ID to associated type name. Used for display,
* not for search.
*
* @type {Map<integer, string>}
*/
this.assocTypeIdNameMap = new Map();
this.ALIASES = new Map();
this.rootPath = rootPath;
this.searchState = searchState;
/**
* Special type name IDs for searching by array.
*/
this.typeNameIdOfArray = this.buildTypeMapIndex("array");
/**
* Special type name IDs for searching by slice.
*/
this.typeNameIdOfSlice = this.buildTypeMapIndex("slice");
/**
* Special type name IDs for searching by both array and slice (`[]` syntax).
*/
this.typeNameIdOfArrayOrSlice = this.buildTypeMapIndex("[]");
/**
* Special type name IDs for searching by tuple.
*/
this.typeNameIdOfTuple = this.buildTypeMapIndex("tuple");
/**
* Special type name IDs for searching by unit.
*/
this.typeNameIdOfUnit = this.buildTypeMapIndex("unit");
/**
* Special type name IDs for searching by both tuple and unit (`()` syntax).
*/
this.typeNameIdOfTupleOrUnit = this.buildTypeMapIndex("()");
/**
* Special type name IDs for searching `fn`.
*/
this.typeNameIdOfFn = this.buildTypeMapIndex("fn");
/**
* Special type name IDs for searching `fnmut`.
*/
this.typeNameIdOfFnMut = this.buildTypeMapIndex("fnmut");
/**
* Special type name IDs for searching `fnonce`.
*/
this.typeNameIdOfFnOnce = this.buildTypeMapIndex("fnonce");
/**
* Special type name IDs for searching higher order functions (`->` syntax).
*/
this.typeNameIdOfHof = this.buildTypeMapIndex("->");
/**
* Special type name IDs the output assoc type.
*/
this.typeNameIdOfOutput = this.buildTypeMapIndex("output", true);
/**
* Special type name IDs for searching by reference.
*/
this.typeNameIdOfReference = this.buildTypeMapIndex("reference");
/**
* Empty, immutable map used in item search types with no bindings.
*
* @type {Map<number, Array<FunctionType>>}
*/
this.EMPTY_BINDINGS_MAP = new Map();
/**
* Empty, immutable map used in item search types with no bindings.
*
* @type {Array<FunctionType>}
*/
this.EMPTY_GENERICS_ARRAY = [];
/**
* Object pool for function types with no bindings or generics.
* This is reset after loading the index.
*
* @type {Map<number|null, FunctionType>}
*/
this.TYPES_POOL = new Map();
/**
* A trie for finding items by name.
* This is used for edit distance and prefix finding.
*
* @type {NameTrie}
*/
this.nameTrie = new NameTrie();
/**
* Find items by 3-substring. This is a map from three-char
* prefixes into lists of subtries.
*/
this.tailTable = new Map();
/**
* @type {Array<Row>}
*/
this.searchIndex = this.buildIndex(rawSearchIndex);
}
/**
* Add an item to the type Name->ID map, or, if one already exists, use it.
* Returns the number. If name is "" or null, return null (pure generic).
*
* This is effectively string interning, so that function matching can be
* done more quickly. Two types with the same name but different item kinds
* get the same ID.
*
* @param {string} name
* @param {boolean} isAssocType - True if this is an assoc type
*
* @returns {integer}
*/
buildTypeMapIndex(name, isAssocType) {
if (name === "" || name === null) {
return null;
}
if (this.typeNameIdMap.has(name)) {
const obj = this.typeNameIdMap.get(name);
obj.assocOnly = isAssocType && obj.assocOnly;
return obj.id;
} else {
const id = this.typeNameIdMap.size;
this.typeNameIdMap.set(name, { id, assocOnly: isAssocType });
return id;
}
}
/**
* Convert a list of RawFunctionType / ID to object-based FunctionType.
*
* Crates often have lots of functions in them, and it's common to have a large number of
* functions that operate on a small set of data types, so the search index compresses them
* by encoding function parameter and return types as indexes into an array of names.
*
* Even when a general-purpose compression algorithm is used, this is still a win.
* I checked. https://github.com/rust-lang/rust/pull/98475#issue-1284395985
*
* The format for individual function types is encoded in
* librustdoc/html/render/mod.rs: impl Serialize for RenderType
*
* @param {null|Array<RawFunctionType>} types
* @param {Array<{name: string, ty: number}>} lowercasePaths
*
* @return {Array<FunctionSearchType>}
*/
buildItemSearchTypeAll(types, paths, lowercasePaths) {
return types.length > 0 ?
types.map(type => this.buildItemSearchType(type, paths, lowercasePaths)) :
this.EMPTY_GENERICS_ARRAY;
}
/**
* Converts a single type.
*
* @param {RawFunctionType} type
*/
buildItemSearchType(type, paths, lowercasePaths, isAssocType) {
const PATH_INDEX_DATA = 0;
const GENERICS_DATA = 1;
const BINDINGS_DATA = 2;
let pathIndex, generics, bindings;
if (typeof type === "number") {
pathIndex = type;
generics = this.EMPTY_GENERICS_ARRAY;
bindings = this.EMPTY_BINDINGS_MAP;
} else {
pathIndex = type[PATH_INDEX_DATA];
generics = this.buildItemSearchTypeAll(
type[GENERICS_DATA],
paths,
lowercasePaths,
);
if (type.length > BINDINGS_DATA && type[BINDINGS_DATA].length > 0) {
bindings = new Map(type[BINDINGS_DATA].map(binding => {
const [assocType, constraints] = binding;
// Associated type constructors are represented sloppily in rustdoc's
// type search, to make the engine simpler.
//
// MyType<Output<T>=Result<T>> is equivalent to MyType<Output<Result<T>>=T>
// and both are, essentially
// MyType<Output=(T, Result<T>)>, except the tuple isn't actually there.
// It's more like the value of a type binding is naturally an array,
// which rustdoc calls "constraints".
//
// As a result, the key should never have generics on it.
return [
this.buildItemSearchType(assocType, paths, lowercasePaths, true).id,
this.buildItemSearchTypeAll(constraints, paths, lowercasePaths),
];
}));
} else {
bindings = this.EMPTY_BINDINGS_MAP;
}
}
/**
* @type {FunctionType}
*/
let result;
if (pathIndex < 0) {
// types less than 0 are generic parameters
// the actual names of generic parameters aren't stored, since they aren't API
result = {
id: pathIndex,
name: "",
ty: TY_GENERIC,
path: null,
exactPath: null,
generics,
bindings,
unboxFlag: true,
};
} else if (pathIndex === 0) {
// `0` is used as a sentinel because it's fewer bytes than `null`
result = {
id: null,
name: "",
ty: null,
path: null,
exactPath: null,
generics,
bindings,
unboxFlag: true,
};
} else {
const item = lowercasePaths[pathIndex - 1];
const id = this.buildTypeMapIndex(item.name, isAssocType);
if (isAssocType) {
this.assocTypeIdNameMap.set(id, paths[pathIndex - 1].name);
}
result = {
id,
name: paths[pathIndex - 1].name,
ty: item.ty,
path: item.path,
exactPath: item.exactPath,
generics,
bindings,
unboxFlag: item.unboxFlag,
};
}
const cr = this.TYPES_POOL.get(result.id);
if (cr) {
// Shallow equality check. Since this function is used
// to construct every type object, this should be mostly
// equivalent to a deep equality check, except if there's
// a conflict, we don't keep the old one around, so it's
// not a fully precise implementation of hashcons.
if (cr.generics.length === result.generics.length &&
cr.generics !== result.generics &&
cr.generics.every((x, i) => result.generics[i] === x)
) {
result.generics = cr.generics;
}
if (cr.bindings.size === result.bindings.size && cr.bindings !== result.bindings) {
let ok = true;
for (const [k, v] of cr.bindings.entries()) {
const v2 = result.bindings.get(v);
if (!v2) {
ok = false;
break;
}
if (v !== v2 && v.length === v2.length && v.every((x, i) => v2[i] === x)) {
result.bindings.set(k, v);
} else if (v !== v2) {
ok = false;
break;
}
}
if (ok) {
result.bindings = cr.bindings;
}
}
if (cr.ty === result.ty && cr.path === result.path
&& cr.bindings === result.bindings && cr.generics === result.generics
&& cr.ty === result.ty && cr.name === result.name
&& cr.unboxFlag === result.unboxFlag
) {
return cr;
}
}
this.TYPES_POOL.set(result.id, result);
return result;
}
/**
* Type fingerprints allow fast, approximate matching of types.
*
* This algo creates a compact representation of the type set using a Bloom filter.
* This fingerprint is used three ways:
*
* - It accelerates the matching algorithm by checking the function fingerprint against the
* query fingerprint. If any bits are set in the query but not in the function, it can't
* match.
*
* - The fourth section has the number of items in the set.
* This is the distance function, used for filtering and for sorting.
*
* [^1]: Distance is the relatively naive metric of counting the number of distinct items in
* the function that are not present in the query.
*
* @param {FunctionType|QueryElement} type - a single type
* @param {Uint32Array} output - write the fingerprint to this data structure: uses 128 bits
*/
buildFunctionTypeFingerprint(type, output) {
let input = type.id;
// All forms of `[]`/`()`/`->` get collapsed down to one thing in the bloom filter.
// Differentiating between arrays and slices, if the user asks for it, is
// still done in the matching algorithm.
if (input === this.typeNameIdOfArray || input === this.typeNameIdOfSlice) {
input = this.typeNameIdOfArrayOrSlice;
}
if (input === this.typeNameIdOfTuple || input === this.typeNameIdOfUnit) {
input = this.typeNameIdOfTupleOrUnit;
}
if (input === this.typeNameIdOfFn || input === this.typeNameIdOfFnMut ||
input === this.typeNameIdOfFnOnce) {
input = this.typeNameIdOfHof;
}
// http://burtleburtle.net/bob/hash/integer.html
// ~~ is toInt32. It's used before adding, so
// the number stays in safe integer range.
const hashint1 = k => {
k = (~~k + 0x7ed55d16) + (k << 12);
k = (k ^ 0xc761c23c) ^ (k >>> 19);
k = (~~k + 0x165667b1) + (k << 5);
k = (~~k + 0xd3a2646c) ^ (k << 9);
k = (~~k + 0xfd7046c5) + (k << 3);
return (k ^ 0xb55a4f09) ^ (k >>> 16);
};
const hashint2 = k => {
k = ~k + (k << 15);
k ^= k >>> 12;
k += k << 2;
k ^= k >>> 4;
k = Math.imul(k, 2057);
return k ^ (k >> 16);
};
if (input !== null) {
const h0a = hashint1(input);
const h0b = hashint2(input);
// Less Hashing, Same Performance: Building a Better Bloom Filter
// doi=10.1.1.72.2442
const h1a = ~~(h0a + Math.imul(h0b, 2));
const h1b = ~~(h0a + Math.imul(h0b, 3));
const h2a = ~~(h0a + Math.imul(h0b, 4));
const h2b = ~~(h0a + Math.imul(h0b, 5));
output[0] |= (1 << (h0a % 32)) | (1 << (h1b % 32));
output[1] |= (1 << (h1a % 32)) | (1 << (h2b % 32));
output[2] |= (1 << (h2a % 32)) | (1 << (h0b % 32));
// output[3] is the total number of items in the type signature
output[3] += 1;
}
for (const g of type.generics) {
this.buildFunctionTypeFingerprint(g, output);
}
const fb = {
id: null,
ty: 0,
generics: this.EMPTY_GENERICS_ARRAY,
bindings: this.EMPTY_BINDINGS_MAP,
};
for (const [k, v] of type.bindings.entries()) {
fb.id = k;
fb.generics = v;
this.buildFunctionTypeFingerprint(fb, output);
}
}
/**
* Convert raw search index into in-memory search index.
*
* @param {[string, RawSearchIndexCrate][]} rawSearchIndex
*/
buildIndex(rawSearchIndex) {
/**
* Convert from RawFunctionSearchType to FunctionSearchType.
*
* Crates often have lots of functions in them, and function signatures are sometimes
* complex, so rustdoc uses a pretty tight encoding for them. This function converts it
* to a simpler, object-based encoding so that the actual search code is more readable
* and easier to debug.
*
* The raw function search type format is generated using serde in
* librustdoc/html/render/mod.rs: IndexItemFunctionType::write_to_string
*
* @param {Array<{name: string, ty: number}>} paths
* @param {Array<{name: string, ty: number}>} lowercasePaths
*
* @return {null|FunctionSearchType}
*/
const buildFunctionSearchTypeCallback = (paths, lowercasePaths) => {
return functionSearchType => {
if (functionSearchType === 0) {
return null;
}
const INPUTS_DATA = 0;
const OUTPUT_DATA = 1;
let inputs, output;
if (typeof functionSearchType[INPUTS_DATA] === "number") {
inputs = [
this.buildItemSearchType(
functionSearchType[INPUTS_DATA],
paths,
lowercasePaths,
),
];
} else {
inputs = this.buildItemSearchTypeAll(
functionSearchType[INPUTS_DATA],
paths,
lowercasePaths,
);
}
if (functionSearchType.length > 1) {
if (typeof functionSearchType[OUTPUT_DATA] === "number") {
output = [
this.buildItemSearchType(
functionSearchType[OUTPUT_DATA],
paths,
lowercasePaths,
),
];
} else {
output = this.buildItemSearchTypeAll(
functionSearchType[OUTPUT_DATA],
paths,
lowercasePaths,
);
}
} else {
output = [];
}
const where_clause = [];
const l = functionSearchType.length;
for (let i = 2; i < l; ++i) {
where_clause.push(typeof functionSearchType[i] === "number"
? [this.buildItemSearchType(functionSearchType[i], paths, lowercasePaths)]
: this.buildItemSearchTypeAll(
functionSearchType[i],
paths,
lowercasePaths,
));
}
return {
inputs, output, where_clause,
};
};
};
const searchIndex = [];
let currentIndex = 0;
let id = 0;
// Function type fingerprints are 128-bit bloom filters that are used to
// estimate the distance between function and query.
// This loop counts the number of items to allocate a fingerprint for.
for (const crate of rawSearchIndex.values()) {
// Each item gets an entry in the fingerprint array, and the crate
// does, too
id += crate.t.length + 1;
}
this.functionTypeFingerprint = new Uint32Array((id + 1) * 4);
// This loop actually generates the search item indexes, including
// normalized names, type signature objects and fingerprints, and aliases.
id = 0;
for (const [crate, crateCorpus] of rawSearchIndex) {
// a string representing the lengths of each description shard
// a string representing the list of function types
const itemDescShardDecoder = new VlqHexDecoder(crateCorpus.D, noop => noop);
let descShard = {
crate,
shard: 0,
start: 0,
len: itemDescShardDecoder.next(),
promise: null,
resolve: null,
};
const descShardList = [descShard];
// Deprecated items and items with no description
this.searchIndexDeprecated.set(crate, new RoaringBitmap(crateCorpus.c));
this.searchIndexEmptyDesc.set(crate, new RoaringBitmap(crateCorpus.e));
let descIndex = 0;
/**
* List of generic function type parameter names.
* Used for display, not for searching.
* @type {[string]}
*/
let lastParamNames = [];
// This object should have exactly the same set of fields as the "row"
// object defined below. Your JavaScript runtime will thank you.
// https://mathiasbynens.be/notes/shapes-ics
let normalizedName = crate.indexOf("_") === -1 ? crate : crate.replace(/_/g, "");
const crateRow = {
crate,
ty: 3, // == ExternCrate
name: crate,
path: "",
descShard,
descIndex,
exactPath: "",
desc: crateCorpus.doc,
parent: undefined,
type: null,
paramNames: lastParamNames,
id,
word: crate,
normalizedName,
bitIndex: 0,
implDisambiguator: null,
};
this.nameTrie.insert(normalizedName, id, this.tailTable);
id += 1;
searchIndex.push(crateRow);
currentIndex += 1;
if (!this.searchIndexEmptyDesc.get(crate).contains(0)) {
descIndex += 1;
}
// a String of one character item type codes
const itemTypes = crateCorpus.t;
// an array of (String) item names
const itemNames = crateCorpus.n;
// an array of [(Number) item index,
// (String) full path]
// an item whose index is not present will fall back to the previous present path
// i.e. if indices 4 and 11 are present, but 5-10 and 12-13 are not present,
// 5-10 will fall back to the path for 4 and 12-13 will fall back to the path for 11
const itemPaths = new Map(crateCorpus.q);
// An array of [(Number) item index, (Number) path index]
// Used to de-duplicate inlined and re-exported stuff
const itemReexports = new Map(crateCorpus.r);
// an array of (Number) the parent path index + 1 to `paths`, or 0 if none
const itemParentIdxDecoder = new VlqHexDecoder(crateCorpus.i, noop => noop);
// a map Number, string for impl disambiguators
const implDisambiguator = new Map(crateCorpus.b);
// an array of [(Number) item type,
// (String) name]
const paths = crateCorpus.p;
// an array of [(String) alias name
// [Number] index to items]
const aliases = crateCorpus.a;
// an array of [(Number) item index,
// (String) comma-separated list of function generic param names]
// an item whose index is not present will fall back to the previous present path
const itemParamNames = new Map(crateCorpus.P);
// an array of [{name: String, ty: Number}]
const lowercasePaths = [];
// a string representing the list of function types
const itemFunctionDecoder = new VlqHexDecoder(
crateCorpus.f,
buildFunctionSearchTypeCallback(paths, lowercasePaths),
);
// convert `rawPaths` entries into object form
// generate normalizedPaths for function search mode
let len = paths.length;
let lastPath = itemPaths.get(0);
for (let i = 0; i < len; ++i) {
const elem = paths[i];
const ty = elem[0];
const name = elem[1];
let path = null;
if (elem.length > 2 && elem[2] !== null) {
path = itemPaths.has(elem[2]) ? itemPaths.get(elem[2]) : lastPath;
lastPath = path;
}
const exactPath = elem.length > 3 && elem[3] !== null ?
itemPaths.get(elem[3]) :
path;
const unboxFlag = elem.length > 4 && !!elem[4];
lowercasePaths.push({ ty, name: name.toLowerCase(), path, exactPath, unboxFlag });
paths[i] = { ty, name, path, exactPath, unboxFlag };
}
// convert `item*` into an object form, and construct word indices.
//
// before any analysis is performed lets gather the search terms to
// search against apart from the rest of the data. This is a quick
// operation that is cached for the life of the page state so that
// all other search operations have access to this cached data for
// faster analysis operations
lastPath = "";
len = itemTypes.length;
let lastName = "";
let lastWord = "";
for (let i = 0; i < len; ++i) {
const bitIndex = i + 1;
if (descIndex >= descShard.len &&
!this.searchIndexEmptyDesc.get(crate).contains(bitIndex)) {
descShard = {
crate,
shard: descShard.shard + 1,
start: descShard.start + descShard.len,
len: itemDescShardDecoder.next(),
promise: null,
resolve: null,
};
descIndex = 0;
descShardList.push(descShard);
}
const name = itemNames[i] === "" ? lastName : itemNames[i];
const word = itemNames[i] === "" ? lastWord : itemNames[i].toLowerCase();
const path = itemPaths.has(i) ? itemPaths.get(i) : lastPath;
const paramNames = itemParamNames.has(i) ?
itemParamNames.get(i).split(",") :
lastParamNames;
const type = itemFunctionDecoder.next();
if (type !== null) {
if (type) {
const fp = this.functionTypeFingerprint.subarray(id * 4, (id + 1) * 4);
for (const t of type.inputs) {
this.buildFunctionTypeFingerprint(t, fp);
}
for (const t of type.output) {
this.buildFunctionTypeFingerprint(t, fp);
}
for (const w of type.where_clause) {
for (const t of w) {
this.buildFunctionTypeFingerprint(t, fp);
}
}
}
}
// This object should have exactly the same set of fields as the "crateRow"
// object defined above.
const itemParentIdx = itemParentIdxDecoder.next();
normalizedName = word.indexOf("_") === -1 ? word : word.replace(/_/g, "");
const row = {
crate,
ty: itemTypes.charCodeAt(i) - 65, // 65 = "A"
name,
path,
descShard,
descIndex,
exactPath: itemReexports.has(i) ?
itemPaths.get(itemReexports.get(i)) : path,
parent: itemParentIdx > 0 ? paths[itemParentIdx - 1] : undefined,
type,
paramNames,
id,
word,
normalizedName,
bitIndex,
implDisambiguator: implDisambiguator.has(i) ?
implDisambiguator.get(i) : null,
};
this.nameTrie.insert(normalizedName, id, this.tailTable);
id += 1;
searchIndex.push(row);
lastPath = row.path;
lastParamNames = row.paramNames;
if (!this.searchIndexEmptyDesc.get(crate).contains(bitIndex)) {
descIndex += 1;
}
lastName = name;
lastWord = word;
}
if (aliases) {
const currentCrateAliases = new Map();
this.ALIASES.set(crate, currentCrateAliases);
for (const alias_name in aliases) {
if (!Object.prototype.hasOwnProperty.call(aliases, alias_name)) {
continue;
}
let currentNameAliases;
if (currentCrateAliases.has(alias_name)) {
currentNameAliases = currentCrateAliases.get(alias_name);
} else {
currentNameAliases = [];
currentCrateAliases.set(alias_name, currentNameAliases);
}
for (const local_alias of aliases[alias_name]) {
currentNameAliases.push(local_alias + currentIndex);
}
}
}
currentIndex += itemTypes.length;
this.searchState.descShards.set(crate, descShardList);
}
// Drop the (rather large) hash table used for reusing function items
this.TYPES_POOL = new Map();
return searchIndex;
}
/**
* Parses the query.
*
* The supported syntax by this parser is given in the rustdoc book chapter
* /src/doc/rustdoc/src/read-documentation/search.md
*
* When adding new things to the parser, add them there, too!
*
* @param {string} val - The user query
*
* @return {ParsedQuery} - The parsed query
*/
static parseQuery(userQuery) {
function itemTypeFromName(typename) {
const index = itemTypes.findIndex(i => i === typename);
if (index < 0) {
throw ["Unknown type filter ", typename];
}
return index;
}
function convertTypeFilterOnElem(elem) {
if (elem.typeFilter !== null) {
let typeFilter = elem.typeFilter;
if (typeFilter === "const") {
typeFilter = "constant";
}
elem.typeFilter = itemTypeFromName(typeFilter);
} else {
elem.typeFilter = NO_TYPE_FILTER;
}
for (const elem2 of elem.generics) {
convertTypeFilterOnElem(elem2);
}
for (const constraints of elem.bindings.values()) {
for (const constraint of constraints) {
convertTypeFilterOnElem(constraint);
}
}
}
/**
* Takes the user search input and returns an empty `ParsedQuery`.
*
* @param {string} userQuery
*
* @return {ParsedQuery}
*/
function newParsedQuery(userQuery) {
return {
userQuery,
elems: [],
returned: [],
// Total number of "top" elements (does not include generics).
foundElems: 0,
// Total number of elements (includes generics).
totalElems: 0,
literalSearch: false,
hasReturnArrow: false,
error: null,
correction: null,
proposeCorrectionFrom: null,
proposeCorrectionTo: null,
// bloom filter build from type ids
typeFingerprint: new Uint32Array(4),
};
}
/**
* Parses the provided `query` input to fill `parserState`. If it encounters an error while
* parsing `query`, it'll throw an error.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
*/
function parseInput(query, parserState) {
let foundStopChar = true;
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (isEndCharacter(c)) {
foundStopChar = true;
if (isSeparatorCharacter(c)) {
parserState.pos += 1;
continue;
} else if (c === "-" || c === ">") {
if (isReturnArrow(parserState)) {
query.hasReturnArrow = true;
break;
}
throw ["Unexpected ", c, " (did you mean ", "->", "?)"];
} else if (parserState.pos > 0) {
throw ["Unexpected ", c, " after ",
parserState.userQuery[parserState.pos - 1]];
}
throw ["Unexpected ", c];
} else if (c === " ") {
skipWhitespace(parserState);
continue;
}
if (!foundStopChar) {
let extra = "";
if (isLastElemGeneric(query.elems, parserState)) {
extra = [" after ", ">"];
} else if (prevIs(parserState, "\"")) {
throw ["Cannot have more than one element if you use quotes"];
}
if (parserState.typeFilter !== null) {
throw [
"Expected ",
",",
" or ",
"->",
...extra,
", found ",
c,
];
}
throw [
"Expected ",
",",
", ",
":",
" or ",
"->",
...extra,
", found ",
c,
];
}
const before = query.elems.length;
getFilteredNextElem(query, parserState, query.elems, false);
if (query.elems.length === before) {
// Nothing was added, weird... Let's increase the position to not remain stuck.
parserState.pos += 1;
}
foundStopChar = false;
}
if (parserState.typeFilter !== null) {
throw [
"Unexpected ",
":",
" (expected path after type filter ",
parserState.typeFilter + ":",
")",
];
}
while (parserState.pos < parserState.length) {
if (isReturnArrow(parserState)) {
parserState.pos += 2;
skipWhitespace(parserState);
// Get returned elements.
getItemsBefore(query, parserState, query.returned, "");
// Nothing can come afterward!
query.hasReturnArrow = true;
break;
} else {
parserState.pos += 1;
}
}
}
userQuery = userQuery.trim().replace(/\r|\n|\t/g, " ");
const parserState = {
length: userQuery.length,
pos: 0,
// Total number of elements (includes generics).
totalElems: 0,
genericsElems: 0,
typeFilter: null,
isInBinding: null,
userQuery,
};
let query = newParsedQuery(userQuery);
try {
parseInput(query, parserState);
for (const elem of query.elems) {
convertTypeFilterOnElem(elem);
}
for (const elem of query.returned) {
convertTypeFilterOnElem(elem);
}
} catch (err) {
query = newParsedQuery(userQuery);
query.error = err;
return query;
}
if (!query.literalSearch) {
// If there is more than one element in the query, we switch to literalSearch in any
// case.
query.literalSearch = parserState.totalElems > 1;
}
query.foundElems = query.elems.length + query.returned.length;
query.totalElems = parserState.totalElems;
return query;
}
/**
* Executes the parsed query and builds a {ResultsTable}.
*
* @param {ParsedQuery} parsedQuery - The parsed user query
* @param {Object} [filterCrates] - Crate to search in if defined
* @param {Object} [currentCrate] - Current crate, to rank results from this crate higher
*
* @return {ResultsTable}
*/
async execQuery(parsedQuery, filterCrates, currentCrate) {
const results_others = new Map(), results_in_args = new Map(),
results_returned = new Map();
/**
* Creates the query results.
*
* @param {Array<Result>} results_in_args
* @param {Array<Result>} results_returned
* @param {Array<Result>} results_others
* @param {ParsedQuery} parsedQuery
*
* @return {ResultsTable}
*/
function createQueryResults(
results_in_args,
results_returned,
results_others,
parsedQuery) {
return {
"in_args": results_in_args,
"returned": results_returned,
"others": results_others,
"query": parsedQuery,
};
}
const buildHrefAndPath = item => {
let displayPath;
let href;
const type = itemTypes[item.ty];
const name = item.name;
let path = item.path;
let exactPath = item.exactPath;
if (type === "mod") {
displayPath = path + "::";
href = this.rootPath + path.replace(/::/g, "/") + "/" +
name + "/index.html";
} else if (type === "import") {
displayPath = item.path + "::";
href = this.rootPath + item.path.replace(/::/g, "/") +
"/index.html#reexport." + name;
} else if (type === "primitive" || type === "keyword") {
displayPath = "";
exactPath = "";
href = this.rootPath + path.replace(/::/g, "/") +
"/" + type + "." + name + ".html";
} else if (type === "externcrate") {
displayPath = "";
href = this.rootPath + name + "/index.html";
} else if (item.parent !== undefined) {
const myparent = item.parent;
let anchor = type + "." + name;
const parentType = itemTypes[myparent.ty];
let pageType = parentType;
let pageName = myparent.name;
exactPath = `${myparent.exactPath}::${myparent.name}`;
if (parentType === "primitive") {
displayPath = myparent.name + "::";
exactPath = myparent.name;
} else if (type === "structfield" && parentType === "variant") {
// Structfields belonging to variants are special: the
// final path element is the enum name.
const enumNameIdx = item.path.lastIndexOf("::");
const enumName = item.path.substr(enumNameIdx + 2);
path = item.path.substr(0, enumNameIdx);
displayPath = path + "::" + enumName + "::" + myparent.name + "::";
anchor = "variant." + myparent.name + ".field." + name;
pageType = "enum";
pageName = enumName;
} else {
displayPath = path + "::" + myparent.name + "::";
}
if (item.implDisambiguator !== null) {
anchor = item.implDisambiguator + "/" + anchor;
}
href = this.rootPath + path.replace(/::/g, "/") +
"/" + pageType +
"." + pageName +
".html#" + anchor;
} else {
displayPath = item.path + "::";
href = this.rootPath + item.path.replace(/::/g, "/") +
"/" + type + "." + name + ".html";
}
return [displayPath, href, `${exactPath}::${name}`];
};
function pathSplitter(path) {
const tmp = "<span>" + path.replace(/::/g, "::</span><span>");
if (tmp.endsWith("<span>")) {
return tmp.slice(0, tmp.length - 6);
}
return tmp;
}
/**
* Add extra data to result objects, and filter items that have been
* marked for removal.
*
* @param {[ResultObject]} results
* @param {"sig"|"elems"|"returned"|null} typeInfo
* @param {ParsedQuery} query
* @returns {[ResultObject]}
*/
const transformResults = (results, typeInfo) => {
const duplicates = new Set();
const out = [];
for (const result of results) {
if (result.id !== -1) {
const res = buildHrefAndPath(this.searchIndex[result.id]);
const obj = Object.assign({
dist: result.dist,
displayPath: pathSplitter(res[0]),
}, this.searchIndex[result.id]);
// To be sure than it some items aren't considered as duplicate.
obj.fullPath = res[2] + "|" + obj.ty;
if (duplicates.has(obj.fullPath)) {
continue;
}
// Exports are specifically not shown if the items they point at
// are already in the results.
if (obj.ty === TY_IMPORT && duplicates.has(res[2])) {
continue;
}
if (duplicates.has(res[2] + "|" + TY_IMPORT)) {
continue;
}
duplicates.add(obj.fullPath);
duplicates.add(res[2]);
if (typeInfo !== null) {
obj.displayTypeSignature =
this.formatDisplayTypeSignature(obj, typeInfo);
}
obj.href = res[1];
out.push(obj);
if (out.length >= MAX_RESULTS) {
break;
}
}
}
return out;
};
/**
* Add extra data to result objects, and filter items that have been
* marked for removal.
*
* The output is formatted as an array of hunks, where odd numbered
* hunks are highlighted and even numbered ones are not.
*
* @param {ResultObject} obj
* @param {"sig"|"elems"|"returned"|null} typeInfo
* @param {ParsedQuery} query
* @returns Promise<
* "type": Array<string>,
* "mappedNames": Map<string, string>,
* "whereClause": Map<string, Array<string>>,
* >
*/
this.formatDisplayTypeSignature = async(obj, typeInfo) => {
let fnInputs = null;
let fnOutput = null;
let mgens = null;
if (typeInfo !== "elems" && typeInfo !== "returned") {
fnInputs = unifyFunctionTypes(
obj.type.inputs,
parsedQuery.elems,
obj.type.where_clause,
null,
mgensScratch => {
fnOutput = unifyFunctionTypes(
obj.type.output,
parsedQuery.returned,
obj.type.where_clause,
mgensScratch,
mgensOut => {
mgens = mgensOut;
return true;
},
0,
);
return !!fnOutput;
},
0,
);
} else {
const arr = typeInfo === "elems" ? obj.type.inputs : obj.type.output;
const highlighted = unifyFunctionTypes(
arr,
parsedQuery.elems,
obj.type.where_clause,
null,
mgensOut => {
mgens = mgensOut;
return true;
},
0,
);
if (typeInfo === "elems") {
fnInputs = highlighted;
} else {
fnOutput = highlighted;
}
}
if (!fnInputs) {
fnInputs = obj.type.inputs;
}
if (!fnOutput) {
fnOutput = obj.type.output;
}
const mappedNames = new Map();
const whereClause = new Map();
const fnParamNames = obj.paramNames;
const queryParamNames = [];
/**
* Recursively writes a map of IDs to query generic names,
* which are later used to map query generic names to function generic names.
* For example, when the user writes `X -> Option<X>` and the function
* is actually written as `T -> Option<T>`, this function stores the
* mapping `(-1, "X")`, and the writeFn function looks up the entry
* for -1 to form the final, user-visible mapping of "X is T".
*
* @param {QueryElement} queryElem
*/
const remapQuery = queryElem => {
if (queryElem.id < 0) {
queryParamNames[-1 - queryElem.id] = queryElem.name;
}
if (queryElem.generics.length > 0) {
queryElem.generics.forEach(remapQuery);
}
if (queryElem.bindings.size > 0) {
[...queryElem.bindings.values()].flat().forEach(remapQuery);
}
};
parsedQuery.elems.forEach(remapQuery);
parsedQuery.returned.forEach(remapQuery);
/**
* Write text to a highlighting array.
* Index 0 is not highlighted, index 1 is highlighted,
* index 2 is not highlighted, etc.
*
* @param {{name: string, highlighted: bool|undefined}} fnType - input
* @param {[string]} result
*/
const pushText = (fnType, result) => {
// If !!(result.length % 2) == false, then pushing a new slot starts an even
// numbered slot. Even numbered slots are not highlighted.
//
// `highlighted` will not be defined if an entire subtree is not highlighted,
// so `!!` is used to coerce it to boolean. `result.length % 2` is used to
// check if the number is even, but it evaluates to a number, so it also
// needs coerced to a boolean.
if (!!(result.length % 2) === !!fnType.highlighted) {
result.push("");
} else if (result.length === 0 && !!fnType.highlighted) {
result.push("");
result.push("");
}
result[result.length - 1] += fnType.name;
};
/**
* Write a higher order function type: either a function pointer
* or a trait bound on Fn, FnMut, or FnOnce.
*
* @param {FunctionType} fnType - input
* @param {[string]} result
*/
const writeHof = (fnType, result) => {
const hofOutput = fnType.bindings.get(this.typeNameIdOfOutput) || [];
const hofInputs = fnType.generics;
pushText(fnType, result);
pushText({name: " (", highlighted: false}, result);
let needsComma = false;
for (const fnType of hofInputs) {
if (needsComma) {
pushText({ name: ", ", highlighted: false }, result);
}
needsComma = true;
writeFn(fnType, result);
}
pushText({
name: hofOutput.length === 0 ? ")" : ") -> ",
highlighted: false,
}, result);
if (hofOutput.length > 1) {
pushText({name: "(", highlighted: false}, result);
}
needsComma = false;
for (const fnType of hofOutput) {
if (needsComma) {
pushText({ name: ", ", highlighted: false }, result);
}
needsComma = true;
writeFn(fnType, result);
}
if (hofOutput.length > 1) {
pushText({name: ")", highlighted: false}, result);
}
};
/**
* Write a primitive type with special syntax, like `!` or `[T]`.
* Returns `false` if the supplied type isn't special.
*
* @param {FunctionType} fnType
* @param {[string]} result
*/
const writeSpecialPrimitive = (fnType, result) => {
if (fnType.id === this.typeNameIdOfArray || fnType.id === this.typeNameIdOfSlice ||
fnType.id === this.typeNameIdOfTuple || fnType.id === this.typeNameIdOfUnit) {
const [ob, sb] =
fnType.id === this.typeNameIdOfArray ||
fnType.id === this.typeNameIdOfSlice ?
["[", "]"] :
["(", ")"];
pushText({ name: ob, highlighted: fnType.highlighted }, result);
onEachBtwn(
fnType.generics,
nested => writeFn(nested, result),
() => pushText({ name: ", ", highlighted: false }, result),
);
pushText({ name: sb, highlighted: fnType.highlighted }, result);
return true;
} else if (fnType.id === this.typeNameIdOfReference) {
pushText({ name: "&", highlighted: fnType.highlighted }, result);
let prevHighlighted = false;
onEachBtwn(
fnType.generics,
value => {
prevHighlighted = value.highlighted;
writeFn(value, result);
},
value => pushText({
name: " ",
highlighted: prevHighlighted && value.highlighted,
}, result),
);
return true;
} else if (fnType.id === this.typeNameIdOfFn) {
writeHof(fnType, result);
return true;
}
return false;
};
/**
* Write a type. This function checks for special types,
* like slices, with their own formatting. It also handles
* updating the where clause and generic type param map.
*
* @param {FunctionType} fnType
* @param {[string]} result
*/
const writeFn = (fnType, result) => {
if (fnType.id < 0) {
if (fnParamNames[-1 - fnType.id] === "") {
for (const nested of fnType.generics) {
writeFn(nested, result);
}
return;
} else if (mgens) {
for (const [queryId, fnId] of mgens) {
if (fnId === fnType.id) {
mappedNames.set(
queryParamNames[-1 - queryId],
fnParamNames[-1 - fnType.id],
);
}
}
}
pushText({
name: fnParamNames[-1 - fnType.id],
highlighted: !!fnType.highlighted,
}, result);
const where = [];
onEachBtwn(
fnType.generics,
nested => writeFn(nested, where),
() => pushText({ name: " + ", highlighted: false }, where),
);
if (where.length > 0) {
whereClause.set(fnParamNames[-1 - fnType.id], where);
}
} else {
if (fnType.ty === TY_PRIMITIVE) {
if (writeSpecialPrimitive(fnType, result)) {
return;
}
} else if (fnType.ty === TY_TRAIT && (
fnType.id === this.typeNameIdOfFn ||
fnType.id === this.typeNameIdOfFnMut ||
fnType.id === this.typeNameIdOfFnOnce)) {
writeHof(fnType, result);
return;
}
pushText(fnType, result);
let hasBindings = false;
if (fnType.bindings.size > 0) {
onEachBtwn(
fnType.bindings,
([key, values]) => {
const name = this.assocTypeIdNameMap.get(key);
if (values.length === 1 && values[0].id < 0 &&
`${fnType.name}::${name}` === fnParamNames[-1 - values[0].id]) {
// the internal `Item=Iterator::Item` type variable should be
// shown in the where clause and name mapping output, but is
// redundant in this spot
for (const value of values) {
writeFn(value, []);
}
return true;
}
if (!hasBindings) {
hasBindings = true;
pushText({ name: "<", highlighted: false }, result);
}
pushText({ name, highlighted: false }, result);
pushText({
name: values.length !== 1 ? "=(" : "=",
highlighted: false,
}, result);
onEachBtwn(
values || [],
value => writeFn(value, result),
() => pushText({ name: " + ", highlighted: false }, result),
);
if (values.length !== 1) {
pushText({ name: ")", highlighted: false }, result);
}
},
() => pushText({ name: ", ", highlighted: false }, result),
);
}
if (fnType.generics.length > 0) {
pushText({ name: hasBindings ? ", " : "<", highlighted: false }, result);
}
onEachBtwn(
fnType.generics,
value => writeFn(value, result),
() => pushText({ name: ", ", highlighted: false }, result),
);
if (hasBindings || fnType.generics.length > 0) {
pushText({ name: ">", highlighted: false }, result);
}
}
};
const type = [];
onEachBtwn(
fnInputs,
fnType => writeFn(fnType, type),
() => pushText({ name: ", ", highlighted: false }, type),
);
pushText({ name: " -> ", highlighted: false }, type);
onEachBtwn(
fnOutput,
fnType => writeFn(fnType, type),
() => pushText({ name: ", ", highlighted: false }, type),
);
return {type, mappedNames, whereClause};
};
/**
* This function takes a result map, and sorts it by various criteria, including edit
* distance, substring match, and the crate it comes from.
*
* @param {Results} results
* @param {boolean} isType
* @param {string} preferredCrate
* @returns {Promise<[ResultObject]>}
*/
const sortResults = async(results, typeInfo, preferredCrate) => {
const userQuery = parsedQuery.userQuery;
const normalizedUserQuery = parsedQuery.userQuery.toLowerCase();
const isMixedCase = normalizedUserQuery !== userQuery;
const result_list = [];
for (const result of results.values()) {
result.item = this.searchIndex[result.id];
result.word = this.searchIndex[result.id].word;
result_list.push(result);
}
result_list.sort((aaa, bbb) => {
let a, b;
// sort by exact case-sensitive match
if (isMixedCase) {
a = (aaa.item.name !== userQuery);
b = (bbb.item.name !== userQuery);
if (a !== b) {
return a - b;
}
}
// sort by exact match with regard to the last word (mismatch goes later)
a = (aaa.word !== normalizedUserQuery);
b = (bbb.word !== normalizedUserQuery);
if (a !== b) {
return a - b;
}
// sort by index of keyword in item name (no literal occurrence goes later)
a = (aaa.index < 0);
b = (bbb.index < 0);
if (a !== b) {
return a - b;
}
// Sort by distance in the path part, if specified
// (less changes required to match means higher rankings)
a = aaa.path_dist;
b = bbb.path_dist;
if (a !== b) {
return a - b;
}
// (later literal occurrence, if any, goes later)
a = aaa.index;
b = bbb.index;
if (a !== b) {
return a - b;
}
// Sort by distance in the name part, the last part of the path
// (less changes required to match means higher rankings)
a = (aaa.dist);
b = (bbb.dist);
if (a !== b) {
return a - b;
}
// sort deprecated items later
a = this.searchIndexDeprecated.get(aaa.item.crate).contains(aaa.item.bitIndex);
b = this.searchIndexDeprecated.get(bbb.item.crate).contains(bbb.item.bitIndex);
if (a !== b) {
return a - b;
}
// sort by crate (current crate comes first)
a = (aaa.item.crate !== preferredCrate);
b = (bbb.item.crate !== preferredCrate);
if (a !== b) {
return a - b;
}
// sort by item name length (longer goes later)
a = aaa.word.length;
b = bbb.word.length;
if (a !== b) {
return a - b;
}
// sort by item name (lexicographically larger goes later)
a = aaa.word;
b = bbb.word;
if (a !== b) {
return (a > b ? +1 : -1);
}
// sort by description (no description goes later)
a = this.searchIndexEmptyDesc.get(aaa.item.crate).contains(aaa.item.bitIndex);
b = this.searchIndexEmptyDesc.get(bbb.item.crate).contains(bbb.item.bitIndex);
if (a !== b) {
return a - b;
}
// sort by type (later occurrence in `itemTypes` goes later)
a = aaa.item.ty;
b = bbb.item.ty;
if (a !== b) {
return a - b;
}
// sort by path (lexicographically larger goes later)
a = aaa.item.path;
b = bbb.item.path;
if (a !== b) {
return (a > b ? +1 : -1);
}
// que sera, sera
return 0;
});
return transformResults(result_list, typeInfo);
};
/**
* This function checks if a list of search query `queryElems` can all be found in the
* search index (`fnTypes`).
*
* This function returns highlighted results on a match, or `null`. If `solutionCb` is
* supplied, it will call that function with mgens, and that callback can accept or
* reject the result by returning `true` or `false`. If the callback returns false,
* then this function will try with a different solution, or bail with null if it
* runs out of candidates.
*
* @param {Array<FunctionType>} fnTypesIn - The objects to check.
* @param {Array<QueryElement>} queryElems - The elements from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgensIn
* - Map query generics to function generics (never modified).
* @param {Map<number,number> -> bool} solutionCb - Called for each `mgens` solution.
* @param {number} unboxingDepth
* - Limit checks that Ty matches Vec<Ty>,
* but not Vec<ParamEnvAnd<WithInfcx<ConstTy<Interner<Ty=Ty>>>>>
*
* @return {[FunctionType]|null} - Returns highlighed results if a match, null otherwise.
*/
function unifyFunctionTypes(
fnTypesIn,
queryElems,
whereClause,
mgensIn,
solutionCb,
unboxingDepth,
) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return null;
}
/**
* @type Map<integer, integer>|null
*/
const mgens = mgensIn === null ? null : new Map(mgensIn);
if (queryElems.length === 0) {
return solutionCb(mgens) ? fnTypesIn : null;
}
if (!fnTypesIn || fnTypesIn.length === 0) {
return null;
}
const ql = queryElems.length;
const fl = fnTypesIn.length;
// One element fast path / base case
if (ql === 1 && queryElems[0].generics.length === 0
&& queryElems[0].bindings.size === 0) {
const queryElem = queryElems[0];
for (const [i, fnType] of fnTypesIn.entries()) {
if (!unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgens)) {
continue;
}
if (fnType.id < 0 && queryElem.id < 0) {
if (mgens && mgens.has(queryElem.id) &&
mgens.get(queryElem.id) !== fnType.id) {
continue;
}
const mgensScratch = new Map(mgens);
mgensScratch.set(queryElem.id, fnType.id);
if (!solutionCb || solutionCb(mgensScratch)) {
const highlighted = [...fnTypesIn];
highlighted[i] = Object.assign({
highlighted: true,
}, fnType, {
generics: whereClause[-1 - fnType.id],
});
return highlighted;
}
} else if (solutionCb(mgens ? new Map(mgens) : null)) {
// unifyFunctionTypeIsMatchCandidate already checks that ids match
const highlighted = [...fnTypesIn];
highlighted[i] = Object.assign({
highlighted: true,
}, fnType, {
generics: unifyGenericTypes(
fnType.generics,
queryElem.generics,
whereClause,
mgens ? new Map(mgens) : null,
solutionCb,
unboxingDepth,
) || fnType.generics,
});
return highlighted;
}
}
for (const [i, fnType] of fnTypesIn.entries()) {
if (!unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth + 1,
)) {
continue;
}
if (fnType.id < 0) {
const highlightedGenerics = unifyFunctionTypes(
whereClause[(-fnType.id) - 1],
queryElems,
whereClause,
mgens,
solutionCb,
unboxingDepth + 1,
);
if (highlightedGenerics) {
const highlighted = [...fnTypesIn];
highlighted[i] = Object.assign({
highlighted: true,
}, fnType, {
generics: highlightedGenerics,
});
return highlighted;
}
} else {
const highlightedGenerics = unifyFunctionTypes(
[...Array.from(fnType.bindings.values()).flat(), ...fnType.generics],
queryElems,
whereClause,
mgens ? new Map(mgens) : null,
solutionCb,
unboxingDepth + 1,
);
if (highlightedGenerics) {
const highlighted = [...fnTypesIn];
highlighted[i] = Object.assign({}, fnType, {
generics: highlightedGenerics,
bindings: new Map([...fnType.bindings.entries()].map(([k, v]) => {
return [k, highlightedGenerics.splice(0, v.length)];
})),
});
return highlighted;
}
}
}
return false;
}
// Multiple element recursive case
/**
* @type Array<FunctionType>
*/
const fnTypes = fnTypesIn.slice();
/**
* Algorithm works by building up a solution set in the working arrays
* fnTypes gets mutated in place to make this work, while queryElems
* is left alone.
*
* It works backwards, because arrays can be cheaply truncated that way.
*
* vvvvvvv `queryElem`
* queryElems = [ unknown, unknown, good, good, good ]
* fnTypes = [ unknown, unknown, good, good, good ]
* ^^^^^^^^^^^^^^^^ loop over these elements to find candidates
*
* Everything in the current working solution is known to be a good
* match, but it might not be the match we wind up going with, because
* there might be more than one candidate match, and we need to try them all
* before giving up. So, to handle this, it backtracks on failure.
*/
const flast = fl - 1;
const qlast = ql - 1;
const queryElem = queryElems[qlast];
let queryElemsTmp = null;
for (let i = flast; i >= 0; i -= 1) {
const fnType = fnTypes[i];
if (!unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgens)) {
continue;
}
let mgensScratch;
if (fnType.id < 0) {
mgensScratch = new Map(mgens);
if (mgensScratch.has(queryElem.id)
&& mgensScratch.get(queryElem.id) !== fnType.id) {
continue;
}
mgensScratch.set(queryElem.id, fnType.id);
} else {
mgensScratch = mgens;
}
// fnTypes[i] is a potential match
// fnTypes[flast] is the last item in the list
// swap them, and drop the potential match from the list
// check if the remaining function types also match
fnTypes[i] = fnTypes[flast];
fnTypes.length = flast;
if (!queryElemsTmp) {
queryElemsTmp = queryElems.slice(0, qlast);
}
let unifiedGenerics = [];
let unifiedGenericsMgens = null;
const passesUnification = unifyFunctionTypes(
fnTypes,
queryElemsTmp,
whereClause,
mgensScratch,
mgensScratch => {
if (fnType.generics.length === 0 && queryElem.generics.length === 0
&& fnType.bindings.size === 0 && queryElem.bindings.size === 0) {
return solutionCb(mgensScratch);
}
const solution = unifyFunctionTypeCheckBindings(
fnType,
queryElem,
whereClause,
mgensScratch,
unboxingDepth,
);
if (!solution) {
return false;
}
const simplifiedGenerics = solution.simplifiedGenerics;
for (const simplifiedMgens of solution.mgens) {
unifiedGenerics = unifyGenericTypes(
simplifiedGenerics,
queryElem.generics,
whereClause,
simplifiedMgens,
solutionCb,
unboxingDepth,
);
if (unifiedGenerics !== null) {
unifiedGenericsMgens = simplifiedMgens;
return true;
}
}
return false;
},
unboxingDepth,
);
if (passesUnification) {
passesUnification.length = fl;
passesUnification[flast] = passesUnification[i];
passesUnification[i] = Object.assign({}, fnType, {
highlighted: true,
generics: unifiedGenerics,
bindings: new Map([...fnType.bindings.entries()].map(([k, v]) => {
return [k, queryElem.bindings.has(k) ? unifyFunctionTypes(
v,
queryElem.bindings.get(k),
whereClause,
unifiedGenericsMgens,
solutionCb,
unboxingDepth,
) : unifiedGenerics.splice(0, v.length)];
})),
});
return passesUnification;
}
// backtrack
fnTypes[flast] = fnTypes[i];
fnTypes[i] = fnType;
fnTypes.length = fl;
}
for (let i = flast; i >= 0; i -= 1) {
const fnType = fnTypes[i];
if (!unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth + 1,
)) {
continue;
}
const generics = fnType.id < 0 ?
whereClause[(-fnType.id) - 1] :
fnType.generics;
const bindings = fnType.bindings ?
Array.from(fnType.bindings.values()).flat() :
[];
const passesUnification = unifyFunctionTypes(
fnTypes.toSpliced(i, 1, ...bindings, ...generics),
queryElems,
whereClause,
mgens,
solutionCb,
unboxingDepth + 1,
);
if (passesUnification) {
const highlightedGenerics = passesUnification.slice(
i,
i + generics.length + bindings.length,
);
const highlightedFnType = Object.assign({}, fnType, {
generics: highlightedGenerics,
bindings: new Map([...fnType.bindings.entries()].map(([k, v]) => {
return [k, highlightedGenerics.splice(0, v.length)];
})),
});
return passesUnification.toSpliced(
i,
generics.length + bindings.length,
highlightedFnType,
);
}
}
return null;
}
/**
* This function compares two lists of generics.
*
* This function behaves very similarly to `unifyFunctionTypes`, except that it
* doesn't skip or reorder anything. This is intended to match the behavior of
* the ordinary Rust type system, so that `Vec<Allocator>` only matches an actual
* `Vec` of `Allocators` and not the implicit `Allocator` parameter that every
* `Vec` has.
*
* @param {Array<FunctionType>} fnTypesIn - The objects to check.
* @param {Array<QueryElement>} queryElems - The elements from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgensIn
* - Map functions generics to query generics (never modified).
* @param {Map<number,number> -> bool} solutionCb - Called for each `mgens` solution.
* @param {number} unboxingDepth
* - Limit checks that Ty matches Vec<Ty>,
* but not Vec<ParamEnvAnd<WithInfcx<ConstTy<Interner<Ty=Ty>>>>>
*
* @return {[FunctionType]|null} - Returns highlighed results if a match, null otherwise.
*/
function unifyGenericTypes(
fnTypesIn,
queryElems,
whereClause,
mgensIn,
solutionCb,
unboxingDepth,
) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return null;
}
/**
* @type Map<integer, integer>|null
*/
const mgens = mgensIn === null ? null : new Map(mgensIn);
if (queryElems.length === 0) {
return solutionCb(mgens) ? fnTypesIn : null;
}
if (!fnTypesIn || fnTypesIn.length === 0) {
return null;
}
const fnType = fnTypesIn[0];
const queryElem = queryElems[0];
if (unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgens)) {
if (fnType.id < 0 && queryElem.id < 0) {
if (!mgens || !mgens.has(queryElem.id) ||
mgens.get(queryElem.id) === fnType.id
) {
const mgensScratch = new Map(mgens);
mgensScratch.set(queryElem.id, fnType.id);
const fnTypesRemaining = unifyGenericTypes(
fnTypesIn.slice(1),
queryElems.slice(1),
whereClause,
mgensScratch,
solutionCb,
unboxingDepth,
);
if (fnTypesRemaining) {
const highlighted = [fnType, ...fnTypesRemaining];
highlighted[0] = Object.assign({
highlighted: true,
}, fnType, {
generics: whereClause[-1 - fnType.id],
});
return highlighted;
}
}
} else {
let unifiedGenerics;
const fnTypesRemaining = unifyGenericTypes(
fnTypesIn.slice(1),
queryElems.slice(1),
whereClause,
mgens,
mgensScratch => {
const solution = unifyFunctionTypeCheckBindings(
fnType,
queryElem,
whereClause,
mgensScratch,
unboxingDepth,
);
if (!solution) {
return false;
}
const simplifiedGenerics = solution.simplifiedGenerics;
for (const simplifiedMgens of solution.mgens) {
unifiedGenerics = unifyGenericTypes(
simplifiedGenerics,
queryElem.generics,
whereClause,
simplifiedMgens,
solutionCb,
unboxingDepth,
);
if (unifiedGenerics !== null) {
return true;
}
}
},
unboxingDepth,
);
if (fnTypesRemaining) {
const highlighted = [fnType, ...fnTypesRemaining];
highlighted[0] = Object.assign({
highlighted: true,
}, fnType, {
generics: unifiedGenerics || fnType.generics,
});
return highlighted;
}
}
}
if (unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth + 1,
)) {
let highlightedRemaining;
if (fnType.id < 0) {
// Where clause corresponds to `F: A + B`
// ^^^^^
// The order of the constraints doesn't matter, so
// use order-agnostic matching for it.
const highlightedGenerics = unifyFunctionTypes(
whereClause[(-fnType.id) - 1],
[queryElem],
whereClause,
mgens,
mgensScratch => {
const hl = unifyGenericTypes(
fnTypesIn.slice(1),
queryElems.slice(1),
whereClause,
mgensScratch,
solutionCb,
unboxingDepth,
);
if (hl) {
highlightedRemaining = hl;
}
return hl;
},
unboxingDepth + 1,
);
if (highlightedGenerics) {
return [Object.assign({
highlighted: true,
}, fnType, {
generics: highlightedGenerics,
}), ...highlightedRemaining];
}
} else {
const highlightedGenerics = unifyGenericTypes(
[
...Array.from(fnType.bindings.values()).flat(),
...fnType.generics,
],
[queryElem],
whereClause,
mgens,
mgensScratch => {
const hl = unifyGenericTypes(
fnTypesIn.slice(1),
queryElems.slice(1),
whereClause,
mgensScratch,
solutionCb,
unboxingDepth,
);
if (hl) {
highlightedRemaining = hl;
}
return hl;
},
unboxingDepth + 1,
);
if (highlightedGenerics) {
return [Object.assign({}, fnType, {
generics: highlightedGenerics,
bindings: new Map([...fnType.bindings.entries()].map(([k, v]) => {
return [k, highlightedGenerics.splice(0, v.length)];
})),
}), ...highlightedRemaining];
}
}
}
return null;
}
/**
* Check if this function is a match candidate.
*
* This function is all the fast checks that don't require backtracking.
* It checks that two items are not named differently, and is load-bearing for that.
* It also checks that, if the query has generics, the function type must have generics
* or associated type bindings: that's not load-bearing, but it prevents unnecessary
* backtracking later.
*
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {Map<number,number>|null} mgensIn - Map query generics to function generics.
* @returns {boolean}
*/
const unifyFunctionTypeIsMatchCandidate = (fnType, queryElem, mgensIn) => {
// type filters look like `trait:Read` or `enum:Result`
if (!typePassesFilter(queryElem.typeFilter, fnType.ty)) {
return false;
}
// fnType.id < 0 means generic
// queryElem.id < 0 does too
// mgensIn[queryElem.id] = fnType.id
if (fnType.id < 0 && queryElem.id < 0) {
if (
mgensIn && mgensIn.has(queryElem.id) &&
mgensIn.get(queryElem.id) !== fnType.id
) {
return false;
}
return true;
} else {
if (queryElem.id === this.typeNameIdOfArrayOrSlice &&
(fnType.id === this.typeNameIdOfSlice || fnType.id === this.typeNameIdOfArray)
) {
// [] matches primitive:array or primitive:slice
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (queryElem.id === this.typeNameIdOfTupleOrUnit &&
(fnType.id === this.typeNameIdOfTuple || fnType.id === this.typeNameIdOfUnit)
) {
// () matches primitive:tuple or primitive:unit
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (queryElem.id === this.typeNameIdOfHof &&
(fnType.id === this.typeNameIdOfFn || fnType.id === this.typeNameIdOfFnMut ||
fnType.id === this.typeNameIdOfFnOnce)
) {
// -> matches fn, fnonce, and fnmut
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (fnType.id !== queryElem.id || queryElem.id === null) {
return false;
}
// If the query elem has generics, and the function doesn't,
// it can't match.
if ((fnType.generics.length + fnType.bindings.size) === 0 &&
queryElem.generics.length !== 0
) {
return false;
}
if (fnType.bindings.size < queryElem.bindings.size) {
return false;
}
// If the query element is a path (it contains `::`), we need to check if this
// path is compatible with the target type.
const queryElemPathLength = queryElem.pathWithoutLast.length;
if (queryElemPathLength > 0) {
const fnTypePath = fnType.path !== undefined && fnType.path !== null ?
fnType.path.split("::") : [];
// If the path provided in the query element is longer than this type,
// no need to check it since it won't match in any case.
if (queryElemPathLength > fnTypePath.length) {
return false;
}
let i = 0;
for (const path of fnTypePath) {
if (path === queryElem.pathWithoutLast[i]) {
i += 1;
if (i >= queryElemPathLength) {
break;
}
}
}
if (i < queryElemPathLength) {
// If we didn't find all parts of the path of the query element inside
// the fn type, then it's not the right one.
return false;
}
}
return true;
}
};
/**
* This function checks the associated type bindings. Any that aren't matched get converted
* to generics, and this function returns an array of the function's generics with these
* simplified bindings added to them. That is, it takes a path like this:
*
* Iterator<Item=u32>
*
* ... if queryElem itself has an `Item=` in it, then this function returns an empty array.
* But if queryElem contains no Item=, then this function returns a one-item array with the
* ID of u32 in it, and the rest of the matching engine acts as if `Iterator<u32>` were
* the type instead.
*
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>} mgensIn - Map query generics to function generics.
* Never modified.
* @param {number} unboxingDepth
* @returns {false|{mgens: [Map<number,number>], simplifiedGenerics: [FunctionType]}}
*/
function unifyFunctionTypeCheckBindings(
fnType,
queryElem,
whereClause,
mgensIn,
unboxingDepth,
) {
if (fnType.bindings.size < queryElem.bindings.size) {
return false;
}
let simplifiedGenerics = fnType.generics || [];
if (fnType.bindings.size > 0) {
let mgensSolutionSet = [mgensIn];
for (const [name, constraints] of queryElem.bindings.entries()) {
if (mgensSolutionSet.length === 0) {
return false;
}
if (!fnType.bindings.has(name)) {
return false;
}
const fnTypeBindings = fnType.bindings.get(name);
mgensSolutionSet = mgensSolutionSet.flatMap(mgens => {
const newSolutions = [];
unifyFunctionTypes(
fnTypeBindings,
constraints,
whereClause,
mgens,
newMgens => {
newSolutions.push(newMgens);
// return `false` makes unifyFunctionTypes return the full set of
// possible solutions
return false;
},
unboxingDepth,
);
return newSolutions;
});
}
if (mgensSolutionSet.length === 0) {
return false;
}
const binds = Array.from(fnType.bindings.entries()).flatMap(entry => {
const [name, constraints] = entry;
if (queryElem.bindings.has(name)) {
return [];
} else {
return constraints;
}
});
if (simplifiedGenerics.length > 0) {
simplifiedGenerics = [...binds, ...simplifiedGenerics];
} else {
simplifiedGenerics = binds;
}
return { simplifiedGenerics, mgens: mgensSolutionSet };
}
return { simplifiedGenerics, mgens: [mgensIn] };
}
/**
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map query generics to function generics.
* @param {number} unboxingDepth
* @returns {boolean}
*/
function unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth,
) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return false;
}
if (fnType.id < 0) {
if (!whereClause) {
return false;
}
// This is only a potential unbox if the search query appears in the where clause
// for example, searching `Read -> usize` should find
// `fn read_all<R: Read>(R) -> Result<usize>`
// generic `R` is considered "unboxed"
return checkIfInList(
whereClause[(-fnType.id) - 1],
queryElem,
whereClause,
mgens,
unboxingDepth,
);
} else if (fnType.unboxFlag &&
(fnType.generics.length > 0 || fnType.bindings.size > 0)) {
const simplifiedGenerics = [
...fnType.generics,
...Array.from(fnType.bindings.values()).flat(),
];
return checkIfInList(
simplifiedGenerics,
queryElem,
whereClause,
mgens,
unboxingDepth,
);
}
return false;
}
/**
* This function checks if the object (`row`) matches the given type (`elem`) and its
* generics (if any).
*
* @param {Array<FunctionType>} list
* @param {QueryElement} elem - The element from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map functions generics to query generics.
* @param {number} unboxingDepth
*
* @return {boolean} - Returns true if found, false otherwise.
*/
function checkIfInList(list, elem, whereClause, mgens, unboxingDepth) {
for (const entry of list) {
if (checkType(entry, elem, whereClause, mgens, unboxingDepth)) {
return true;
}
}
return false;
}
/**
* This function checks if the object (`row`) matches the given type (`elem`) and its
* generics (if any).
*
* @param {Row} row
* @param {QueryElement} elem - The element from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map query generics to function generics.
*
* @return {boolean} - Returns true if the type matches, false otherwise.
*/
const checkType = (row, elem, whereClause, mgens, unboxingDepth) => {
if (unboxingDepth >= UNBOXING_LIMIT) {
return false;
}
if (row.id > 0 && elem.id > 0 && elem.pathWithoutLast.length === 0 &&
row.generics.length === 0 && elem.generics.length === 0 &&
row.bindings.size === 0 && elem.bindings.size === 0 &&
// special case
elem.id !== this.typeNameIdOfArrayOrSlice &&
elem.id !== this.typeNameIdOfHof &&
elem.id !== this.typeNameIdOfTupleOrUnit
) {
return row.id === elem.id && typePassesFilter(elem.typeFilter, row.ty);
} else {
return unifyFunctionTypes(
[row],
[elem],
whereClause,
mgens,
() => true,
unboxingDepth,
);
}
};
/**
* Check a query solution for conflicting generics.
*/
const checkTypeMgensForConflict = mgens => {
if (!mgens) {
return true;
}
const fnTypes = new Set();
for (const [_qid, fid] of mgens) {
if (fnTypes.has(fid)) {
return false;
}
fnTypes.add(fid);
}
return true;
};
/**
* Compute an "edit distance" that ignores missing path elements.
* @param {string[]} contains search query path
* @param {Row} ty indexed item
* @returns {null|number} edit distance
*/
function checkPath(contains, ty) {
if (contains.length === 0) {
return 0;
}
const maxPathEditDistance = Math.floor(
contains.reduce((acc, next) => acc + next.length, 0) / 3,
);
let ret_dist = maxPathEditDistance + 1;
const path = ty.path.split("::");
if (ty.parent && ty.parent.name) {
path.push(ty.parent.name.toLowerCase());
}
const length = path.length;
const clength = contains.length;
pathiter: for (let i = length - clength; i >= 0; i -= 1) {
let dist_total = 0;
for (let x = 0; x < clength; ++x) {
const [p, c] = [path[i + x], contains[x]];
if (Math.floor((p.length - c.length) / 3) <= maxPathEditDistance &&
p.indexOf(c) !== -1
) {
// discount distance on substring match
dist_total += Math.floor((p.length - c.length) / 3);
} else {
const dist = editDistance(p, c, maxPathEditDistance);
if (dist > maxPathEditDistance) {
continue pathiter;
}
dist_total += dist;
}
}
ret_dist = Math.min(ret_dist, Math.round(dist_total / clength));
}
return ret_dist > maxPathEditDistance ? null : ret_dist;
}
function typePassesFilter(filter, type) {
// No filter or Exact mach
if (filter <= NO_TYPE_FILTER || filter === type) return true;
// Match related items
const name = itemTypes[type];
switch (itemTypes[filter]) {
case "constant":
return name === "associatedconstant";
case "fn":
return name === "method" || name === "tymethod";
case "type":
return name === "primitive" || name === "associatedtype";
case "trait":
return name === "traitalias";
}
// No match
return false;
}
function createAliasFromItem(item) {
return {
crate: item.crate,
name: item.name,
path: item.path,
descShard: item.descShard,
descIndex: item.descIndex,
exactPath: item.exactPath,
ty: item.ty,
parent: item.parent,
type: item.type,
is_alias: true,
bitIndex: item.bitIndex,
implDisambiguator: item.implDisambiguator,
};
}
const handleAliases = async(ret, query, filterCrates, currentCrate) => {
const lowerQuery = query.toLowerCase();
// We separate aliases and crate aliases because we want to have current crate
// aliases to be before the others in the displayed results.
const aliases = [];
const crateAliases = [];
if (filterCrates !== null) {
if (this.ALIASES.has(filterCrates)
&& this.ALIASES.get(filterCrates).has(lowerQuery)) {
const query_aliases = this.ALIASES.get(filterCrates).get(lowerQuery);
for (const alias of query_aliases) {
aliases.push(createAliasFromItem(this.searchIndex[alias]));
}
}
} else {
for (const [crate, crateAliasesIndex] of this.ALIASES) {
if (crateAliasesIndex.has(lowerQuery)) {
const pushTo = crate === currentCrate ? crateAliases : aliases;
const query_aliases = crateAliasesIndex.get(lowerQuery);
for (const alias of query_aliases) {
pushTo.push(createAliasFromItem(this.searchIndex[alias]));
}
}
}
}
const sortFunc = (aaa, bbb) => {
if (aaa.path < bbb.path) {
return 1;
} else if (aaa.path === bbb.path) {
return 0;
}
return -1;
};
crateAliases.sort(sortFunc);
aliases.sort(sortFunc);
const fetchDesc = alias => {
return this.searchIndexEmptyDesc.get(alias.crate).contains(alias.bitIndex) ?
"" : this.searchState.loadDesc(alias);
};
const [crateDescs, descs] = await Promise.all([
Promise.all(crateAliases.map(fetchDesc)),
Promise.all(aliases.map(fetchDesc)),
]);
const pushFunc = alias => {
alias.alias = query;
const res = buildHrefAndPath(alias);
alias.displayPath = pathSplitter(res[0]);
alias.fullPath = alias.displayPath + alias.name;
alias.href = res[1];
ret.others.unshift(alias);
if (ret.others.length > MAX_RESULTS) {
ret.others.pop();
}
};
aliases.forEach((alias, i) => {
alias.desc = descs[i];
});
aliases.forEach(pushFunc);
crateAliases.forEach((alias, i) => {
alias.desc = crateDescs[i];
});
crateAliases.forEach(pushFunc);
};
/**
* This function adds the given result into the provided `results` map if it matches the
* following condition:
*
* * If it is a "literal search" (`parsedQuery.literalSearch`), then `dist` must be 0.
* * If it is not a "literal search", `dist` must be <= `maxEditDistance`.
*
* The `results` map contains information which will be used to sort the search results:
*
* * `fullId` is a `string`` used as the key of the object we use for the `results` map.
* * `id` is the index in the `searchIndex` array for this element.
* * `index` is an `integer`` used to sort by the position of the word in the item's name.
* * `dist` is the main metric used to sort the search results.
* * `path_dist` is zero if a single-component search query is used, otherwise it's the
* distance computed for everything other than the last path component.
*
* @param {Results} results
* @param {string} fullId
* @param {integer} id
* @param {integer} index
* @param {integer} dist
* @param {integer} path_dist
*/
function addIntoResults(results, fullId, id, index, dist, path_dist, maxEditDistance) {
if (dist <= maxEditDistance || index !== -1) {
if (results.has(fullId)) {
const result = results.get(fullId);
if (result.dontValidate || result.dist <= dist) {
return;
}
}
results.set(fullId, {
id: id,
index: index,
dontValidate: parsedQuery.literalSearch,
dist: dist,
path_dist: path_dist,
});
}
}
/**
* This function is called in case the query has more than one element. In this case, it'll
* try to match the items which validates all the elements. For `aa -> bb` will look for
* functions which have a parameter `aa` and has `bb` in its returned values.
*
* @param {Row} row
* @param {integer} pos - Position in the `searchIndex`.
* @param {Object} results
*/
function handleArgs(row, pos, results) {
if (!row || (filterCrates !== null && row.crate !== filterCrates) || !row.type) {
return;
}
const tfpDist = compareTypeFingerprints(
row.id,
parsedQuery.typeFingerprint,
);
if (tfpDist === null) {
return;
}
if (results.size >= MAX_RESULTS && tfpDist > results.max_dist) {
return;
}
// If the result is too "bad", we return false and it ends this search.
if (!unifyFunctionTypes(
row.type.inputs,
parsedQuery.elems,
row.type.where_clause,
null,
mgens => {
return unifyFunctionTypes(
row.type.output,
parsedQuery.returned,
row.type.where_clause,
mgens,
checkTypeMgensForConflict,
0, // unboxing depth
);
},
0, // unboxing depth
)) {
return;
}
results.max_dist = Math.max(results.max_dist || 0, tfpDist);
addIntoResults(results, row.id, pos, 0, tfpDist, 0, Number.MAX_VALUE);
}
/**
* Compare the query fingerprint with the function fingerprint.
*
* @param {{number}} fullId - The function
* @param {{Uint32Array}} queryFingerprint - The query
* @returns {number|null} - Null if non-match, number if distance
* This function might return 0!
*/
const compareTypeFingerprints = (fullId, queryFingerprint) => {
const fh0 = this.functionTypeFingerprint[fullId * 4];
const fh1 = this.functionTypeFingerprint[(fullId * 4) + 1];
const fh2 = this.functionTypeFingerprint[(fullId * 4) + 2];
const [qh0, qh1, qh2] = queryFingerprint;
// Approximate set intersection with bloom filters.
// This can be larger than reality, not smaller, because hashes have
// the property that if they've got the same value, they hash to the
// same thing. False positives exist, but not false negatives.
const [in0, in1, in2] = [fh0 & qh0, fh1 & qh1, fh2 & qh2];
// Approximate the set of items in the query but not the function.
// This might be smaller than reality, but cannot be bigger.
//
// | in_ | qh_ | XOR | Meaning |
// | --- | --- | --- | ------------------------------------------------ |
// | 0 | 0 | 0 | Not present |
// | 1 | 0 | 1 | IMPOSSIBLE because `in_` is `fh_ & qh_` |
// | 1 | 1 | 0 | If one or both is false positive, false negative |
// | 0 | 1 | 1 | Since in_ has no false negatives, must be real |
if ((in0 ^ qh0) || (in1 ^ qh1) || (in2 ^ qh2)) {
return null;
}
return this.functionTypeFingerprint[(fullId * 4) + 3];
};
const innerRunQuery = () => {
const queryLen =
parsedQuery.elems.reduce((acc, next) => acc + next.pathLast.length, 0) +
parsedQuery.returned.reduce((acc, next) => acc + next.pathLast.length, 0);
const maxEditDistance = Math.floor(queryLen / 3);
/**
* @type {Map<string, integer>}
*/
const genericSymbols = new Map();
/**
* Convert names to ids in parsed query elements.
* This is not used for the "In Names" tab, but is used for the
* "In Params", "In Returns", and "In Function Signature" tabs.
*
* If there is no matching item, but a close-enough match, this
* function also that correction.
*
* See `buildTypeMapIndex` for more information.
*
* @param {QueryElement} elem
* @param {boolean} isAssocType
*/
const convertNameToId = (elem, isAssocType) => {
const loweredName = elem.pathLast.toLowerCase();
if (this.typeNameIdMap.has(loweredName) &&
(isAssocType || !this.typeNameIdMap.get(loweredName).assocOnly)) {
elem.id = this.typeNameIdMap.get(loweredName).id;
} else if (!parsedQuery.literalSearch) {
let match = null;
let matchDist = maxEditDistance + 1;
let matchName = "";
for (const [name, { id, assocOnly }] of this.typeNameIdMap) {
const dist = Math.min(
editDistance(name, loweredName, maxEditDistance),
editDistance(name, elem.normalizedPathLast, maxEditDistance),
);
if (dist <= matchDist && dist <= maxEditDistance &&
(isAssocType || !assocOnly)) {
if (dist === matchDist && matchName > name) {
continue;
}
match = id;
matchDist = dist;
matchName = name;
}
}
if (match !== null) {
parsedQuery.correction = matchName;
}
elem.id = match;
}
if ((elem.id === null && parsedQuery.totalElems > 1 && elem.typeFilter === -1
&& elem.generics.length === 0 && elem.bindings.size === 0)
|| elem.typeFilter === TY_GENERIC) {
if (genericSymbols.has(elem.normalizedPathLast)) {
elem.id = genericSymbols.get(elem.normalizedPathLast);
} else {
elem.id = -(genericSymbols.size + 1);
genericSymbols.set(elem.normalizedPathLast, elem.id);
}
if (elem.typeFilter === -1 && elem.normalizedPathLast.length >= 3) {
// Silly heuristic to catch if the user probably meant
// to not write a generic parameter. We don't use it,
// just bring it up.
const maxPartDistance = Math.floor(elem.normalizedPathLast.length / 3);
let matchDist = maxPartDistance + 1;
let matchName = "";
for (const name of this.typeNameIdMap.keys()) {
const dist = editDistance(
name,
elem.normalizedPathLast,
maxPartDistance,
);
if (dist <= matchDist && dist <= maxPartDistance) {
if (dist === matchDist && matchName > name) {
continue;
}
matchDist = dist;
matchName = name;
}
}
if (matchName !== "") {
parsedQuery.proposeCorrectionFrom = elem.name;
parsedQuery.proposeCorrectionTo = matchName;
}
}
elem.typeFilter = TY_GENERIC;
}
if (elem.generics.length > 0 && elem.typeFilter === TY_GENERIC) {
// Rust does not have HKT
parsedQuery.error = [
"Generic type parameter ",
elem.name,
" does not accept generic parameters",
];
}
for (const elem2 of elem.generics) {
convertNameToId(elem2);
}
elem.bindings = new Map(Array.from(elem.bindings.entries())
.map(entry => {
const [name, constraints] = entry;
if (!this.typeNameIdMap.has(name)) {
parsedQuery.error = [
"Type parameter ",
name,
" does not exist",
];
return [null, []];
}
for (const elem2 of constraints) {
convertNameToId(elem2);
}
return [this.typeNameIdMap.get(name).id, constraints];
}),
);
};
for (const elem of parsedQuery.elems) {
convertNameToId(elem);
this.buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint);
}
for (const elem of parsedQuery.returned) {
convertNameToId(elem);
this.buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint);
}
if (parsedQuery.foundElems === 1 && !parsedQuery.hasReturnArrow) {
const elem = parsedQuery.elems[0];
// use arrow functions to preserve `this`.
const handleNameSearch = id => {
const row = this.searchIndex[id];
if (!typePassesFilter(elem.typeFilter, row.ty) ||
(filterCrates !== null && row.crate !== filterCrates)) {
return;
}
let pathDist = 0;
if (elem.fullPath.length > 1) {
pathDist = checkPath(elem.pathWithoutLast, row);
if (pathDist === null) {
return;
}
}
if (parsedQuery.literalSearch) {
if (row.word === elem.pathLast) {
addIntoResults(results_others, row.id, id, 0, 0, pathDist);
}
} else {
addIntoResults(
results_others,
row.id,
id,
row.normalizedName.indexOf(elem.normalizedPathLast),
editDistance(
row.normalizedName,
elem.normalizedPathLast,
maxEditDistance,
),
pathDist,
maxEditDistance,
);
}
};
if (elem.normalizedPathLast !== "") {
const last = elem.normalizedPathLast;
for (const id of this.nameTrie.search(last, this.tailTable)) {
handleNameSearch(id);
}
}
const length = this.searchIndex.length;
for (let i = 0, nSearchIndex = length; i < nSearchIndex; ++i) {
// queries that end in :: bypass the trie
if (elem.normalizedPathLast === "") {
handleNameSearch(i);
}
const row = this.searchIndex[i];
if (filterCrates !== null && row.crate !== filterCrates) {
continue;
}
const tfpDist = compareTypeFingerprints(
row.id,
parsedQuery.typeFingerprint,
);
if (tfpDist !== null) {
const in_args = row.type && row.type.inputs
&& checkIfInList(row.type.inputs, elem, row.type.where_clause, null, 0);
const returned = row.type && row.type.output
&& checkIfInList(row.type.output, elem, row.type.where_clause, null, 0);
if (in_args) {
results_in_args.max_dist = Math.max(
results_in_args.max_dist || 0,
tfpDist,
);
const maxDist = results_in_args.size < MAX_RESULTS ?
(tfpDist + 1) :
results_in_args.max_dist;
addIntoResults(results_in_args, row.id, i, -1, tfpDist, 0, maxDist);
}
if (returned) {
results_returned.max_dist = Math.max(
results_returned.max_dist || 0,
tfpDist,
);
const maxDist = results_returned.size < MAX_RESULTS ?
(tfpDist + 1) :
results_returned.max_dist;
addIntoResults(results_returned, row.id, i, -1, tfpDist, 0, maxDist);
}
}
}
} else if (parsedQuery.foundElems > 0) {
// Sort input and output so that generic type variables go first and
// types with generic parameters go last.
// That's because of the way unification is structured: it eats off
// the end, and hits a fast path if the last item is a simple atom.
const sortQ = (a, b) => {
const ag = a.generics.length === 0 && a.bindings.size === 0;
const bg = b.generics.length === 0 && b.bindings.size === 0;
if (ag !== bg) {
return ag - bg;
}
const ai = a.id > 0;
const bi = b.id > 0;
return ai - bi;
};
parsedQuery.elems.sort(sortQ);
parsedQuery.returned.sort(sortQ);
for (let i = 0, nSearchIndex = this.searchIndex.length; i < nSearchIndex; ++i) {
handleArgs(this.searchIndex[i], i, results_others);
}
}
};
if (parsedQuery.error === null) {
innerRunQuery();
}
const isType = parsedQuery.foundElems !== 1 || parsedQuery.hasReturnArrow;
const [sorted_in_args, sorted_returned, sorted_others] = await Promise.all([
sortResults(results_in_args, "elems", currentCrate),
sortResults(results_returned, "returned", currentCrate),
sortResults(results_others, (isType ? "query" : null), currentCrate),
]);
const ret = createQueryResults(
sorted_in_args,
sorted_returned,
sorted_others,
parsedQuery);
await handleAliases(ret, parsedQuery.userQuery.replace(/"/g, ""),
filterCrates, currentCrate);
await Promise.all([ret.others, ret.returned, ret.in_args].map(async list => {
const descs = await Promise.all(list.map(result => {
return this.searchIndexEmptyDesc.get(result.crate).contains(result.bitIndex) ?
"" :
this.searchState.loadDesc(result);
}));
for (const [i, result] of list.entries()) {
result.desc = descs[i];
}
}));
if (parsedQuery.error !== null && ret.others.length !== 0) {
// It means some doc aliases were found so let's "remove" the error!
ret.query.error = null;
}
return ret;
}
}
// ==================== Core search logic end ====================
let rawSearchIndex;
let docSearch;
const longItemTypes = [
"keyword",
"primitive type",
"module",
"extern crate",
"re-export",
"struct",
"enum",
"function",
"type alias",
"static",
"trait",
"",
"trait method",
"method",
"struct field",
"enum variant",
"macro",
"assoc type",
"constant",
"assoc const",
"union",
"foreign type",
"existential type",
"attribute macro",
"derive macro",
"trait alias",
];
let currentResults;
// In the search display, allows to switch between tabs.
function printTab(nb) {
let iter = 0;
let foundCurrentTab = false;
let foundCurrentResultSet = false;
onEachLazy(document.getElementById("search-tabs").childNodes, elem => {
if (nb === iter) {
addClass(elem, "selected");
foundCurrentTab = true;
} else {
removeClass(elem, "selected");
}
iter += 1;
});
const isTypeSearch = (nb > 0 || iter === 1);
iter = 0;
onEachLazy(document.getElementById("results").childNodes, elem => {
if (nb === iter) {
addClass(elem, "active");
foundCurrentResultSet = true;
} else {
removeClass(elem, "active");
}
iter += 1;
});
if (foundCurrentTab && foundCurrentResultSet) {
searchState.currentTab = nb;
// Corrections only kick in on type-based searches.
const correctionsElem = document.getElementsByClassName("search-corrections");
if (isTypeSearch) {
removeClass(correctionsElem[0], "hidden");
} else {
addClass(correctionsElem[0], "hidden");
}
} else if (nb !== 0) {
printTab(0);
}
}
/**
* Build an URL with search parameters.
*
* @param {string} search - The current search being performed.
* @param {string|null} filterCrates - The current filtering crate (if any).
*
* @return {string}
*/
function buildUrl(search, filterCrates) {
let extra = "?search=" + encodeURIComponent(search);
if (filterCrates !== null) {
extra += "&filter-crate=" + encodeURIComponent(filterCrates);
}
return getNakedUrl() + extra + window.location.hash;
}
/**
* Return the filtering crate or `null` if there is none.
*
* @return {string|null}
*/
function getFilterCrates() {
const elem = document.getElementById("crate-search");
if (elem &&
elem.value !== "all crates" &&
window.searchIndex.has(elem.value)
) {
return elem.value;
}
return null;
}
function nextTab(direction) {
const next = (searchState.currentTab + direction + 3) % searchState.focusedByTab.length;
searchState.focusedByTab[searchState.currentTab] = document.activeElement;
printTab(next);
focusSearchResult();
}
// Focus the first search result on the active tab, or the result that
// was focused last time this tab was active.
function focusSearchResult() {
const target = searchState.focusedByTab[searchState.currentTab] ||
document.querySelectorAll(".search-results.active a").item(0) ||
document.querySelectorAll("#search-tabs button").item(searchState.currentTab);
searchState.focusedByTab[searchState.currentTab] = null;
if (target) {
target.focus();
}
}
/**
* Render a set of search results for a single tab.
* @param {Array<?>} array - The search results for this tab
* @param {ParsedQuery} query
* @param {boolean} display - True if this is the active tab
* @param {"sig"|"elems"|"returned"|null} typeInfo
*/
async function addTab(array, query, display) {
const extraClass = display ? " active" : "";
const output = document.createElement(
array.length === 0 && query.error === null ? "div" : "ul",
);
if (array.length > 0) {
output.className = "search-results " + extraClass;
const lis = Promise.all(array.map(async item => {
const name = item.name;
const type = itemTypes[item.ty];
const longType = longItemTypes[item.ty];
const typeName = longType.length !== 0 ? `${longType}` : "?";
const link = document.createElement("a");
link.className = "result-" + type;
link.href = item.href;
const resultName = document.createElement("span");
resultName.className = "result-name";
resultName.insertAdjacentHTML(
"beforeend",
`<span class="typename">${typeName}</span>`);
link.appendChild(resultName);
let alias = " ";
if (item.is_alias) {
alias = ` <div class="alias">\
<b>${item.alias}</b><i class="grey">&nbsp;- see&nbsp;</i>\
</div>`;
}
resultName.insertAdjacentHTML(
"beforeend",
`<div class="path">${alias}\
${item.displayPath}<span class="${type}">${name}</span>\
</div>`);
const description = document.createElement("div");
description.className = "desc";
description.insertAdjacentHTML("beforeend", item.desc);
if (item.displayTypeSignature) {
const {type, mappedNames, whereClause} = await item.displayTypeSignature;
const displayType = document.createElement("div");
type.forEach((value, index) => {
if (index % 2 !== 0) {
const highlight = document.createElement("strong");
highlight.appendChild(document.createTextNode(value));
displayType.appendChild(highlight);
} else {
displayType.appendChild(document.createTextNode(value));
}
});
if (mappedNames.size > 0 || whereClause.size > 0) {
let addWhereLineFn = () => {
const line = document.createElement("div");
line.className = "where";
line.appendChild(document.createTextNode("where"));
displayType.appendChild(line);
addWhereLineFn = () => {};
};
for (const [qname, name] of mappedNames) {
// don't care unless the generic name is different
if (name === qname) {
continue;
}
addWhereLineFn();
const line = document.createElement("div");
line.className = "where";
line.appendChild(document.createTextNode(` ${qname} matches `));
const lineStrong = document.createElement("strong");
lineStrong.appendChild(document.createTextNode(name));
line.appendChild(lineStrong);
displayType.appendChild(line);
}
for (const [name, innerType] of whereClause) {
// don't care unless there's at least one highlighted entry
if (innerType.length <= 1) {
continue;
}
addWhereLineFn();
const line = document.createElement("div");
line.className = "where";
line.appendChild(document.createTextNode(` ${name}: `));
innerType.forEach((value, index) => {
if (index % 2 !== 0) {
const highlight = document.createElement("strong");
highlight.appendChild(document.createTextNode(value));
line.appendChild(highlight);
} else {
line.appendChild(document.createTextNode(value));
}
});
displayType.appendChild(line);
}
}
displayType.className = "type-signature";
link.appendChild(displayType);
}
link.appendChild(description);
return link;
}));
lis.then(lis => {
for (const li of lis) {
output.appendChild(li);
}
});
} else if (query.error === null) {
output.className = "search-failed" + extraClass;
output.innerHTML = "No results :(<br/>" +
"Try on <a href=\"https://duckduckgo.com/?q=" +
encodeURIComponent("rust " + query.userQuery) +
"\">DuckDuckGo</a>?<br/><br/>" +
"Or try looking in one of these:<ul><li>The <a " +
"href=\"https://doc.rust-lang.org/reference/index.html\">Rust Reference</a> " +
" for technical details about the language.</li><li><a " +
"href=\"https://doc.rust-lang.org/rust-by-example/index.html\">Rust By " +
"Example</a> for expository code examples.</a></li><li>The <a " +
"href=\"https://doc.rust-lang.org/book/index.html\">Rust Book</a> for " +
"introductions to language features and the language itself.</li><li><a " +
"href=\"https://docs.rs\">Docs.rs</a> for documentation of crates released on" +
" <a href=\"https://crates.io/\">crates.io</a>.</li></ul>";
}
return output;
}
function makeTabHeader(tabNb, text, nbElems) {
// https://blog.horizon-eda.org/misc/2020/02/19/ui.html
//
// CSS runs with `font-variant-numeric: tabular-nums` to ensure all
// digits are the same width. \u{2007} is a Unicode space character
// that is defined to be the same width as a digit.
const fmtNbElems =
nbElems < 10 ? `\u{2007}(${nbElems})\u{2007}\u{2007}` :
nbElems < 100 ? `\u{2007}(${nbElems})\u{2007}` : `\u{2007}(${nbElems})`;
if (searchState.currentTab === tabNb) {
return "<button class=\"selected\">" + text +
"<span class=\"count\">" + fmtNbElems + "</span></button>";
}
return "<button>" + text + "<span class=\"count\">" + fmtNbElems + "</span></button>";
}
/**
* @param {ResultsTable} results
* @param {boolean} go_to_first
* @param {string} filterCrates
*/
async function showResults(results, go_to_first, filterCrates) {
const search = searchState.outputElement();
if (go_to_first || (results.others.length === 1
&& getSettingValue("go-to-only-result") === "true")
) {
// Needed to force re-execution of JS when coming back to a page. Let's take this
// scenario as example:
//
// 1. You have the "Directly go to item in search if there is only one result" option
// enabled.
// 2. You make a search which results only one result, leading you automatically to
// this result.
// 3. You go back to previous page.
//
// Now, without the call below, the JS will not be re-executed and the previous state
// will be used, starting search again since the search input is not empty, leading you
// back to the previous page again.
window.onunload = () => { };
searchState.removeQueryParameters();
const elem = document.createElement("a");
elem.href = results.others[0].href;
removeClass(elem, "active");
// For firefox, we need the element to be in the DOM so it can be clicked.
document.body.appendChild(elem);
elem.click();
return;
}
if (results.query === undefined) {
results.query = DocSearch.parseQuery(searchState.input.value);
}
currentResults = results.query.userQuery;
// Navigate to the relevant tab if the current tab is empty, like in case users search
// for "-> String". If they had selected another tab previously, they have to click on
// it again.
let currentTab = searchState.currentTab;
if ((currentTab === 0 && results.others.length === 0) ||
(currentTab === 1 && results.in_args.length === 0) ||
(currentTab === 2 && results.returned.length === 0)) {
if (results.others.length !== 0) {
currentTab = 0;
} else if (results.in_args.length) {
currentTab = 1;
} else if (results.returned.length) {
currentTab = 2;
}
}
let crates = "";
if (rawSearchIndex.size > 1) {
crates = "<div class=\"sub-heading\"> in&nbsp;<div id=\"crate-search-div\">" +
"<select id=\"crate-search\"><option value=\"all crates\">all crates</option>";
for (const c of rawSearchIndex.keys()) {
crates += `<option value="${c}" ${c === filterCrates && "selected"}>${c}</option>`;
}
crates += "</select></div></div>";
}
let output = `<div class="main-heading">\
<h1 class="search-results-title">Results</h1>${crates}</div>`;
if (results.query.error !== null) {
const error = results.query.error;
error.forEach((value, index) => {
value = value.split("<").join("&lt;").split(">").join("&gt;");
if (index % 2 !== 0) {
error[index] = `<code>${value.replaceAll(" ", "&nbsp;")}</code>`;
} else {
error[index] = value;
}
});
output += `<h3 class="error">Query parser error: "${error.join("")}".</h3>`;
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, "In Names", results.others.length) +
"</div>";
currentTab = 0;
} else if (results.query.foundElems <= 1 && results.query.returned.length === 0) {
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, "In Names", results.others.length) +
makeTabHeader(1, "In Parameters", results.in_args.length) +
makeTabHeader(2, "In Return Types", results.returned.length) +
"</div>";
} else {
const signatureTabTitle =
results.query.elems.length === 0 ? "In Function Return Types" :
results.query.returned.length === 0 ? "In Function Parameters" :
"In Function Signatures";
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, signatureTabTitle, results.others.length) +
"</div>";
currentTab = 0;
}
if (results.query.correction !== null) {
const orig = results.query.returned.length > 0
? results.query.returned[0].name
: results.query.elems[0].name;
output += "<h3 class=\"search-corrections\">" +
`Type "${orig}" not found. ` +
"Showing results for closest type name " +
`"${results.query.correction}" instead.</h3>`;
}
if (results.query.proposeCorrectionFrom !== null) {
const orig = results.query.proposeCorrectionFrom;
const targ = results.query.proposeCorrectionTo;
output += "<h3 class=\"search-corrections\">" +
`Type "${orig}" not found and used as generic parameter. ` +
`Consider searching for "${targ}" instead.</h3>`;
}
const [ret_others, ret_in_args, ret_returned] = await Promise.all([
addTab(results.others, results.query, currentTab === 0),
addTab(results.in_args, results.query, currentTab === 1),
addTab(results.returned, results.query, currentTab === 2),
]);
const resultsElem = document.createElement("div");
resultsElem.id = "results";
resultsElem.appendChild(ret_others);
resultsElem.appendChild(ret_in_args);
resultsElem.appendChild(ret_returned);
search.innerHTML = output;
if (searchState.rustdocToolbar) {
search.querySelector(".main-heading").appendChild(searchState.rustdocToolbar);
}
const crateSearch = document.getElementById("crate-search");
if (crateSearch) {
crateSearch.addEventListener("input", updateCrate);
}
search.appendChild(resultsElem);
// Reset focused elements.
searchState.showResults(search);
const elems = document.getElementById("search-tabs").childNodes;
searchState.focusedByTab = [];
let i = 0;
for (const elem of elems) {
const j = i;
elem.onclick = () => printTab(j);
searchState.focusedByTab.push(null);
i += 1;
}
printTab(currentTab);
}
function updateSearchHistory(url) {
if (!browserSupportsHistoryApi()) {
return;
}
const params = searchState.getQueryStringParams();
if (!history.state && !params.search) {
history.pushState(null, "", url);
} else {
history.replaceState(null, "", url);
}
}
/**
* Perform a search based on the current state of the search input element
* and display the results.
* @param {boolean} [forced]
*/
async function search(forced) {
const query = DocSearch.parseQuery(searchState.input.value.trim());
let filterCrates = getFilterCrates();
if (!forced && query.userQuery === currentResults) {
if (query.userQuery.length > 0) {
putBackSearch();
}
return;
}
searchState.setLoadingSearch();
const params = searchState.getQueryStringParams();
// In case we have no information about the saved crate and there is a URL query parameter,
// we override it with the URL query parameter.
if (filterCrates === null && params["filter-crate"] !== undefined) {
filterCrates = params["filter-crate"];
}
// Update document title to maintain a meaningful browser history
searchState.title = "\"" + query.userQuery + "\" Search - Rust";
// Because searching is incremental by character, only the most
// recent search query is added to the browser history.
updateSearchHistory(buildUrl(query.userQuery, filterCrates));
await showResults(
await docSearch.execQuery(query, filterCrates, window.currentCrate),
params.go_to_first,
filterCrates);
}
/**
* Callback for when the search form is submitted.
* @param {Event} [e] - The event that triggered this call, if any
*/
function onSearchSubmit(e) {
e.preventDefault();
searchState.clearInputTimeout();
search();
}
function putBackSearch() {
const search_input = searchState.input;
if (!searchState.input) {
return;
}
if (search_input.value !== "" && !searchState.isDisplayed()) {
searchState.showResults();
if (browserSupportsHistoryApi()) {
history.replaceState(null, "",
buildUrl(search_input.value, getFilterCrates()));
}
document.title = searchState.title;
}
}
function registerSearchEvents() {
const params = searchState.getQueryStringParams();
// Populate search bar with query string search term when provided,
// but only if the input bar is empty. This avoid the obnoxious issue
// where you start trying to do a search, and the index loads, and
// suddenly your search is gone!
if (searchState.input.value === "") {
searchState.input.value = params.search || "";
}
const searchAfter500ms = () => {
searchState.clearInputTimeout();
if (searchState.input.value.length === 0) {
searchState.hideResults();
} else {
searchState.timeout = setTimeout(search, 500);
}
};
searchState.input.onkeyup = searchAfter500ms;
searchState.input.oninput = searchAfter500ms;
document.getElementsByClassName("search-form")[0].onsubmit = onSearchSubmit;
searchState.input.onchange = e => {
if (e.target !== document.activeElement) {
// To prevent doing anything when it's from a blur event.
return;
}
// Do NOT e.preventDefault() here. It will prevent pasting.
searchState.clearInputTimeout();
// zero-timeout necessary here because at the time of event handler execution the
// pasted content is not in the input field yet. Shouldnt make any difference for
// change, though.
setTimeout(search, 0);
};
searchState.input.onpaste = searchState.input.onchange;
searchState.outputElement().addEventListener("keydown", e => {
// We only handle unmodified keystrokes here. We don't want to interfere with,
// for instance, alt-left and alt-right for history navigation.
if (e.altKey || e.ctrlKey || e.shiftKey || e.metaKey) {
return;
}
// up and down arrow select next/previous search result, or the
// search box if we're already at the top.
if (e.which === 38) { // up
const previous = document.activeElement.previousElementSibling;
if (previous) {
previous.focus();
} else {
searchState.focus();
}
e.preventDefault();
} else if (e.which === 40) { // down
const next = document.activeElement.nextElementSibling;
if (next) {
next.focus();
}
const rect = document.activeElement.getBoundingClientRect();
if (window.innerHeight - rect.bottom < rect.height) {
window.scrollBy(0, rect.height);
}
e.preventDefault();
} else if (e.which === 37) { // left
nextTab(-1);
e.preventDefault();
} else if (e.which === 39) { // right
nextTab(1);
e.preventDefault();
}
});
searchState.input.addEventListener("keydown", e => {
if (e.which === 40) { // down
focusSearchResult();
e.preventDefault();
}
});
searchState.input.addEventListener("focus", () => {
putBackSearch();
});
searchState.input.addEventListener("blur", () => {
searchState.input.placeholder = searchState.input.origPlaceholder;
});
// Push and pop states are used to add search results to the browser
// history.
if (browserSupportsHistoryApi()) {
// Store the previous <title> so we can revert back to it later.
const previousTitle = document.title;
window.addEventListener("popstate", e => {
const params = searchState.getQueryStringParams();
// Revert to the previous title manually since the History
// API ignores the title parameter.
document.title = previousTitle;
// When browsing forward to search results the previous
// search will be repeated, so the currentResults are
// cleared to ensure the search is successful.
currentResults = null;
// Synchronize search bar with query string state and
// perform the search. This will empty the bar if there's
// nothing there, which lets you really go back to a
// previous state with nothing in the bar.
if (params.search && params.search.length > 0) {
searchState.input.value = params.search;
// Some browsers fire "onpopstate" for every page load
// (Chrome), while others fire the event only when actually
// popping a state (Firefox), which is why search() is
// called both here and at the end of the startSearch()
// function.
e.preventDefault();
search();
} else {
searchState.input.value = "";
// When browsing back from search results the main page
// visibility must be reset.
searchState.hideResults();
}
});
}
// This is required in firefox to avoid this problem: Navigating to a search result
// with the keyboard, hitting enter, and then hitting back would take you back to
// the doc page, rather than the search that should overlay it.
// This was an interaction between the back-forward cache and our handlers
// that try to sync state between the URL and the search input. To work around it,
// do a small amount of re-init on page show.
window.onpageshow = () => {
const qSearch = searchState.getQueryStringParams().search;
if (searchState.input.value === "" && qSearch) {
searchState.input.value = qSearch;
}
search();
};
}
function updateCrate(ev) {
if (ev.target.value === "all crates") {
// If we don't remove it from the URL, it'll be picked up again by the search.
const query = searchState.input.value.trim();
updateSearchHistory(buildUrl(query, null));
}
// In case you "cut" the entry from the search input, then change the crate filter
// before paste back the previous search, you get the old search results without
// the filter. To prevent this, we need to remove the previous results.
currentResults = null;
search(true);
}
function initSearch(searchIndx) {
rawSearchIndex = searchIndx;
if (typeof window !== "undefined") {
docSearch = new DocSearch(rawSearchIndex, ROOT_PATH, searchState);
registerSearchEvents();
// If there's a search term in the URL, execute the search now.
if (window.searchState.getQueryStringParams().search) {
search();
}
} else if (typeof exports !== "undefined") {
docSearch = new DocSearch(rawSearchIndex, ROOT_PATH, searchState);
exports.docSearch = docSearch;
exports.parseQuery = DocSearch.parseQuery;
}
}
if (typeof exports !== "undefined") {
exports.initSearch = initSearch;
}
if (typeof window !== "undefined") {
window.initSearch = initSearch;
if (window.searchIndex !== undefined) {
initSearch(window.searchIndex);
}
} else {
// Running in Node, not a browser. Run initSearch just to produce the
// exports.
initSearch(new Map());
}
// Parts of this code are based on Lucene, which is licensed under the
// Apache/2.0 license.
// More information found here:
// https://fossies.org/linux/lucene/lucene/core/src/java/org/apache/lucene/util/automaton/
// LevenshteinAutomata.java
class ParametricDescription {
constructor(w, n, minErrors) {
this.w = w;
this.n = n;
this.minErrors = minErrors;
}
isAccept(absState) {
const state = Math.floor(absState / (this.w + 1));
const offset = absState % (this.w + 1);
return this.w - offset + this.minErrors[state] <= this.n;
}
getPosition(absState) {
return absState % (this.w + 1);
}
getVector(name, charCode, pos, end) {
let vector = 0;
for (let i = pos; i < end; i += 1) {
vector = vector << 1;
if (name.charCodeAt(i) === charCode) {
vector |= 1;
}
}
return vector;
}
unpack(data, index, bitsPerValue) {
const bitLoc = (bitsPerValue * index);
const dataLoc = bitLoc >> 5;
const bitStart = bitLoc & 31;
if (bitStart + bitsPerValue <= 32) {
// not split
return ((data[dataLoc] >> bitStart) & this.MASKS[bitsPerValue - 1]);
} else {
// split
const part = 32 - bitStart;
return ~~(((data[dataLoc] >> bitStart) & this.MASKS[part - 1]) +
((data[1 + dataLoc] & this.MASKS[bitsPerValue - part - 1]) << part));
}
}
}
ParametricDescription.prototype.MASKS = new Int32Array([
0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF,
0x1FF, 0x3F, 0x7FF, 0xFFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF,
0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF,
0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF,
0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF,
]);
// The following code was generated with the moman/finenight pkg
// This package is available under the MIT License, see NOTICE.txt
// for more details.
// This class is auto-generated, Please do not modify it directly.
// You should modify the https://gitlab.com/notriddle/createAutomata.py instead.
// The following code was generated with the moman/finenight pkg
// This package is available under the MIT License, see NOTICE.txt
// for more details.
// This class is auto-generated, Please do not modify it directly.
// You should modify https://gitlab.com/notriddle/moman-rustdoc instead.
class Lev2TParametricDescription extends ParametricDescription {
/**
* @param {number} absState
* @param {number} position
* @param {number} vector
* @returns {number}
*/
transition(absState, position, vector) {
let state = Math.floor(absState / (this.w + 1));
let offset = absState % (this.w + 1);
if (position === this.w) {
if (state < 3) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 3) + state;
offset += this.unpack(this.offsetIncrs0, loc, 1);
state = this.unpack(this.toStates0, loc, 2) - 1;
}
} else if (position === this.w - 1) {
if (state < 5) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 5) + state;
offset += this.unpack(this.offsetIncrs1, loc, 1);
state = this.unpack(this.toStates1, loc, 3) - 1;
}
} else if (position === this.w - 2) {
if (state < 13) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 13) + state;
offset += this.unpack(this.offsetIncrs2, loc, 2);
state = this.unpack(this.toStates2, loc, 4) - 1;
}
} else if (position === this.w - 3) {
if (state < 28) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 28) + state;
offset += this.unpack(this.offsetIncrs3, loc, 2);
state = this.unpack(this.toStates3, loc, 5) - 1;
}
} else if (position === this.w - 4) {
if (state < 45) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 45) + state;
offset += this.unpack(this.offsetIncrs4, loc, 3);
state = this.unpack(this.toStates4, loc, 6) - 1;
}
} else {
if (state < 45) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 45) + state;
offset += this.unpack(this.offsetIncrs5, loc, 3);
state = this.unpack(this.toStates5, loc, 6) - 1;
}
}
if (state === -1) {
// null state
return -1;
} else {
// translate back to abs
return Math.imul(state, this.w + 1) + offset;
}
}
// state map
// 0 -> [(0, 0)]
// 1 -> [(0, 1)]
// 2 -> [(0, 2)]
// 3 -> [(0, 1), (1, 1)]
// 4 -> [(0, 2), (1, 2)]
// 5 -> [(0, 1), (1, 1), (2, 1)]
// 6 -> [(0, 2), (1, 2), (2, 2)]
// 7 -> [(0, 1), (2, 1)]
// 8 -> [(0, 1), (2, 2)]
// 9 -> [(0, 2), (2, 1)]
// 10 -> [(0, 2), (2, 2)]
// 11 -> [t(0, 1), (0, 1), (1, 1), (2, 1)]
// 12 -> [t(0, 2), (0, 2), (1, 2), (2, 2)]
// 13 -> [(0, 2), (1, 2), (2, 2), (3, 2)]
// 14 -> [(0, 1), (1, 1), (3, 2)]
// 15 -> [(0, 1), (2, 2), (3, 2)]
// 16 -> [(0, 1), (3, 2)]
// 17 -> [(0, 1), t(1, 2), (2, 2), (3, 2)]
// 18 -> [(0, 2), (1, 2), (3, 1)]
// 19 -> [(0, 2), (1, 2), (3, 2)]
// 20 -> [(0, 2), (1, 2), t(1, 2), (2, 2), (3, 2)]
// 21 -> [(0, 2), (2, 1), (3, 1)]
// 22 -> [(0, 2), (2, 2), (3, 2)]
// 23 -> [(0, 2), (3, 1)]
// 24 -> [(0, 2), (3, 2)]
// 25 -> [(0, 2), t(1, 2), (1, 2), (2, 2), (3, 2)]
// 26 -> [t(0, 2), (0, 2), (1, 2), (2, 2), (3, 2)]
// 27 -> [t(0, 2), (0, 2), (1, 2), (3, 1)]
// 28 -> [(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)]
// 29 -> [(0, 2), (1, 2), (2, 2), (4, 2)]
// 30 -> [(0, 2), (1, 2), (2, 2), t(2, 2), (3, 2), (4, 2)]
// 31 -> [(0, 2), (1, 2), (3, 2), (4, 2)]
// 32 -> [(0, 2), (1, 2), (4, 2)]
// 33 -> [(0, 2), (1, 2), t(1, 2), (2, 2), (3, 2), (4, 2)]
// 34 -> [(0, 2), (1, 2), t(2, 2), (2, 2), (3, 2), (4, 2)]
// 35 -> [(0, 2), (2, 1), (4, 2)]
// 36 -> [(0, 2), (2, 2), (3, 2), (4, 2)]
// 37 -> [(0, 2), (2, 2), (4, 2)]
// 38 -> [(0, 2), (3, 2), (4, 2)]
// 39 -> [(0, 2), (4, 2)]
// 40 -> [(0, 2), t(1, 2), (1, 2), (2, 2), (3, 2), (4, 2)]
// 41 -> [(0, 2), t(2, 2), (2, 2), (3, 2), (4, 2)]
// 42 -> [t(0, 2), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2)]
// 43 -> [t(0, 2), (0, 2), (1, 2), (2, 2), (4, 2)]
// 44 -> [t(0, 2), (0, 2), (1, 2), (2, 2), t(2, 2), (3, 2), (4, 2)]
/** @param {number} w - length of word being checked */
constructor(w) {
super(w, 2, new Int32Array([
0,1,2,0,1,-1,0,-1,0,-1,0,-1,0,-1,-1,-1,-1,-1,-2,-1,-1,-2,-1,-2,
-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
]));
}
}
Lev2TParametricDescription.prototype.toStates0 = /*2 bits per value */ new Int32Array([
0xe,
]);
Lev2TParametricDescription.prototype.offsetIncrs0 = /*1 bits per value */ new Int32Array([
0x0,
]);
Lev2TParametricDescription.prototype.toStates1 = /*3 bits per value */ new Int32Array([
0x1a688a2c,
]);
Lev2TParametricDescription.prototype.offsetIncrs1 = /*1 bits per value */ new Int32Array([
0x3e0,
]);
Lev2TParametricDescription.prototype.toStates2 = /*4 bits per value */ new Int32Array([
0x70707054,0xdc07035,0x3dd3a3a,0x2323213a,
0x15435223,0x22545432,0x5435,
]);
Lev2TParametricDescription.prototype.offsetIncrs2 = /*2 bits per value */ new Int32Array([
0x80000,0x55582088,0x55555555,0x55,
]);
Lev2TParametricDescription.prototype.toStates3 = /*5 bits per value */ new Int32Array([
0x1c0380a4,0x700a570,0xca529c0,0x180a00,
0xa80af180,0xc5498e60,0x5a546398,0x8c4300e8,
0xac18c601,0xd8d43501,0x863500ad,0x51976d6a,
0x8ca0180a,0xc3501ac2,0xb0c5be16,0x76dda8a5,
0x18c4519,0xc41294a,0xe248d231,0x1086520c,
0xce31ac42,0x13946358,0x2d0348c4,0x6732d494,
0x1ad224a5,0xd635ad4b,0x520c4139,0xce24948,
0x22110a52,0x58ce729d,0xc41394e3,0x941cc520,
0x90e732d4,0x4729d224,0x39ce35ad,
]);
Lev2TParametricDescription.prototype.offsetIncrs3 = /*2 bits per value */ new Int32Array([
0x80000,0xc0c830,0x300f3c30,0x2200fcff,
0xcaa00a08,0x3c2200a8,0xa8fea00a,0x55555555,
0x55555555,0x55555555,0x55555555,0x55555555,
0x55555555,0x55555555,
]);
Lev2TParametricDescription.prototype.toStates4 = /*6 bits per value */ new Int32Array([
0x801c0144,0x1453803,0x14700038,0xc0005145,
0x1401,0x14,0x140000,0x0,
0x510000,0x6301f007,0x301f00d1,0xa186178,
0xc20ca0c3,0xc20c30,0xc30030c,0xc00c00cd,
0xf0c00c30,0x4c054014,0xc30944c3,0x55150c34,
0x8300550,0x430c0143,0x50c31,0xc30850c,
0xc3143000,0x50053c50,0x5130d301,0x850d30c2,
0x30a08608,0xc214414,0x43142145,0x21450031,
0x1400c314,0x4c143145,0x32832803,0x28014d6c,
0xcd34a0c3,0x1c50c76,0x1c314014,0x430c30c3,
0x1431,0xc300500,0xca00d303,0xd36d0e40,
0x90b0e400,0xcb2abb2c,0x70c20ca1,0x2c32ca2c,
0xcd2c70cb,0x31c00c00,0x34c2c32c,0x5583280,
0x558309b7,0x6cd6ca14,0x430850c7,0x51c51401,
0x1430c714,0xc3087,0x71451450,0xca00d30,
0xc26dc156,0xb9071560,0x1cb2abb2,0xc70c2144,
0xb1c51ca1,0x1421c70c,0xc51c00c3,0x30811c51,
0x24324308,0xc51031c2,0x70820820,0x5c33830d,
0xc33850c3,0x30c30c30,0xc30c31c,0x451450c3,
0x20c20c20,0xda0920d,0x5145914f,0x36596114,
0x51965865,0xd9643653,0x365a6590,0x51964364,
0x43081505,0x920b2032,0x2c718b28,0xd7242249,
0x35cb28b0,0x2cb3872c,0x972c30d7,0xb0c32cb2,
0x4e1c75c,0xc80c90c2,0x62ca2482,0x4504171c,
0xd65d9610,0x33976585,0xd95cb5d,0x4b5ca5d7,
0x73975c36,0x10308138,0xc2245105,0x41451031,
0x14e24208,0xc35c3387,0x51453851,0x1c51c514,
0xc70c30c3,0x20451450,0x14f1440c,0x4f0da092,
0x4513d41,0x6533944d,0x1350e658,0xe1545055,
0x64365a50,0x5519383,0x51030815,0x28920718,
0x441c718b,0x714e2422,0x1c35cb28,0x4e1c7387,
0xb28e1c51,0x5c70c32c,0xc204e1c7,0x81c61440,
0x1c62ca24,0xd04503ce,0x85d63944,0x39338e65,
0x8e154387,0x364b5ca3,0x38739738,
]);
Lev2TParametricDescription.prototype.offsetIncrs4 = /*3 bits per value */ new Int32Array([
0x10000000,0xc00000,0x60061,0x400,
0x0,0x80010008,0x249248a4,0x8229048,
0x2092,0x6c3603,0xb61b6c30,0x6db6036d,
0xdb6c0,0x361b0180,0x91b72000,0xdb11b71b,
0x6db6236,0x1008200,0x12480012,0x24924906,
0x48200049,0x80410002,0x24000900,0x4924a489,
0x10822492,0x20800125,0x48360,0x9241b692,
0x6da4924,0x40009268,0x241b010,0x291b4900,
0x6d249249,0x49493423,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x2492,
]);
Lev2TParametricDescription.prototype.toStates5 = /*6 bits per value */ new Int32Array([
0x801c0144,0x1453803,0x14700038,0xc0005145,
0x1401,0x14,0x140000,0x0,
0x510000,0x4e00e007,0xe0051,0x3451451c,
0xd015000,0x30cd0000,0xc30c30c,0xc30c30d4,
0x40c30c30,0x7c01c014,0xc03458c0,0x185e0c07,
0x2830c286,0x830c3083,0xc30030,0x33430c,
0x30c3003,0x70051030,0x16301f00,0x8301f00d,
0x30a18617,0xc20ca0c,0x431420c3,0xb1450c51,
0x14314315,0x4f143145,0x34c05401,0x4c30944c,
0x55150c3,0x30830055,0x1430c014,0xc00050c3,
0xc30850,0xc314300,0x150053c5,0x25130d30,
0x5430d30c,0xc0354154,0x300d0c90,0x1cb2cd0c,
0xc91cb0c3,0x72c30cb2,0x14f1cb2c,0xc34c0540,
0x34c30944,0x82182214,0x851050c2,0x50851430,
0x1400c50c,0x30c5085,0x50c51450,0x150053c,
0xc25130d3,0x8850d30,0x1430a086,0x450c2144,
0x51cb1c21,0x1c91c70c,0xc71c314b,0x34c1cb1,
0x6c328328,0xc328014d,0x76cd34a0,0x1401c50c,
0xc31c3140,0x31430c30,0x14,0x30c3005,
0xa0ca00d3,0x535b0c,0x4d2830ca,0x514369b3,
0xc500d01,0x5965965a,0x30d46546,0x6435030c,
0x8034c659,0xdb439032,0x2c390034,0xcaaecb24,
0x30832872,0xcb28b1c,0x4b1c32cb,0x70030033,
0x30b0cb0c,0xe40ca00d,0x400d36d0,0xb2c90b0e,
0xca1cb2ab,0xa2c70c20,0x6575d95c,0x4315b5ce,
0x95c53831,0x28034c5d,0x9b705583,0xa1455830,
0xc76cd6c,0x40143085,0x71451c51,0x871430c,
0x450000c3,0xd3071451,0x1560ca00,0x560c26dc,
0xb35b2851,0xc914369,0x1a14500d,0x46593945,
0xcb2c939,0x94507503,0x328034c3,0x9b70558,
0xe41c5583,0x72caaeca,0x1c308510,0xc7147287,
0x50871c32,0x1470030c,0xd307147,0xc1560ca0,
0x1560c26d,0xabb2b907,0x21441cb2,0x38a1c70c,
0x8e657394,0x314b1c93,0x39438738,0x43083081,
0x31c22432,0x820c510,0x830d7082,0x50c35c33,
0xc30c338,0xc31c30c3,0x50c30c30,0xc204514,
0x890c90c2,0x31440c70,0xa8208208,0xea0df0c3,
0x8a231430,0xa28a28a2,0x28a28a1e,0x1861868a,
0x48308308,0xc3682483,0x14516453,0x4d965845,
0xd4659619,0x36590d94,0xd969964,0x546590d9,
0x20c20541,0x920d20c,0x5914f0da,0x96114514,
0x65865365,0xe89d3519,0x99e7a279,0x9e89e89e,
0x81821827,0xb2032430,0x18b28920,0x422492c7,
0xb28b0d72,0x3872c35c,0xc30d72cb,0x32cb2972,
0x1c75cb0c,0xc90c204e,0xa2482c80,0x24b1c62c,
0xc3a89089,0xb0ea2e42,0x9669a31c,0xa4966a28,
0x59a8a269,0x8175e7a,0xb203243,0x718b2892,
0x4114105c,0x17597658,0x74ce5d96,0x5c36572d,
0xd92d7297,0xe1ce5d70,0xc90c204,0xca2482c8,
0x4171c62,0x5d961045,0x976585d6,0x79669533,
0x964965a2,0x659689e6,0x308175e7,0x24510510,
0x451031c2,0xe2420841,0x5c338714,0x453851c3,
0x51c51451,0xc30c31c,0x451450c7,0x41440c20,
0xc708914,0x82105144,0xf1c58c90,0x1470ea0d,
0x61861863,0x8a1e85e8,0x8687a8a2,0x3081861,
0x24853c51,0x5053c368,0x1341144f,0x96194ce5,
0x1544d439,0x94385514,0xe0d90d96,0x5415464,
0x4f1440c2,0xf0da0921,0x4513d414,0x533944d0,
0x350e6586,0x86082181,0xe89e981d,0x18277689,
0x10308182,0x89207185,0x41c718b2,0x14e24224,
0xc35cb287,0xe1c73871,0x28e1c514,0xc70c32cb,
0x204e1c75,0x1c61440c,0xc62ca248,0x90891071,
0x2e41c58c,0xa31c70ea,0xe86175e7,0xa269a475,
0x5e7a57a8,0x51030817,0x28920718,0xf38718b,
0xe5134114,0x39961758,0xe1ce4ce,0x728e3855,
0x5ce0d92d,0xc204e1ce,0x81c61440,0x1c62ca24,
0xd04503ce,0x85d63944,0x75338e65,0x5d86075e,
0x89e69647,0x75e76576,
]);
Lev2TParametricDescription.prototype.offsetIncrs5 = /*3 bits per value */ new Int32Array([
0x10000000,0xc00000,0x60061,0x400,
0x0,0x60000008,0x6b003080,0xdb6ab6db,
0x2db6,0x800400,0x49245240,0x11482412,
0x104904,0x40020000,0x92292000,0xa4b25924,
0x9649658,0xd80c000,0xdb0c001b,0x80db6d86,
0x6db01b6d,0xc0600003,0x86000d86,0x6db6c36d,
0xddadb6ed,0x300001b6,0x6c360,0xe37236e4,
0x46db6236,0xdb6c,0x361b018,0xb91b7200,
0x6dbb1b71,0x6db763,0x20100820,0x61248001,
0x92492490,0x24820004,0x8041000,0x92400090,
0x24924830,0x555b6a49,0x2080012,0x20004804,
0x49252449,0x84112492,0x4000928,0x240201,
0x92922490,0x58924924,0x49456,0x120d8082,
0x6da4800,0x69249249,0x249a01b,0x6c04100,
0x6d240009,0x92492483,0x24d5adb4,0x60208001,
0x92000483,0x24925236,0x6846da49,0x10400092,
0x241b0,0x49291b49,0x636d2492,0x92494935,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,0x49249249,
0x92492492,0x24924924,0x49249249,0x92492492,
0x24924924,0x49249249,0x92492492,0x24924924,
0x49249249,0x92492492,0x24924924,
]);
class Lev1TParametricDescription extends ParametricDescription {
/**
* @param {number} absState
* @param {number} position
* @param {number} vector
* @returns {number}
*/
transition(absState, position, vector) {
let state = Math.floor(absState / (this.w + 1));
let offset = absState % (this.w + 1);
if (position === this.w) {
if (state < 2) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 2) + state;
offset += this.unpack(this.offsetIncrs0, loc, 1);
state = this.unpack(this.toStates0, loc, 2) - 1;
}
} else if (position === this.w - 1) {
if (state < 3) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 3) + state;
offset += this.unpack(this.offsetIncrs1, loc, 1);
state = this.unpack(this.toStates1, loc, 2) - 1;
}
} else if (position === this.w - 2) {
if (state < 6) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 6) + state;
offset += this.unpack(this.offsetIncrs2, loc, 2);
state = this.unpack(this.toStates2, loc, 3) - 1;
}
} else {
if (state < 6) { // eslint-disable-line no-lonely-if
const loc = Math.imul(vector, 6) + state;
offset += this.unpack(this.offsetIncrs3, loc, 2);
state = this.unpack(this.toStates3, loc, 3) - 1;
}
}
if (state === -1) {
// null state
return -1;
} else {
// translate back to abs
return Math.imul(state, this.w + 1) + offset;
}
}
// state map
// 0 -> [(0, 0)]
// 1 -> [(0, 1)]
// 2 -> [(0, 1), (1, 1)]
// 3 -> [(0, 1), (1, 1), (2, 1)]
// 4 -> [(0, 1), (2, 1)]
// 5 -> [t(0, 1), (0, 1), (1, 1), (2, 1)]
/** @param {number} w - length of word being checked */
constructor(w) {
super(w, 1, new Int32Array([0,1,0,-1,-1,-1]));
}
}
Lev1TParametricDescription.prototype.toStates0 = /*2 bits per value */ new Int32Array([
0x2,
]);
Lev1TParametricDescription.prototype.offsetIncrs0 = /*1 bits per value */ new Int32Array([
0x0,
]);
Lev1TParametricDescription.prototype.toStates1 = /*2 bits per value */ new Int32Array([
0xa43,
]);
Lev1TParametricDescription.prototype.offsetIncrs1 = /*1 bits per value */ new Int32Array([
0x38,
]);
Lev1TParametricDescription.prototype.toStates2 = /*3 bits per value */ new Int32Array([
0x12180003,0xb45a4914,0x69,
]);
Lev1TParametricDescription.prototype.offsetIncrs2 = /*2 bits per value */ new Int32Array([
0x558a0000,0x5555,
]);
Lev1TParametricDescription.prototype.toStates3 = /*3 bits per value */ new Int32Array([
0x900c0003,0xa1904864,0x45a49169,0x5a6d196a,
0x9634,
]);
Lev1TParametricDescription.prototype.offsetIncrs3 = /*2 bits per value */ new Int32Array([
0xa0fc0000,0x5555ba08,0x55555555,
]);