
I added this back in 111999, but I no longer think it's a good idea - It had to get scaled back to only power-of-two things to not break a bunch of targets - LLVM seems to be getting better at memcpy removal anyway - Introducing vector instructions has seemed to sometimes (115515) make autovectorization worse So this removes it from the codegen crates entirely, and instead just tries to use <https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/builder/trait.BuilderMethods.html#method.typed_place_copy> instead of direct `memcpy` so things will still use load/store for immediates.
567 lines
22 KiB
Rust
567 lines
22 KiB
Rust
use super::place::PlaceRef;
|
|
use super::{FunctionCx, LocalRef};
|
|
|
|
use crate::size_of_val;
|
|
use crate::traits::*;
|
|
use crate::MemFlags;
|
|
|
|
use rustc_middle::mir::interpret::{alloc_range, Pointer, Scalar};
|
|
use rustc_middle::mir::{self, ConstValue};
|
|
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
|
|
use rustc_middle::ty::Ty;
|
|
use rustc_target::abi::{self, Abi, Align, Size};
|
|
|
|
use std::fmt;
|
|
|
|
/// The representation of a Rust value. The enum variant is in fact
|
|
/// uniquely determined by the value's type, but is kept as a
|
|
/// safety check.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum OperandValue<V> {
|
|
/// A reference to the actual operand. The data is guaranteed
|
|
/// to be valid for the operand's lifetime.
|
|
/// The second value, if any, is the extra data (vtable or length)
|
|
/// which indicates that it refers to an unsized rvalue.
|
|
///
|
|
/// An `OperandValue` has this variant for types which are neither
|
|
/// `Immediate` nor `Pair`s. The backend value in this variant must be a
|
|
/// pointer to the *non*-immediate backend type. That pointee type is the
|
|
/// one returned by [`LayoutTypeMethods::backend_type`].
|
|
Ref(V, Option<V>, Align),
|
|
/// A single LLVM immediate value.
|
|
///
|
|
/// An `OperandValue` *must* be this variant for any type for which
|
|
/// [`LayoutTypeMethods::is_backend_immediate`] returns `true`.
|
|
/// The backend value in this variant must be the *immediate* backend type,
|
|
/// as returned by [`LayoutTypeMethods::immediate_backend_type`].
|
|
Immediate(V),
|
|
/// A pair of immediate LLVM values. Used by fat pointers too.
|
|
///
|
|
/// An `OperandValue` *must* be this variant for any type for which
|
|
/// [`LayoutTypeMethods::is_backend_scalar_pair`] returns `true`.
|
|
/// The backend values in this variant must be the *immediate* backend types,
|
|
/// as returned by [`LayoutTypeMethods::scalar_pair_element_backend_type`]
|
|
/// with `immediate: true`.
|
|
Pair(V, V),
|
|
/// A value taking no bytes, and which therefore needs no LLVM value at all.
|
|
///
|
|
/// If you ever need a `V` to pass to something, get a fresh poison value
|
|
/// from [`ConstMethods::const_poison`].
|
|
///
|
|
/// An `OperandValue` *must* be this variant for any type for which
|
|
/// `is_zst` on its `Layout` returns `true`. Note however that
|
|
/// these values can still require alignment.
|
|
ZeroSized,
|
|
}
|
|
|
|
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
|
|
/// its type.
|
|
///
|
|
/// NOTE: unless you know a value's type exactly, you should not
|
|
/// generate LLVM opcodes acting on it and instead act via methods,
|
|
/// to avoid nasty edge cases. In particular, using `Builder::store`
|
|
/// directly is sure to cause problems -- use `OperandRef::store`
|
|
/// instead.
|
|
#[derive(Copy, Clone)]
|
|
pub struct OperandRef<'tcx, V> {
|
|
/// The value.
|
|
pub val: OperandValue<V>,
|
|
|
|
/// The layout of value, based on its Rust type.
|
|
pub layout: TyAndLayout<'tcx>,
|
|
}
|
|
|
|
impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
|
|
pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
|
|
assert!(layout.is_zst());
|
|
OperandRef { val: OperandValue::ZeroSized, layout }
|
|
}
|
|
|
|
pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
bx: &mut Bx,
|
|
val: mir::ConstValue<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
) -> Self {
|
|
let layout = bx.layout_of(ty);
|
|
|
|
let val = match val {
|
|
ConstValue::Scalar(x) => {
|
|
let Abi::Scalar(scalar) = layout.abi else {
|
|
bug!("from_const: invalid ByVal layout: {:#?}", layout);
|
|
};
|
|
let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
|
|
OperandValue::Immediate(llval)
|
|
}
|
|
ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
|
|
ConstValue::Slice { data, meta } => {
|
|
let Abi::ScalarPair(a_scalar, _) = layout.abi else {
|
|
bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
|
|
};
|
|
let a = Scalar::from_pointer(
|
|
Pointer::new(bx.tcx().reserve_and_set_memory_alloc(data).into(), Size::ZERO),
|
|
&bx.tcx(),
|
|
);
|
|
let a_llval = bx.scalar_to_backend(
|
|
a,
|
|
a_scalar,
|
|
bx.scalar_pair_element_backend_type(layout, 0, true),
|
|
);
|
|
let b_llval = bx.const_usize(meta);
|
|
OperandValue::Pair(a_llval, b_llval)
|
|
}
|
|
ConstValue::Indirect { alloc_id, offset } => {
|
|
let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
|
|
return Self::from_const_alloc(bx, layout, alloc, offset);
|
|
}
|
|
};
|
|
|
|
OperandRef { val, layout }
|
|
}
|
|
|
|
fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
bx: &mut Bx,
|
|
layout: TyAndLayout<'tcx>,
|
|
alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
|
|
offset: Size,
|
|
) -> Self {
|
|
let alloc_align = alloc.inner().align;
|
|
assert!(alloc_align >= layout.align.abi);
|
|
|
|
let read_scalar = |start, size, s: abi::Scalar, ty| {
|
|
match alloc.0.read_scalar(
|
|
bx,
|
|
alloc_range(start, size),
|
|
/*read_provenance*/ matches!(s.primitive(), abi::Pointer(_)),
|
|
) {
|
|
Ok(val) => bx.scalar_to_backend(val, s, ty),
|
|
Err(_) => bx.const_poison(ty),
|
|
}
|
|
};
|
|
|
|
// It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
|
|
// However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
|
|
// and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
|
|
// case where some of the bytes are initialized and others are not. So, we need an extra
|
|
// check that walks over the type of `mplace` to make sure it is truly correct to treat this
|
|
// like a `Scalar` (or `ScalarPair`).
|
|
match layout.abi {
|
|
Abi::Scalar(s @ abi::Scalar::Initialized { .. }) => {
|
|
let size = s.size(bx);
|
|
assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
|
|
let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
|
|
OperandRef { val: OperandValue::Immediate(val), layout }
|
|
}
|
|
Abi::ScalarPair(
|
|
a @ abi::Scalar::Initialized { .. },
|
|
b @ abi::Scalar::Initialized { .. },
|
|
) => {
|
|
let (a_size, b_size) = (a.size(bx), b.size(bx));
|
|
let b_offset = (offset + a_size).align_to(b.align(bx).abi);
|
|
assert!(b_offset.bytes() > 0);
|
|
let a_val = read_scalar(
|
|
offset,
|
|
a_size,
|
|
a,
|
|
bx.scalar_pair_element_backend_type(layout, 0, true),
|
|
);
|
|
let b_val = read_scalar(
|
|
b_offset,
|
|
b_size,
|
|
b,
|
|
bx.scalar_pair_element_backend_type(layout, 1, true),
|
|
);
|
|
OperandRef { val: OperandValue::Pair(a_val, b_val), layout }
|
|
}
|
|
_ if layout.is_zst() => OperandRef::zero_sized(layout),
|
|
_ => {
|
|
// Neither a scalar nor scalar pair. Load from a place
|
|
// FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
|
|
// same `ConstAllocation`?
|
|
let init = bx.const_data_from_alloc(alloc);
|
|
let base_addr = bx.static_addr_of(init, alloc_align, None);
|
|
|
|
let llval = bx.const_ptr_byte_offset(base_addr, offset);
|
|
bx.load_operand(PlaceRef::new_sized(llval, layout))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Asserts that this operand refers to a scalar and returns
|
|
/// a reference to its value.
|
|
pub fn immediate(self) -> V {
|
|
match self.val {
|
|
OperandValue::Immediate(s) => s,
|
|
_ => bug!("not immediate: {:?}", self),
|
|
}
|
|
}
|
|
|
|
pub fn deref<Cx: LayoutTypeMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
|
|
if self.layout.ty.is_box() {
|
|
// Derefer should have removed all Box derefs
|
|
bug!("dereferencing {:?} in codegen", self.layout.ty);
|
|
}
|
|
|
|
let projected_ty = self
|
|
.layout
|
|
.ty
|
|
.builtin_deref(true)
|
|
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", self))
|
|
.ty;
|
|
|
|
let (llptr, llextra) = match self.val {
|
|
OperandValue::Immediate(llptr) => (llptr, None),
|
|
OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
|
|
OperandValue::Ref(..) => bug!("Deref of by-Ref operand {:?}", self),
|
|
OperandValue::ZeroSized => bug!("Deref of ZST operand {:?}", self),
|
|
};
|
|
let layout = cx.layout_of(projected_ty);
|
|
PlaceRef { llval: llptr, llextra, layout, align: layout.align.abi }
|
|
}
|
|
|
|
/// If this operand is a `Pair`, we return an aggregate with the two values.
|
|
/// For other cases, see `immediate`.
|
|
pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
) -> V {
|
|
if let OperandValue::Pair(a, b) = self.val {
|
|
let llty = bx.cx().immediate_backend_type(self.layout);
|
|
debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
|
|
// Reconstruct the immediate aggregate.
|
|
let mut llpair = bx.cx().const_poison(llty);
|
|
llpair = bx.insert_value(llpair, a, 0);
|
|
llpair = bx.insert_value(llpair, b, 1);
|
|
llpair
|
|
} else {
|
|
self.immediate()
|
|
}
|
|
}
|
|
|
|
/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
|
|
pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
bx: &mut Bx,
|
|
llval: V,
|
|
layout: TyAndLayout<'tcx>,
|
|
) -> Self {
|
|
let val = if let Abi::ScalarPair(..) = layout.abi {
|
|
debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
|
|
|
|
// Deconstruct the immediate aggregate.
|
|
let a_llval = bx.extract_value(llval, 0);
|
|
let b_llval = bx.extract_value(llval, 1);
|
|
OperandValue::Pair(a_llval, b_llval)
|
|
} else {
|
|
OperandValue::Immediate(llval)
|
|
};
|
|
OperandRef { val, layout }
|
|
}
|
|
|
|
pub fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
&self,
|
|
bx: &mut Bx,
|
|
i: usize,
|
|
) -> Self {
|
|
let field = self.layout.field(bx.cx(), i);
|
|
let offset = self.layout.fields.offset(i);
|
|
|
|
let mut val = match (self.val, self.layout.abi) {
|
|
// If the field is ZST, it has no data.
|
|
_ if field.is_zst() => OperandValue::ZeroSized,
|
|
|
|
// Newtype of a scalar, scalar pair or vector.
|
|
(OperandValue::Immediate(_) | OperandValue::Pair(..), _)
|
|
if field.size == self.layout.size =>
|
|
{
|
|
assert_eq!(offset.bytes(), 0);
|
|
self.val
|
|
}
|
|
|
|
// Extract a scalar component from a pair.
|
|
(OperandValue::Pair(a_llval, b_llval), Abi::ScalarPair(a, b)) => {
|
|
if offset.bytes() == 0 {
|
|
assert_eq!(field.size, a.size(bx.cx()));
|
|
OperandValue::Immediate(a_llval)
|
|
} else {
|
|
assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
|
|
assert_eq!(field.size, b.size(bx.cx()));
|
|
OperandValue::Immediate(b_llval)
|
|
}
|
|
}
|
|
|
|
// `#[repr(simd)]` types are also immediate.
|
|
(OperandValue::Immediate(llval), Abi::Vector { .. }) => {
|
|
OperandValue::Immediate(bx.extract_element(llval, bx.cx().const_usize(i as u64)))
|
|
}
|
|
|
|
_ => bug!("OperandRef::extract_field({:?}): not applicable", self),
|
|
};
|
|
|
|
match (&mut val, field.abi) {
|
|
(OperandValue::ZeroSized, _) => {}
|
|
(
|
|
OperandValue::Immediate(llval),
|
|
Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. },
|
|
) => {
|
|
// Bools in union fields needs to be truncated.
|
|
*llval = bx.to_immediate(*llval, field);
|
|
}
|
|
(OperandValue::Pair(a, b), Abi::ScalarPair(a_abi, b_abi)) => {
|
|
// Bools in union fields needs to be truncated.
|
|
*a = bx.to_immediate_scalar(*a, a_abi);
|
|
*b = bx.to_immediate_scalar(*b, b_abi);
|
|
}
|
|
// Newtype vector of array, e.g. #[repr(simd)] struct S([i32; 4]);
|
|
(OperandValue::Immediate(llval), Abi::Aggregate { sized: true }) => {
|
|
assert!(matches!(self.layout.abi, Abi::Vector { .. }));
|
|
|
|
let llfield_ty = bx.cx().backend_type(field);
|
|
|
|
// Can't bitcast an aggregate, so round trip through memory.
|
|
let llptr = bx.alloca(llfield_ty, field.align.abi);
|
|
bx.store(*llval, llptr, field.align.abi);
|
|
*llval = bx.load(llfield_ty, llptr, field.align.abi);
|
|
}
|
|
(OperandValue::Immediate(_), Abi::Uninhabited | Abi::Aggregate { sized: false }) => {
|
|
bug!()
|
|
}
|
|
(OperandValue::Pair(..), _) => bug!(),
|
|
(OperandValue::Ref(..), _) => bug!(),
|
|
}
|
|
|
|
OperandRef { val, layout: field }
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
|
|
/// Returns an `OperandValue` that's generally UB to use in any way.
|
|
///
|
|
/// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
|
|
/// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
|
|
///
|
|
/// Supports sized types only.
|
|
pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
bx: &mut Bx,
|
|
layout: TyAndLayout<'tcx>,
|
|
) -> OperandValue<V> {
|
|
assert!(layout.is_sized());
|
|
if layout.is_zst() {
|
|
OperandValue::ZeroSized
|
|
} else if bx.cx().is_backend_immediate(layout) {
|
|
let ibty = bx.cx().immediate_backend_type(layout);
|
|
OperandValue::Immediate(bx.const_poison(ibty))
|
|
} else if bx.cx().is_backend_scalar_pair(layout) {
|
|
let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
|
|
let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
|
|
OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
|
|
} else {
|
|
let ptr = bx.cx().type_ptr();
|
|
OperandValue::Ref(bx.const_poison(ptr), None, layout.align.abi)
|
|
}
|
|
}
|
|
|
|
pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
dest: PlaceRef<'tcx, V>,
|
|
) {
|
|
self.store_with_flags(bx, dest, MemFlags::empty());
|
|
}
|
|
|
|
pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
dest: PlaceRef<'tcx, V>,
|
|
) {
|
|
self.store_with_flags(bx, dest, MemFlags::VOLATILE);
|
|
}
|
|
|
|
pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
dest: PlaceRef<'tcx, V>,
|
|
) {
|
|
self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
|
|
}
|
|
|
|
pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
dest: PlaceRef<'tcx, V>,
|
|
) {
|
|
self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
|
|
}
|
|
|
|
pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
dest: PlaceRef<'tcx, V>,
|
|
flags: MemFlags,
|
|
) {
|
|
debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
|
|
match self {
|
|
OperandValue::ZeroSized => {
|
|
// Avoid generating stores of zero-sized values, because the only way to have a zero-sized
|
|
// value is through `undef`/`poison`, and the store itself is useless.
|
|
}
|
|
OperandValue::Ref(llval, llextra @ None, source_align) => {
|
|
assert!(dest.layout.is_sized(), "cannot directly store unsized values");
|
|
let source_place =
|
|
PlaceRef { llval, llextra, align: source_align, layout: dest.layout };
|
|
bx.typed_place_copy_with_flags(dest, source_place, flags);
|
|
}
|
|
OperandValue::Ref(_, Some(_), _) => {
|
|
bug!("cannot directly store unsized values");
|
|
}
|
|
OperandValue::Immediate(s) => {
|
|
let val = bx.from_immediate(s);
|
|
bx.store_with_flags(val, dest.llval, dest.align, flags);
|
|
}
|
|
OperandValue::Pair(a, b) => {
|
|
let Abi::ScalarPair(a_scalar, b_scalar) = dest.layout.abi else {
|
|
bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
|
|
};
|
|
let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
|
|
|
|
let val = bx.from_immediate(a);
|
|
let align = dest.align;
|
|
bx.store_with_flags(val, dest.llval, align, flags);
|
|
|
|
let llptr = bx.inbounds_ptradd(dest.llval, bx.const_usize(b_offset.bytes()));
|
|
let val = bx.from_immediate(b);
|
|
let align = dest.align.restrict_for_offset(b_offset);
|
|
bx.store_with_flags(val, llptr, align, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
|
self,
|
|
bx: &mut Bx,
|
|
indirect_dest: PlaceRef<'tcx, V>,
|
|
) {
|
|
debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
|
|
// `indirect_dest` must have `*mut T` type. We extract `T` out of it.
|
|
let unsized_ty = indirect_dest
|
|
.layout
|
|
.ty
|
|
.builtin_deref(true)
|
|
.unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest))
|
|
.ty;
|
|
|
|
let OperandValue::Ref(llptr, Some(llextra), _) = self else {
|
|
bug!("store_unsized called with a sized value (or with an extern type)")
|
|
};
|
|
|
|
// Allocate an appropriate region on the stack, and copy the value into it. Since alloca
|
|
// doesn't support dynamic alignment, we allocate an extra align - 1 bytes, and align the
|
|
// pointer manually.
|
|
let (size, align) = size_of_val::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
|
|
let one = bx.const_usize(1);
|
|
let align_minus_1 = bx.sub(align, one);
|
|
let size_extra = bx.add(size, align_minus_1);
|
|
let min_align = Align::ONE;
|
|
let alloca = bx.byte_array_alloca(size_extra, min_align);
|
|
let address = bx.ptrtoint(alloca, bx.type_isize());
|
|
let neg_address = bx.neg(address);
|
|
let offset = bx.and(neg_address, align_minus_1);
|
|
let dst = bx.inbounds_ptradd(alloca, offset);
|
|
bx.memcpy(dst, min_align, llptr, min_align, size, MemFlags::empty());
|
|
|
|
// Store the allocated region and the extra to the indirect place.
|
|
let indirect_operand = OperandValue::Pair(dst, llextra);
|
|
indirect_operand.store(bx, indirect_dest);
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
|
|
fn maybe_codegen_consume_direct(
|
|
&mut self,
|
|
bx: &mut Bx,
|
|
place_ref: mir::PlaceRef<'tcx>,
|
|
) -> Option<OperandRef<'tcx, Bx::Value>> {
|
|
debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
|
|
|
|
match self.locals[place_ref.local] {
|
|
LocalRef::Operand(mut o) => {
|
|
// Moves out of scalar and scalar pair fields are trivial.
|
|
for elem in place_ref.projection.iter() {
|
|
match elem {
|
|
mir::ProjectionElem::Field(ref f, _) => {
|
|
o = o.extract_field(bx, f.index());
|
|
}
|
|
mir::ProjectionElem::Index(_)
|
|
| mir::ProjectionElem::ConstantIndex { .. } => {
|
|
// ZSTs don't require any actual memory access.
|
|
// FIXME(eddyb) deduplicate this with the identical
|
|
// checks in `codegen_consume` and `extract_field`.
|
|
let elem = o.layout.field(bx.cx(), 0);
|
|
if elem.is_zst() {
|
|
o = OperandRef::zero_sized(elem);
|
|
} else {
|
|
return None;
|
|
}
|
|
}
|
|
_ => return None,
|
|
}
|
|
}
|
|
|
|
Some(o)
|
|
}
|
|
LocalRef::PendingOperand => {
|
|
bug!("use of {:?} before def", place_ref);
|
|
}
|
|
LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
|
|
// watch out for locals that do not have an
|
|
// alloca; they are handled somewhat differently
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn codegen_consume(
|
|
&mut self,
|
|
bx: &mut Bx,
|
|
place_ref: mir::PlaceRef<'tcx>,
|
|
) -> OperandRef<'tcx, Bx::Value> {
|
|
debug!("codegen_consume(place_ref={:?})", place_ref);
|
|
|
|
let ty = self.monomorphized_place_ty(place_ref);
|
|
let layout = bx.cx().layout_of(ty);
|
|
|
|
// ZSTs don't require any actual memory access.
|
|
if layout.is_zst() {
|
|
return OperandRef::zero_sized(layout);
|
|
}
|
|
|
|
if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
|
|
return o;
|
|
}
|
|
|
|
// for most places, to consume them we just load them
|
|
// out from their home
|
|
let place = self.codegen_place(bx, place_ref);
|
|
bx.load_operand(place)
|
|
}
|
|
|
|
pub fn codegen_operand(
|
|
&mut self,
|
|
bx: &mut Bx,
|
|
operand: &mir::Operand<'tcx>,
|
|
) -> OperandRef<'tcx, Bx::Value> {
|
|
debug!("codegen_operand(operand={:?})", operand);
|
|
|
|
match *operand {
|
|
mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
|
|
self.codegen_consume(bx, place.as_ref())
|
|
}
|
|
|
|
mir::Operand::Constant(ref constant) => self.eval_mir_constant_to_operand(bx, constant),
|
|
}
|
|
}
|
|
}
|