rust/compiler/rustc_mir_dataflow/src/value_analysis.rs
2022-11-09 18:03:30 +01:00

964 lines
32 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! This module provides a framework on top of the normal MIR dataflow framework to simplify the
//! implementation of analyses that track information about the values stored in certain places.
//! We are using the term "place" here to refer to a `mir::Place` (a place expression) instead of
//! an `interpret::Place` (a memory location).
//!
//! The default methods of [`ValueAnalysis`] (prefixed with `super_` instead of `handle_`)
//! provide some behavior that should be valid for all abstract domains that are based only on the
//! value stored in a certain place. On top of these default rules, an implementation should
//! override some of the `handle_` methods. For an example, see `ConstAnalysis`.
//!
//! An implementation must also provide a [`Map`]. Before the analysis begins, all places that
//! should be tracked during the analysis must be registered. During the analysis, no new places
//! can be registered. The [`State`] can be queried to retrieve the abstract value stored for a
//! certain place by passing the map.
//!
//! This framework is currently experimental. Originally, it supported shared references and enum
//! variants. However, it was discovered that both of these were unsound, and especially references
//! had subtle but serious issues. In the future, they could be added back in, but we should clarify
//! the rules for optimizations that rely on the aliasing model first.
//!
//!
//! # Notes
//!
//! - The bottom state denotes uninitialized memory. Because we are only doing a sound approximation
//! of the actual execution, we can also use this state for places where access would be UB.
//!
//! - The assignment logic in `State::assign_place_idx` assumes that the places are non-overlapping,
//! or identical. Note that this refers to place expressions, not memory locations.
//!
//! - Currently, places that have their reference taken cannot be tracked. Although this would be
//! possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
//! Because of that, we can assume that the only way to change the value behind a tracked place is
//! by direct assignment.
use std::fmt::{Debug, Formatter};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_index::vec::IndexVec;
use rustc_middle::mir::tcx::PlaceTy;
use rustc_middle::mir::visit::{MutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::VariantIdx;
use crate::lattice::{HasBottom, HasTop};
use crate::{
fmt::DebugWithContext, Analysis, AnalysisDomain, CallReturnPlaces, JoinSemiLattice,
SwitchIntEdgeEffects,
};
pub trait ValueAnalysis<'tcx> {
/// For each place of interest, the analysis tracks a value of the given type.
type Value: Clone + JoinSemiLattice + HasBottom + HasTop;
const NAME: &'static str;
fn map(&self) -> &Map;
fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
self.super_statement(statement, state)
}
fn super_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
match &statement.kind {
StatementKind::Assign(box (place, rvalue)) => {
self.handle_assign(*place, rvalue, state);
}
StatementKind::SetDiscriminant { .. } => {
// Could treat this as writing a constant to a pseudo-place.
// But discriminants are currently not tracked, so we do nothing.
// Related: https://github.com/rust-lang/unsafe-code-guidelines/issues/84
}
StatementKind::Intrinsic(box intrinsic) => {
self.handle_intrinsic(intrinsic, state);
}
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
// StorageLive leaves the local in an uninitialized state.
// StorageDead makes it UB to access the local afterwards.
state.flood_with(Place::from(*local).as_ref(), self.map(), Self::Value::bottom());
}
StatementKind::Deinit(box place) => {
// Deinit makes the place uninitialized.
state.flood_with(place.as_ref(), self.map(), Self::Value::bottom());
}
StatementKind::Retag(..) => {
// We don't track references.
}
StatementKind::Nop
| StatementKind::FakeRead(..)
| StatementKind::Coverage(..)
| StatementKind::AscribeUserType(..) => (),
}
}
fn handle_intrinsic(
&self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
state: &mut State<Self::Value>,
) {
self.super_intrinsic(intrinsic, state);
}
fn super_intrinsic(
&self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
state: &mut State<Self::Value>,
) {
match intrinsic {
NonDivergingIntrinsic::Assume(..) => {
// Could use this, but ignoring it is sound.
}
NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping { dst, .. }) => {
if let Some(place) = dst.place() {
state.flood(place.as_ref(), self.map());
}
}
}
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
self.super_assign(target, rvalue, state)
}
fn super_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
let result = self.handle_rvalue(rvalue, state);
state.assign(target.as_ref(), result, self.map());
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
self.super_rvalue(rvalue, state)
}
fn super_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match rvalue {
Rvalue::Use(operand) => self.handle_operand(operand, state),
Rvalue::CopyForDeref(place) => {
self.handle_operand(&Operand::Copy(*place), state)
}
Rvalue::Ref(..) | Rvalue::AddressOf(..) => {
// We don't track such places.
ValueOrPlace::top()
}
Rvalue::Repeat(..)
| Rvalue::ThreadLocalRef(..)
| Rvalue::Len(..)
| Rvalue::Cast(..)
| Rvalue::BinaryOp(..)
| Rvalue::CheckedBinaryOp(..)
| Rvalue::NullaryOp(..)
| Rvalue::UnaryOp(..)
| Rvalue::Discriminant(..)
| Rvalue::Aggregate(..)
| Rvalue::ShallowInitBox(..) => {
// No modification is possible through these r-values.
ValueOrPlace::top()
}
}
}
fn handle_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
self.super_operand(operand, state)
}
fn super_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match operand {
Operand::Constant(box constant) => {
ValueOrPlace::Value(self.handle_constant(constant, state))
}
Operand::Copy(place) | Operand::Move(place) => {
// On move, we would ideally flood the place with bottom. But with the current
// framework this is not possible (similar to `InterpCx::eval_operand`).
self.map()
.find(place.as_ref())
.map(ValueOrPlace::Place)
.unwrap_or(ValueOrPlace::top())
}
}
}
fn handle_constant(
&self,
constant: &Constant<'tcx>,
state: &mut State<Self::Value>,
) -> Self::Value {
self.super_constant(constant, state)
}
fn super_constant(
&self,
_constant: &Constant<'tcx>,
_state: &mut State<Self::Value>,
) -> Self::Value {
Self::Value::top()
}
/// The effect of a successful function call return should not be
/// applied here, see [`Analysis::apply_terminator_effect`].
fn handle_terminator(&self, terminator: &Terminator<'tcx>, state: &mut State<Self::Value>) {
self.super_terminator(terminator, state)
}
fn super_terminator(&self, terminator: &Terminator<'tcx>, _state: &mut State<Self::Value>) {
match &terminator.kind {
TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
// Effect is applied by `handle_call_return`.
}
TerminatorKind::Drop { .. } => {
// We don't track dropped places.
}
TerminatorKind::DropAndReplace { .. } | TerminatorKind::Yield { .. } => {
// They would have an effect, but are not allowed in this phase.
bug!("encountered disallowed terminator");
}
TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Assert { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {
// These terminators have no effect on the analysis.
}
}
}
fn handle_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<Self::Value>,
) {
self.super_call_return(return_places, state)
}
fn super_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<Self::Value>,
) {
return_places.for_each(|place| {
state.flood(place.as_ref(), self.map());
})
}
fn handle_switch_int(
&self,
discr: &Operand<'tcx>,
apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
) {
self.super_switch_int(discr, apply_edge_effects)
}
fn super_switch_int(
&self,
_discr: &Operand<'tcx>,
_apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
) {
}
fn wrap(self) -> ValueAnalysisWrapper<Self>
where
Self: Sized,
{
ValueAnalysisWrapper(self)
}
}
pub struct ValueAnalysisWrapper<T>(pub T);
impl<'tcx, T: ValueAnalysis<'tcx>> AnalysisDomain<'tcx> for ValueAnalysisWrapper<T> {
type Domain = State<T::Value>;
type Direction = crate::Forward;
const NAME: &'static str = T::NAME;
fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
State(StateData::Unreachable)
}
fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
// The initial state maps all tracked places of argument projections to and the rest to ⊥.
assert!(matches!(state.0, StateData::Unreachable));
let values = IndexVec::from_elem_n(T::Value::bottom(), self.0.map().value_count);
*state = State(StateData::Reachable(values));
for arg in body.args_iter() {
state.flood(PlaceRef { local: arg, projection: &[] }, self.0.map());
}
}
}
impl<'tcx, T> Analysis<'tcx> for ValueAnalysisWrapper<T>
where
T: ValueAnalysis<'tcx>,
{
fn apply_statement_effect(
&self,
state: &mut Self::Domain,
statement: &Statement<'tcx>,
_location: Location,
) {
if state.is_reachable() {
self.0.handle_statement(statement, state);
}
}
fn apply_terminator_effect(
&self,
state: &mut Self::Domain,
terminator: &Terminator<'tcx>,
_location: Location,
) {
if state.is_reachable() {
self.0.handle_terminator(terminator, state);
}
}
fn apply_call_return_effect(
&self,
state: &mut Self::Domain,
_block: BasicBlock,
return_places: crate::CallReturnPlaces<'_, 'tcx>,
) {
if state.is_reachable() {
self.0.handle_call_return(return_places, state)
}
}
fn apply_switch_int_edge_effects(
&self,
_block: BasicBlock,
discr: &Operand<'tcx>,
apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
) {
// FIXME: Dataflow framework provides no access to current state here.
self.0.handle_switch_int(discr, apply_edge_effects)
}
}
rustc_index::newtype_index!(
/// This index uniquely identifies a place.
///
/// Not every place has a `PlaceIndex`, and not every `PlaceIndex` correspondends to a tracked
/// place. However, every tracked place and all places along its projection have a `PlaceIndex`.
pub struct PlaceIndex {}
);
rustc_index::newtype_index!(
/// This index uniquely identifies a tracked place and therefore a slot in [`State`].
///
/// It is an implementation detail of this module.
struct ValueIndex {}
);
/// See [`State`].
#[derive(PartialEq, Eq, Debug)]
enum StateData<V> {
Reachable(IndexVec<ValueIndex, V>),
Unreachable,
}
impl<V: Clone> Clone for StateData<V> {
fn clone(&self) -> Self {
match self {
Self::Reachable(x) => Self::Reachable(x.clone()),
Self::Unreachable => Self::Unreachable,
}
}
fn clone_from(&mut self, source: &Self) {
match (&mut *self, source) {
(Self::Reachable(x), Self::Reachable(y)) => {
// We go through `raw` here, because `IndexVec` currently has a naive `clone_from`.
x.raw.clone_from(&y.raw);
}
_ => *self = source.clone(),
}
}
}
/// The dataflow state for an instance of [`ValueAnalysis`].
///
/// Every instance specifies a lattice that represents the possible values of a single tracked
/// place. If we call this lattice `V` and set set of tracked places `P`, then a [`State`] is an
/// element of `{unreachable} (P -> V)`. This again forms a lattice, where the bottom element is
/// `unreachable` and the top element is the mapping `p ↦ `. Note that the mapping `p ↦ ⊥` is not
/// the bottom element (because joining an unreachable and any other reachable state yields a
/// reachable state). All operations on unreachable states are ignored.
///
/// Flooding means assigning a value (by default ``) to all tracked projections of a given place.
#[derive(PartialEq, Eq, Debug)]
pub struct State<V>(StateData<V>);
impl<V: Clone> Clone for State<V> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
fn clone_from(&mut self, source: &Self) {
self.0.clone_from(&source.0);
}
}
impl<V: Clone + HasTop + HasBottom> State<V> {
pub fn is_reachable(&self) -> bool {
matches!(&self.0, StateData::Reachable(_))
}
pub fn mark_unreachable(&mut self) {
self.0 = StateData::Unreachable;
}
pub fn flood_all(&mut self) {
self.flood_all_with(V::top())
}
pub fn flood_all_with(&mut self, value: V) {
let StateData::Reachable(values) = &mut self.0 else { return };
values.raw.fill(value);
}
pub fn flood_with(&mut self, place: PlaceRef<'_>, map: &Map, value: V) {
if let Some(root) = map.find(place) {
self.flood_idx_with(root, map, value);
}
}
pub fn flood(&mut self, place: PlaceRef<'_>, map: &Map) {
self.flood_with(place, map, V::top())
}
pub fn flood_idx_with(&mut self, place: PlaceIndex, map: &Map, value: V) {
let StateData::Reachable(values) = &mut self.0 else { return };
map.preorder_invoke(place, &mut |place| {
if let Some(vi) = map.places[place].value_index {
values[vi] = value.clone();
}
});
}
pub fn flood_idx(&mut self, place: PlaceIndex, map: &Map) {
self.flood_idx_with(place, map, V::top())
}
/// Copies `source` to `target`, including all tracked places beneath.
///
/// If `target` contains a place that is not contained in `source`, it will be overwritten with
/// Top. Also, because this will copy all entries one after another, it may only be used for
/// places that are non-overlapping or identical.
pub fn assign_place_idx(&mut self, target: PlaceIndex, source: PlaceIndex, map: &Map) {
let StateData::Reachable(values) = &mut self.0 else { return };
// If both places are tracked, we copy the value to the target. If the target is tracked,
// but the source is not, we have to invalidate the value in target. If the target is not
// tracked, then we don't have to do anything.
if let Some(target_value) = map.places[target].value_index {
if let Some(source_value) = map.places[source].value_index {
values[target_value] = values[source_value].clone();
} else {
values[target_value] = V::top();
}
}
for target_child in map.children(target) {
// Try to find corresponding child and recurse. Reasoning is similar as above.
let projection = map.places[target_child].proj_elem.unwrap();
if let Some(source_child) = map.projections.get(&(source, projection)) {
self.assign_place_idx(target_child, *source_child, map);
} else {
self.flood_idx(target_child, map);
}
}
}
pub fn assign(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map) {
if let Some(target) = map.find(target) {
self.assign_idx(target, result, map);
} else {
// We don't track this place nor any projections, assignment can be ignored.
}
}
pub fn assign_idx(&mut self, target: PlaceIndex, result: ValueOrPlace<V>, map: &Map) {
match result {
ValueOrPlace::Value(value) => {
// First flood the target place in case we also track any projections (although
// this scenario is currently not well-supported by the API).
self.flood_idx(target, map);
let StateData::Reachable(values) = &mut self.0 else { return };
if let Some(value_index) = map.places[target].value_index {
values[value_index] = value;
}
}
ValueOrPlace::Place(source) => self.assign_place_idx(target, source, map),
}
}
/// Retrieve the value stored for a place, or if it is not tracked.
pub fn get(&self, place: PlaceRef<'_>, map: &Map) -> V {
map.find(place).map(|place| self.get_idx(place, map)).unwrap_or(V::top())
}
/// Retrieve the value stored for a place index, or if it is not tracked.
pub fn get_idx(&self, place: PlaceIndex, map: &Map) -> V {
match &self.0 {
StateData::Reachable(values) => {
map.places[place].value_index.map(|v| values[v].clone()).unwrap_or(V::top())
}
StateData::Unreachable => {
// Because this is unreachable, we can return any value we want.
V::bottom()
}
}
}
}
impl<V: JoinSemiLattice + Clone> JoinSemiLattice for State<V> {
fn join(&mut self, other: &Self) -> bool {
match (&mut self.0, &other.0) {
(_, StateData::Unreachable) => false,
(StateData::Unreachable, _) => {
*self = other.clone();
true
}
(StateData::Reachable(this), StateData::Reachable(other)) => this.join(other),
}
}
}
/// A partial mapping from `Place` to `PlaceIndex`, where some place indices have value indices.
///
/// Some additional bookkeeping is done to speed up traversal:
/// - For iteration, every [`PlaceInfo`] contains an intrusive linked list of its children.
/// - To directly get the child for a specific projection, there is a `projections` map.
#[derive(Debug)]
pub struct Map {
locals: IndexVec<Local, Option<PlaceIndex>>,
projections: FxHashMap<(PlaceIndex, TrackElem), PlaceIndex>,
places: IndexVec<PlaceIndex, PlaceInfo>,
value_count: usize,
}
impl Map {
fn new() -> Self {
Self {
locals: IndexVec::new(),
projections: FxHashMap::default(),
places: IndexVec::new(),
value_count: 0,
}
}
/// Returns a map that only tracks places whose type passes the filter.
///
/// This is currently the only way to create a [`Map`]. The way in which the tracked places are
/// chosen is an implementation detail and may not be relied upon.
#[instrument(skip_all, level = "debug")]
pub fn from_filter<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
filter: impl FnMut(Ty<'tcx>) -> bool,
) -> Self {
let mut map = Self::new();
map.register_with_filter(tcx, body, filter, &escaped_places(body));
debug!("registered {} places ({} nodes in total)", map.value_count, map.places.len());
map
}
/// Register all non-excluded places that pass the filter.
fn register_with_filter<'tcx>(
&mut self,
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
mut filter: impl FnMut(Ty<'tcx>) -> bool,
exclude: &FxHashSet<Place<'tcx>>,
) {
let mut projection = Vec::new();
for (local, decl) in body.local_decls.iter_enumerated() {
self.register_with_filter_rec(
tcx,
local,
&mut projection,
decl.ty,
&mut filter,
exclude,
);
}
}
fn register_with_filter_rec<'tcx>(
&mut self,
tcx: TyCtxt<'tcx>,
local: Local,
projection: &mut Vec<PlaceElem<'tcx>>,
ty: Ty<'tcx>,
filter: &mut impl FnMut(Ty<'tcx>) -> bool,
exclude: &FxHashSet<Place<'tcx>>,
) {
if exclude.contains(&Place { local, projection: tcx.intern_place_elems(projection) }) {
// This will also exclude all projections of the excluded place.
return;
}
if filter(ty) {
// This might fail if `ty` is not scalar.
let _ = self.register_with_ty(local, projection, ty);
}
iter_fields(ty, tcx, |variant, field, ty| {
if variant.is_some() {
// Downcasts are currently not supported.
return;
}
projection.push(PlaceElem::Field(field, ty));
self.register_with_filter_rec(
tcx, local, projection, ty, filter, exclude,
);
projection.pop();
});
}
/// Tries to add the place to the map, without allocating a value slot.
///
/// Can fail if the projection contains non-trackable elements.
fn make_place<'tcx>(
&mut self,
local: Local,
projection: &[PlaceElem<'tcx>],
) -> Result<PlaceIndex, ()> {
// Get the base index of the local.
let mut index =
*self.locals.get_or_insert_with(local, || self.places.push(PlaceInfo::new(None)));
// Apply the projection.
for &elem in projection {
let elem = elem.try_into()?;
index = *self.projections.entry((index, elem)).or_insert_with(|| {
// Prepend new child to the linked list.
let next = self.places.push(PlaceInfo::new(Some(elem)));
self.places[next].next_sibling = self.places[index].first_child;
self.places[index].first_child = Some(next);
next
});
}
Ok(index)
}
#[allow(unused)]
fn register<'tcx>(
&mut self,
local: Local,
projection: &[PlaceElem<'tcx>],
decls: &impl HasLocalDecls<'tcx>,
tcx: TyCtxt<'tcx>,
) -> Result<(), ()> {
projection
.iter()
.fold(PlaceTy::from_ty(decls.local_decls()[local].ty), |place_ty, &elem| {
place_ty.projection_ty(tcx, elem)
});
let place_ty = Place::ty_from(local, projection, decls, tcx);
if place_ty.variant_index.is_some() {
return Err(());
}
self.register_with_ty(local, projection, place_ty.ty)
}
/// Tries to track the given place. Fails if type is non-scalar or projection is not trackable.
fn register_with_ty<'tcx>(
&mut self,
local: Local,
projection: &[PlaceElem<'tcx>],
ty: Ty<'tcx>,
) -> Result<(), ()> {
if !ty.is_scalar() {
// Currently, only scalar types are allowed, because they are atomic
// and therefore do not require invalidation of parent places.
return Err(());
}
let place = self.make_place(local, projection)?;
// Allocate a value slot if it doesn't have one.
if self.places[place].value_index.is_none() {
self.places[place].value_index = Some(self.value_count.into());
self.value_count += 1;
}
Ok(())
}
pub fn tracked_places(&self) -> usize {
self.value_count
}
pub fn apply(&self, place: PlaceIndex, elem: TrackElem) -> Option<PlaceIndex> {
self.projections.get(&(place, elem)).copied()
}
pub fn find(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
let mut index = *self.locals.get(place.local)?.as_ref()?;
for &elem in place.projection {
index = self.apply(index, elem.try_into().ok()?)?;
}
Some(index)
}
/// Iterate over all direct children.
pub fn children(&self, parent: PlaceIndex) -> impl Iterator<Item = PlaceIndex> + '_ {
Children::new(self, parent)
}
pub fn preorder_invoke(&self, root: PlaceIndex, f: &mut impl FnMut(PlaceIndex)) {
f(root);
for child in self.children(root) {
self.preorder_invoke(child, f);
}
}
}
/// This is the information tracked for every [`PlaceIndex`] and is stored by [`Map`].
///
/// Together, `first_child` and `next_sibling` form an intrusive linked list, which is used to
/// model a tree structure (a replacement for a member like `children: Vec<PlaceIndex>`).
#[derive(Debug)]
struct PlaceInfo {
/// We store a [`ValueIndex`] if and only if the placed is tracked by the analysis.
value_index: Option<ValueIndex>,
/// The projection used to go from parent to this node (only None for root).
proj_elem: Option<TrackElem>,
/// The left-most child.
first_child: Option<PlaceIndex>,
/// Index of the sibling to the right of this node.
next_sibling: Option<PlaceIndex>,
}
impl PlaceInfo {
fn new(proj_elem: Option<TrackElem>) -> Self {
Self { next_sibling: None, first_child: None, proj_elem, value_index: None }
}
}
struct Children<'a> {
map: &'a Map,
next: Option<PlaceIndex>,
}
impl<'a> Children<'a> {
fn new(map: &'a Map, parent: PlaceIndex) -> Self {
Self { map, next: map.places[parent].first_child }
}
}
impl<'a> Iterator for Children<'a> {
type Item = PlaceIndex;
fn next(&mut self) -> Option<Self::Item> {
match self.next {
Some(child) => {
self.next = self.map.places[child].next_sibling;
Some(child)
}
None => None,
}
}
}
/// Used as the result of an operand or r-value.
pub enum ValueOrPlace<V> {
Value(V),
Place(PlaceIndex),
}
impl<V: HasTop> ValueOrPlace<V> {
pub fn top() -> Self {
ValueOrPlace::Value(V::top())
}
}
/// The set of projection elements that can be used by a tracked place.
///
/// Although only field projections are currently allowed, this could change in the future.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum TrackElem {
Field(Field),
}
impl<V, T> TryFrom<ProjectionElem<V, T>> for TrackElem {
type Error = ();
fn try_from(value: ProjectionElem<V, T>) -> Result<Self, Self::Error> {
match value {
ProjectionElem::Field(field, _) => Ok(TrackElem::Field(field)),
_ => Err(()),
}
}
}
/// Invokes `f` on all direct fields of `ty`.
fn iter_fields<'tcx>(
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
mut f: impl FnMut(Option<VariantIdx>, Field, Ty<'tcx>),
) {
match ty.kind() {
ty::Tuple(list) => {
for (field, ty) in list.iter().enumerate() {
f(None, field.into(), ty);
}
}
ty::Adt(def, substs) => {
for (v_index, v_def) in def.variants().iter_enumerated() {
for (f_index, f_def) in v_def.fields.iter().enumerate() {
let field_ty = f_def.ty(tcx, substs);
let field_ty = tcx
.try_normalize_erasing_regions(ty::ParamEnv::reveal_all(), field_ty)
.unwrap_or(field_ty);
f(Some(v_index), f_index.into(), field_ty);
}
}
}
ty::Closure(_, substs) => {
iter_fields(substs.as_closure().tupled_upvars_ty(), tcx, f);
}
_ => (),
}
}
/// Returns all places, that have their reference or address taken.
///
/// This includes shared references, and also drops and `InlineAsm` out parameters.
fn escaped_places<'tcx>(body: &Body<'tcx>) -> FxHashSet<Place<'tcx>> {
struct Collector<'tcx> {
result: FxHashSet<Place<'tcx>>,
}
impl<'tcx> Visitor<'tcx> for Collector<'tcx> {
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, _location: Location) {
if context.is_borrow()
|| context.is_address_of()
|| context.is_drop()
|| context == PlaceContext::MutatingUse(MutatingUseContext::AsmOutput)
{
self.result.insert(*place);
}
}
}
let mut collector = Collector { result: FxHashSet::default() };
collector.visit_body(body);
collector.result
}
/// This is used to visualize the dataflow analysis.
impl<'tcx, T> DebugWithContext<ValueAnalysisWrapper<T>> for State<T::Value>
where
T: ValueAnalysis<'tcx>,
T::Value: Debug,
{
fn fmt_with(&self, ctxt: &ValueAnalysisWrapper<T>, f: &mut Formatter<'_>) -> std::fmt::Result {
match &self.0 {
StateData::Reachable(values) => debug_with_context(values, None, ctxt.0.map(), f),
StateData::Unreachable => write!(f, "unreachable"),
}
}
fn fmt_diff_with(
&self,
old: &Self,
ctxt: &ValueAnalysisWrapper<T>,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
match (&self.0, &old.0) {
(StateData::Reachable(this), StateData::Reachable(old)) => {
debug_with_context(this, Some(old), ctxt.0.map(), f)
}
_ => Ok(()), // Consider printing something here.
}
}
}
fn debug_with_context_rec<V: Debug + Eq>(
place: PlaceIndex,
place_str: &str,
new: &IndexVec<ValueIndex, V>,
old: Option<&IndexVec<ValueIndex, V>>,
map: &Map,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
if let Some(value) = map.places[place].value_index {
match old {
None => writeln!(f, "{}: {:?}", place_str, new[value])?,
Some(old) => {
if new[value] != old[value] {
writeln!(f, "\u{001f}-{}: {:?}", place_str, old[value])?;
writeln!(f, "\u{001f}+{}: {:?}", place_str, new[value])?;
}
}
}
}
for child in map.children(place) {
let info_elem = map.places[child].proj_elem.unwrap();
let child_place_str = match info_elem {
TrackElem::Field(field) => {
if place_str.starts_with("*") {
format!("({}).{}", place_str, field.index())
} else {
format!("{}.{}", place_str, field.index())
}
}
};
debug_with_context_rec(child, &child_place_str, new, old, map, f)?;
}
Ok(())
}
fn debug_with_context<V: Debug + Eq>(
new: &IndexVec<ValueIndex, V>,
old: Option<&IndexVec<ValueIndex, V>>,
map: &Map,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
for (local, place) in map.locals.iter_enumerated() {
if let Some(place) = place {
debug_with_context_rec(*place, &format!("{:?}", local), new, old, map, f)?;
}
}
Ok(())
}