rust/compiler/rustc_serialize/src/opaque.rs
Nicholas Nethercote b51deba9ac Remove MemDecoder::read_raw_bytes_inherent.
It's unnecessary. Note that `MemDecoder::read_raw_bytes` how has a `&'a
[u8]` return type, the same as what `read_raw_bytes_inherent` had.
2023-04-28 09:50:21 +10:00

790 lines
23 KiB
Rust

use crate::leb128::{self, largest_max_leb128_len};
use crate::serialize::{Decodable, Decoder, Encodable, Encoder};
use std::fs::File;
use std::io::{self, Write};
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::Range;
use std::path::Path;
use std::ptr;
// -----------------------------------------------------------------------------
// Encoder
// -----------------------------------------------------------------------------
pub struct MemEncoder {
pub data: Vec<u8>,
}
impl MemEncoder {
pub fn new() -> MemEncoder {
MemEncoder { data: vec![] }
}
#[inline]
pub fn position(&self) -> usize {
self.data.len()
}
pub fn finish(self) -> Vec<u8> {
self.data
}
}
macro_rules! write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = $crate::leb128::max_leb128_len::<$int_ty>();
let old_len = $enc.data.len();
if MAX_ENCODED_LEN > $enc.data.capacity() - old_len {
$enc.data.reserve(MAX_ENCODED_LEN);
}
// SAFETY: The above check and `reserve` ensures that there is enough
// room to write the encoded value to the vector's internal buffer.
unsafe {
let buf = &mut *($enc.data.as_mut_ptr().add(old_len)
as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN]);
let encoded = leb128::$fun(buf, $value);
$enc.data.set_len(old_len + encoded.len());
}
}};
}
/// A byte that [cannot occur in UTF8 sequences][utf8]. Used to mark the end of a string.
/// This way we can skip validation and still be relatively sure that deserialization
/// did not desynchronize.
///
/// [utf8]: https://en.wikipedia.org/w/index.php?title=UTF-8&oldid=1058865525#Codepage_layout
const STR_SENTINEL: u8 = 0xC1;
impl Encoder for MemEncoder {
#[inline]
fn emit_usize(&mut self, v: usize) {
write_leb128!(self, v, usize, write_usize_leb128)
}
#[inline]
fn emit_u128(&mut self, v: u128) {
write_leb128!(self, v, u128, write_u128_leb128);
}
#[inline]
fn emit_u64(&mut self, v: u64) {
write_leb128!(self, v, u64, write_u64_leb128);
}
#[inline]
fn emit_u32(&mut self, v: u32) {
write_leb128!(self, v, u32, write_u32_leb128);
}
#[inline]
fn emit_u16(&mut self, v: u16) {
self.data.extend_from_slice(&v.to_le_bytes());
}
#[inline]
fn emit_u8(&mut self, v: u8) {
self.data.push(v);
}
#[inline]
fn emit_isize(&mut self, v: isize) {
write_leb128!(self, v, isize, write_isize_leb128)
}
#[inline]
fn emit_i128(&mut self, v: i128) {
write_leb128!(self, v, i128, write_i128_leb128)
}
#[inline]
fn emit_i64(&mut self, v: i64) {
write_leb128!(self, v, i64, write_i64_leb128)
}
#[inline]
fn emit_i32(&mut self, v: i32) {
write_leb128!(self, v, i32, write_i32_leb128)
}
#[inline]
fn emit_i16(&mut self, v: i16) {
self.data.extend_from_slice(&v.to_le_bytes());
}
#[inline]
fn emit_i8(&mut self, v: i8) {
self.emit_u8(v as u8);
}
#[inline]
fn emit_bool(&mut self, v: bool) {
self.emit_u8(if v { 1 } else { 0 });
}
#[inline]
fn emit_char(&mut self, v: char) {
self.emit_u32(v as u32);
}
#[inline]
fn emit_str(&mut self, v: &str) {
self.emit_usize(v.len());
self.emit_raw_bytes(v.as_bytes());
self.emit_u8(STR_SENTINEL);
}
#[inline]
fn emit_raw_bytes(&mut self, s: &[u8]) {
self.data.extend_from_slice(s);
}
}
pub type FileEncodeResult = Result<usize, io::Error>;
/// `FileEncoder` encodes data to file via fixed-size buffer.
///
/// When encoding large amounts of data to a file, using `FileEncoder` may be
/// preferred over using `MemEncoder` to encode to a `Vec`, and then writing the
/// `Vec` to file, as the latter uses as much memory as there is encoded data,
/// while the former uses the fixed amount of memory allocated to the buffer.
/// `FileEncoder` also has the advantage of not needing to reallocate as data
/// is appended to it, but the disadvantage of requiring more error handling,
/// which has some runtime overhead.
pub struct FileEncoder {
/// The input buffer. For adequate performance, we need more control over
/// buffering than `BufWriter` offers. If `BufWriter` ever offers a raw
/// buffer access API, we can use it, and remove `buf` and `buffered`.
buf: Box<[MaybeUninit<u8>]>,
buffered: usize,
flushed: usize,
file: File,
// This is used to implement delayed error handling, as described in the
// comment on `trait Encoder`.
res: Result<(), io::Error>,
}
impl FileEncoder {
pub fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
const DEFAULT_BUF_SIZE: usize = 8192;
FileEncoder::with_capacity(path, DEFAULT_BUF_SIZE)
}
pub fn with_capacity<P: AsRef<Path>>(path: P, capacity: usize) -> io::Result<Self> {
// Require capacity at least as large as the largest LEB128 encoding
// here, so that we don't have to check or handle this on every write.
assert!(capacity >= largest_max_leb128_len());
// Require capacity small enough such that some capacity checks can be
// done using guaranteed non-overflowing add rather than sub, which
// shaves an instruction off those code paths (on x86 at least).
assert!(capacity <= usize::MAX - largest_max_leb128_len());
// Create the file for reading and writing, because some encoders do both
// (e.g. the metadata encoder when -Zmeta-stats is enabled)
let file = File::options().read(true).write(true).create(true).truncate(true).open(path)?;
Ok(FileEncoder {
buf: Box::new_uninit_slice(capacity),
buffered: 0,
flushed: 0,
file,
res: Ok(()),
})
}
#[inline]
pub fn position(&self) -> usize {
// Tracking position this way instead of having a `self.position` field
// means that we don't have to update the position on every write call.
self.flushed + self.buffered
}
pub fn flush(&mut self) {
// This is basically a copy of `BufWriter::flush`. If `BufWriter` ever
// offers a raw buffer access API, we can use it, and remove this.
/// Helper struct to ensure the buffer is updated after all the writes
/// are complete. It tracks the number of written bytes and drains them
/// all from the front of the buffer when dropped.
struct BufGuard<'a> {
buffer: &'a mut [u8],
encoder_buffered: &'a mut usize,
encoder_flushed: &'a mut usize,
flushed: usize,
}
impl<'a> BufGuard<'a> {
fn new(
buffer: &'a mut [u8],
encoder_buffered: &'a mut usize,
encoder_flushed: &'a mut usize,
) -> Self {
assert_eq!(buffer.len(), *encoder_buffered);
Self { buffer, encoder_buffered, encoder_flushed, flushed: 0 }
}
/// The unwritten part of the buffer
fn remaining(&self) -> &[u8] {
&self.buffer[self.flushed..]
}
/// Flag some bytes as removed from the front of the buffer
fn consume(&mut self, amt: usize) {
self.flushed += amt;
}
/// true if all of the bytes have been written
fn done(&self) -> bool {
self.flushed >= *self.encoder_buffered
}
}
impl Drop for BufGuard<'_> {
fn drop(&mut self) {
if self.flushed > 0 {
if self.done() {
*self.encoder_flushed += *self.encoder_buffered;
*self.encoder_buffered = 0;
} else {
self.buffer.copy_within(self.flushed.., 0);
*self.encoder_flushed += self.flushed;
*self.encoder_buffered -= self.flushed;
}
}
}
}
// If we've already had an error, do nothing. It'll get reported after
// `finish` is called.
if self.res.is_err() {
return;
}
let mut guard = BufGuard::new(
unsafe { MaybeUninit::slice_assume_init_mut(&mut self.buf[..self.buffered]) },
&mut self.buffered,
&mut self.flushed,
);
while !guard.done() {
match self.file.write(guard.remaining()) {
Ok(0) => {
self.res = Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write the buffered data",
));
return;
}
Ok(n) => guard.consume(n),
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => {
self.res = Err(e);
return;
}
}
}
}
pub fn file(&self) -> &File {
&self.file
}
#[inline]
fn capacity(&self) -> usize {
self.buf.len()
}
#[inline]
fn write_one(&mut self, value: u8) {
// We ensure this during `FileEncoder` construction.
debug_assert!(self.capacity() >= 1);
let mut buffered = self.buffered;
if std::intrinsics::unlikely(buffered >= self.capacity()) {
self.flush();
buffered = 0;
}
// SAFETY: The above check and `flush` ensures that there is enough
// room to write the input to the buffer.
unsafe {
*MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered) = value;
}
self.buffered = buffered + 1;
}
#[inline]
fn write_all(&mut self, buf: &[u8]) {
let capacity = self.capacity();
let buf_len = buf.len();
if std::intrinsics::likely(buf_len <= capacity) {
let mut buffered = self.buffered;
if std::intrinsics::unlikely(buf_len > capacity - buffered) {
self.flush();
buffered = 0;
}
// SAFETY: The above check and `flush` ensures that there is enough
// room to write the input to the buffer.
unsafe {
let src = buf.as_ptr();
let dst = MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered);
ptr::copy_nonoverlapping(src, dst, buf_len);
}
self.buffered = buffered + buf_len;
} else {
self.write_all_unbuffered(buf);
}
}
fn write_all_unbuffered(&mut self, mut buf: &[u8]) {
// If we've already had an error, do nothing. It'll get reported after
// `finish` is called.
if self.res.is_err() {
return;
}
if self.buffered > 0 {
self.flush();
}
// This is basically a copy of `Write::write_all` but also updates our
// `self.flushed`. It's necessary because `Write::write_all` does not
// return the number of bytes written when an error is encountered, and
// without that, we cannot accurately update `self.flushed` on error.
while !buf.is_empty() {
match self.file.write(buf) {
Ok(0) => {
self.res = Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write whole buffer",
));
return;
}
Ok(n) => {
buf = &buf[n..];
self.flushed += n;
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => {
self.res = Err(e);
return;
}
}
}
}
pub fn finish(mut self) -> Result<usize, io::Error> {
self.flush();
let res = std::mem::replace(&mut self.res, Ok(()));
res.map(|()| self.position())
}
}
impl Drop for FileEncoder {
fn drop(&mut self) {
// Likely to be a no-op, because `finish` should have been called and
// it also flushes. But do it just in case.
let _result = self.flush();
}
}
macro_rules! file_encoder_write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = $crate::leb128::max_leb128_len::<$int_ty>();
// We ensure this during `FileEncoder` construction.
debug_assert!($enc.capacity() >= MAX_ENCODED_LEN);
let mut buffered = $enc.buffered;
// This can't overflow. See assertion in `FileEncoder::with_capacity`.
if std::intrinsics::unlikely(buffered + MAX_ENCODED_LEN > $enc.capacity()) {
$enc.flush();
buffered = 0;
}
// SAFETY: The above check and flush ensures that there is enough
// room to write the encoded value to the buffer.
let buf = unsafe {
&mut *($enc.buf.as_mut_ptr().add(buffered) as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN])
};
let encoded = leb128::$fun(buf, $value);
$enc.buffered = buffered + encoded.len();
}};
}
impl Encoder for FileEncoder {
#[inline]
fn emit_usize(&mut self, v: usize) {
file_encoder_write_leb128!(self, v, usize, write_usize_leb128)
}
#[inline]
fn emit_u128(&mut self, v: u128) {
file_encoder_write_leb128!(self, v, u128, write_u128_leb128)
}
#[inline]
fn emit_u64(&mut self, v: u64) {
file_encoder_write_leb128!(self, v, u64, write_u64_leb128)
}
#[inline]
fn emit_u32(&mut self, v: u32) {
file_encoder_write_leb128!(self, v, u32, write_u32_leb128)
}
#[inline]
fn emit_u16(&mut self, v: u16) {
self.write_all(&v.to_le_bytes());
}
#[inline]
fn emit_u8(&mut self, v: u8) {
self.write_one(v);
}
#[inline]
fn emit_isize(&mut self, v: isize) {
file_encoder_write_leb128!(self, v, isize, write_isize_leb128)
}
#[inline]
fn emit_i128(&mut self, v: i128) {
file_encoder_write_leb128!(self, v, i128, write_i128_leb128)
}
#[inline]
fn emit_i64(&mut self, v: i64) {
file_encoder_write_leb128!(self, v, i64, write_i64_leb128)
}
#[inline]
fn emit_i32(&mut self, v: i32) {
file_encoder_write_leb128!(self, v, i32, write_i32_leb128)
}
#[inline]
fn emit_i16(&mut self, v: i16) {
self.write_all(&v.to_le_bytes());
}
#[inline]
fn emit_i8(&mut self, v: i8) {
self.emit_u8(v as u8);
}
#[inline]
fn emit_bool(&mut self, v: bool) {
self.emit_u8(if v { 1 } else { 0 });
}
#[inline]
fn emit_char(&mut self, v: char) {
self.emit_u32(v as u32);
}
#[inline]
fn emit_str(&mut self, v: &str) {
self.emit_usize(v.len());
self.emit_raw_bytes(v.as_bytes());
self.emit_u8(STR_SENTINEL);
}
#[inline]
fn emit_raw_bytes(&mut self, s: &[u8]) {
self.write_all(s);
}
}
// -----------------------------------------------------------------------------
// Decoder
// -----------------------------------------------------------------------------
// Conceptually, `MemDecoder` wraps a `&[u8]` with a cursor into it that is always valid.
// This is implemented with three pointers, two which represent the original slice and a
// third that is our cursor.
// It is an invariant of this type that start <= current <= end.
// Additionally, the implementation of this type never modifies start and end.
pub struct MemDecoder<'a> {
start: *const u8,
current: *const u8,
end: *const u8,
_marker: PhantomData<&'a u8>,
}
impl<'a> MemDecoder<'a> {
#[inline]
pub fn new(data: &'a [u8], position: usize) -> MemDecoder<'a> {
let Range { start, end } = data.as_ptr_range();
MemDecoder { start, current: data[position..].as_ptr(), end, _marker: PhantomData }
}
#[inline]
pub fn data(&self) -> &'a [u8] {
// SAFETY: This recovers the original slice, only using members we never modify.
unsafe { std::slice::from_raw_parts(self.start, self.len()) }
}
#[inline]
pub fn len(&self) -> usize {
// SAFETY: This recovers the length of the original slice, only using members we never modify.
unsafe { self.end.sub_ptr(self.start) }
}
#[inline]
pub fn remaining(&self) -> usize {
// SAFETY: This type guarantees current <= end.
unsafe { self.end.sub_ptr(self.current) }
}
#[cold]
#[inline(never)]
fn decoder_exhausted() -> ! {
panic!("MemDecoder exhausted")
}
#[inline]
fn read_byte(&mut self) -> u8 {
if self.current == self.end {
Self::decoder_exhausted();
}
// SAFETY: This type guarantees current <= end, and we just checked current == end.
unsafe {
let byte = *self.current;
self.current = self.current.add(1);
byte
}
}
#[inline]
fn read_array<const N: usize>(&mut self) -> [u8; N] {
self.read_raw_bytes(N).try_into().unwrap()
}
/// While we could manually expose manipulation of the decoder position,
/// all current users of that method would need to reset the position later,
/// incurring the bounds check of set_position twice.
#[inline]
pub fn with_position<F, T>(&mut self, pos: usize, func: F) -> T
where
F: Fn(&mut MemDecoder<'a>) -> T,
{
struct SetOnDrop<'a, 'guarded> {
decoder: &'guarded mut MemDecoder<'a>,
current: *const u8,
}
impl Drop for SetOnDrop<'_, '_> {
fn drop(&mut self) {
self.decoder.current = self.current;
}
}
if pos >= self.len() {
Self::decoder_exhausted();
}
let previous = self.current;
// SAFETY: We just checked if this add is in-bounds above.
unsafe {
self.current = self.start.add(pos);
}
let guard = SetOnDrop { current: previous, decoder: self };
func(guard.decoder)
}
}
macro_rules! read_leb128 {
($dec:expr, $fun:ident) => {{ leb128::$fun($dec) }};
}
impl<'a> Decoder for MemDecoder<'a> {
#[inline]
fn position(&self) -> usize {
// SAFETY: This type guarantees start <= current
unsafe { self.current.sub_ptr(self.start) }
}
#[inline]
fn read_u128(&mut self) -> u128 {
read_leb128!(self, read_u128_leb128)
}
#[inline]
fn read_u64(&mut self) -> u64 {
read_leb128!(self, read_u64_leb128)
}
#[inline]
fn read_u32(&mut self) -> u32 {
read_leb128!(self, read_u32_leb128)
}
#[inline]
fn read_u16(&mut self) -> u16 {
u16::from_le_bytes(self.read_array())
}
#[inline]
fn read_u8(&mut self) -> u8 {
self.read_byte()
}
#[inline]
fn read_usize(&mut self) -> usize {
read_leb128!(self, read_usize_leb128)
}
#[inline]
fn read_i128(&mut self) -> i128 {
read_leb128!(self, read_i128_leb128)
}
#[inline]
fn read_i64(&mut self) -> i64 {
read_leb128!(self, read_i64_leb128)
}
#[inline]
fn read_i32(&mut self) -> i32 {
read_leb128!(self, read_i32_leb128)
}
#[inline]
fn read_i16(&mut self) -> i16 {
i16::from_le_bytes(self.read_array())
}
#[inline]
fn read_i8(&mut self) -> i8 {
self.read_byte() as i8
}
#[inline]
fn read_isize(&mut self) -> isize {
read_leb128!(self, read_isize_leb128)
}
#[inline]
fn read_bool(&mut self) -> bool {
let value = self.read_u8();
value != 0
}
#[inline]
fn read_char(&mut self) -> char {
let bits = self.read_u32();
std::char::from_u32(bits).unwrap()
}
#[inline]
fn read_str(&mut self) -> &str {
let len = self.read_usize();
let bytes = self.read_raw_bytes(len + 1);
assert!(bytes[len] == STR_SENTINEL);
unsafe { std::str::from_utf8_unchecked(&bytes[..len]) }
}
#[inline]
fn read_raw_bytes(&mut self, bytes: usize) -> &'a [u8] {
if bytes > self.remaining() {
Self::decoder_exhausted();
}
// SAFETY: We just checked if this range is in-bounds above.
unsafe {
let slice = std::slice::from_raw_parts(self.current, bytes);
self.current = self.current.add(bytes);
slice
}
}
#[inline]
fn peek_byte(&self) -> u8 {
if self.current == self.end {
Self::decoder_exhausted();
}
// SAFETY: This type guarantees current is inbounds or one-past-the-end, which is end.
// Since we just checked current == end, the current pointer must be inbounds.
unsafe { *self.current }
}
}
// Specializations for contiguous byte sequences follow. The default implementations for slices
// encode and decode each element individually. This isn't necessary for `u8` slices when using
// opaque encoders and decoders, because each `u8` is unchanged by encoding and decoding.
// Therefore, we can use more efficient implementations that process the entire sequence at once.
// Specialize encoding byte slices. This specialization also applies to encoding `Vec<u8>`s, etc.,
// since the default implementations call `encode` on their slices internally.
impl Encodable<MemEncoder> for [u8] {
fn encode(&self, e: &mut MemEncoder) {
Encoder::emit_usize(e, self.len());
e.emit_raw_bytes(self);
}
}
impl Encodable<FileEncoder> for [u8] {
fn encode(&self, e: &mut FileEncoder) {
Encoder::emit_usize(e, self.len());
e.emit_raw_bytes(self);
}
}
// Specialize decoding `Vec<u8>`. This specialization also applies to decoding `Box<[u8]>`s, etc.,
// since the default implementations call `decode` to produce a `Vec<u8>` internally.
impl<'a> Decodable<MemDecoder<'a>> for Vec<u8> {
fn decode(d: &mut MemDecoder<'a>) -> Self {
let len = Decoder::read_usize(d);
d.read_raw_bytes(len).to_owned()
}
}
/// An integer that will always encode to 8 bytes.
pub struct IntEncodedWithFixedSize(pub u64);
impl IntEncodedWithFixedSize {
pub const ENCODED_SIZE: usize = 8;
}
impl Encodable<MemEncoder> for IntEncodedWithFixedSize {
#[inline]
fn encode(&self, e: &mut MemEncoder) {
let _start_pos = e.position();
e.emit_raw_bytes(&self.0.to_le_bytes());
let _end_pos = e.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
}
}
impl Encodable<FileEncoder> for IntEncodedWithFixedSize {
#[inline]
fn encode(&self, e: &mut FileEncoder) {
let _start_pos = e.position();
e.emit_raw_bytes(&self.0.to_le_bytes());
let _end_pos = e.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
}
}
impl<'a> Decodable<MemDecoder<'a>> for IntEncodedWithFixedSize {
#[inline]
fn decode(decoder: &mut MemDecoder<'a>) -> IntEncodedWithFixedSize {
let _start_pos = decoder.position();
let bytes = decoder.read_raw_bytes(IntEncodedWithFixedSize::ENCODED_SIZE);
let value = u64::from_le_bytes(bytes.try_into().unwrap());
let _end_pos = decoder.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
IntEncodedWithFixedSize(value)
}
}