6634 lines
215 KiB
Rust
6634 lines
215 KiB
Rust
// ignore-tidy-filelength
|
||
// ignore-tidy-undocumented-unsafe
|
||
|
||
//! Slice management and manipulation.
|
||
//!
|
||
//! For more details see [`std::slice`].
|
||
//!
|
||
//! [`std::slice`]: ../../std/slice/index.html
|
||
|
||
#![stable(feature = "rust1", since = "1.0.0")]
|
||
|
||
// How this module is organized.
|
||
//
|
||
// The library infrastructure for slices is fairly messy. There's
|
||
// a lot of stuff defined here. Let's keep it clean.
|
||
//
|
||
// The layout of this file is thus:
|
||
//
|
||
// * Inherent methods. This is where most of the slice API resides.
|
||
// * Implementations of a few common traits with important slice ops.
|
||
// * Definitions of a bunch of iterators.
|
||
// * Free functions.
|
||
// * The `raw` and `bytes` submodules.
|
||
// * Boilerplate trait implementations.
|
||
|
||
use crate::cmp;
|
||
use crate::cmp::Ordering::{self, Equal, Greater, Less};
|
||
use crate::fmt;
|
||
use crate::intrinsics::{assume, exact_div, is_aligned_and_not_null, unchecked_sub};
|
||
use crate::iter::*;
|
||
use crate::marker::{self, Copy, Send, Sized, Sync};
|
||
use crate::mem;
|
||
use crate::ops::{self, FnMut, Range};
|
||
use crate::option::Option;
|
||
use crate::option::Option::{None, Some};
|
||
use crate::ptr::{self, NonNull};
|
||
use crate::result::Result;
|
||
use crate::result::Result::{Err, Ok};
|
||
|
||
#[unstable(
|
||
feature = "slice_internals",
|
||
issue = "none",
|
||
reason = "exposed from core to be reused in std; use the memchr crate"
|
||
)]
|
||
/// Pure rust memchr implementation, taken from rust-memchr
|
||
pub mod memchr;
|
||
|
||
mod rotate;
|
||
mod sort;
|
||
|
||
//
|
||
// Extension traits
|
||
//
|
||
|
||
#[lang = "slice"]
|
||
#[cfg(not(test))]
|
||
impl<T> [T] {
|
||
/// Returns the number of elements in the slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let a = [1, 2, 3];
|
||
/// assert_eq!(a.len(), 3);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_const_stable(feature = "const_slice_len", since = "1.32.0")]
|
||
#[inline]
|
||
// SAFETY: const sound because we transmute out the length field as a usize (which it must be)
|
||
#[allow(unused_attributes)]
|
||
#[allow_internal_unstable(const_fn_union)]
|
||
pub const fn len(&self) -> usize {
|
||
unsafe { crate::ptr::Repr { rust: self }.raw.len }
|
||
}
|
||
|
||
/// Returns `true` if the slice has a length of 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let a = [1, 2, 3];
|
||
/// assert!(!a.is_empty());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_const_stable(feature = "const_slice_is_empty", since = "1.32.0")]
|
||
#[inline]
|
||
pub const fn is_empty(&self) -> bool {
|
||
self.len() == 0
|
||
}
|
||
|
||
/// Returns the first element of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert_eq!(Some(&10), v.first());
|
||
///
|
||
/// let w: &[i32] = &[];
|
||
/// assert_eq!(None, w.first());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn first(&self) -> Option<&T> {
|
||
if let [first, ..] = self { Some(first) } else { None }
|
||
}
|
||
|
||
/// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [0, 1, 2];
|
||
///
|
||
/// if let Some(first) = x.first_mut() {
|
||
/// *first = 5;
|
||
/// }
|
||
/// assert_eq!(x, &[5, 1, 2]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn first_mut(&mut self) -> Option<&mut T> {
|
||
if let [first, ..] = self { Some(first) } else { None }
|
||
}
|
||
|
||
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &[0, 1, 2];
|
||
///
|
||
/// if let Some((first, elements)) = x.split_first() {
|
||
/// assert_eq!(first, &0);
|
||
/// assert_eq!(elements, &[1, 2]);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "slice_splits", since = "1.5.0")]
|
||
#[inline]
|
||
pub fn split_first(&self) -> Option<(&T, &[T])> {
|
||
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
|
||
}
|
||
|
||
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [0, 1, 2];
|
||
///
|
||
/// if let Some((first, elements)) = x.split_first_mut() {
|
||
/// *first = 3;
|
||
/// elements[0] = 4;
|
||
/// elements[1] = 5;
|
||
/// }
|
||
/// assert_eq!(x, &[3, 4, 5]);
|
||
/// ```
|
||
#[stable(feature = "slice_splits", since = "1.5.0")]
|
||
#[inline]
|
||
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
|
||
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
|
||
}
|
||
|
||
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &[0, 1, 2];
|
||
///
|
||
/// if let Some((last, elements)) = x.split_last() {
|
||
/// assert_eq!(last, &2);
|
||
/// assert_eq!(elements, &[0, 1]);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "slice_splits", since = "1.5.0")]
|
||
#[inline]
|
||
pub fn split_last(&self) -> Option<(&T, &[T])> {
|
||
if let [init @ .., last] = self { Some((last, init)) } else { None }
|
||
}
|
||
|
||
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [0, 1, 2];
|
||
///
|
||
/// if let Some((last, elements)) = x.split_last_mut() {
|
||
/// *last = 3;
|
||
/// elements[0] = 4;
|
||
/// elements[1] = 5;
|
||
/// }
|
||
/// assert_eq!(x, &[4, 5, 3]);
|
||
/// ```
|
||
#[stable(feature = "slice_splits", since = "1.5.0")]
|
||
#[inline]
|
||
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
|
||
if let [init @ .., last] = self { Some((last, init)) } else { None }
|
||
}
|
||
|
||
/// Returns the last element of the slice, or `None` if it is empty.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert_eq!(Some(&30), v.last());
|
||
///
|
||
/// let w: &[i32] = &[];
|
||
/// assert_eq!(None, w.last());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn last(&self) -> Option<&T> {
|
||
if let [.., last] = self { Some(last) } else { None }
|
||
}
|
||
|
||
/// Returns a mutable pointer to the last item in the slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [0, 1, 2];
|
||
///
|
||
/// if let Some(last) = x.last_mut() {
|
||
/// *last = 10;
|
||
/// }
|
||
/// assert_eq!(x, &[0, 1, 10]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn last_mut(&mut self) -> Option<&mut T> {
|
||
if let [.., last] = self { Some(last) } else { None }
|
||
}
|
||
|
||
/// Returns a reference to an element or subslice depending on the type of
|
||
/// index.
|
||
///
|
||
/// - If given a position, returns a reference to the element at that
|
||
/// position or `None` if out of bounds.
|
||
/// - If given a range, returns the subslice corresponding to that range,
|
||
/// or `None` if out of bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert_eq!(Some(&40), v.get(1));
|
||
/// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
|
||
/// assert_eq!(None, v.get(3));
|
||
/// assert_eq!(None, v.get(0..4));
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn get<I>(&self, index: I) -> Option<&I::Output>
|
||
where
|
||
I: SliceIndex<Self>,
|
||
{
|
||
index.get(self)
|
||
}
|
||
|
||
/// Returns a mutable reference to an element or subslice depending on the
|
||
/// type of index (see [`get`]) or `None` if the index is out of bounds.
|
||
///
|
||
/// [`get`]: #method.get
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [0, 1, 2];
|
||
///
|
||
/// if let Some(elem) = x.get_mut(1) {
|
||
/// *elem = 42;
|
||
/// }
|
||
/// assert_eq!(x, &[0, 42, 2]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
|
||
where
|
||
I: SliceIndex<Self>,
|
||
{
|
||
index.get_mut(self)
|
||
}
|
||
|
||
/// Returns a reference to an element or subslice, without doing bounds
|
||
/// checking.
|
||
///
|
||
/// This is generally not recommended, use with caution!
|
||
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
|
||
/// even if the resulting reference is not used.
|
||
/// For a safe alternative see [`get`].
|
||
///
|
||
/// [`get`]: #method.get
|
||
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &[1, 2, 4];
|
||
///
|
||
/// unsafe {
|
||
/// assert_eq!(x.get_unchecked(1), &2);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
|
||
where
|
||
I: SliceIndex<Self>,
|
||
{
|
||
// SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
|
||
// the slice is dereferencable because `self` is a safe reference.
|
||
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
||
unsafe { &*index.get_unchecked(self) }
|
||
}
|
||
|
||
/// Returns a mutable reference to an element or subslice, without doing
|
||
/// bounds checking.
|
||
///
|
||
/// This is generally not recommended, use with caution!
|
||
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
|
||
/// even if the resulting reference is not used.
|
||
/// For a safe alternative see [`get_mut`].
|
||
///
|
||
/// [`get_mut`]: #method.get_mut
|
||
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [1, 2, 4];
|
||
///
|
||
/// unsafe {
|
||
/// let elem = x.get_unchecked_mut(1);
|
||
/// *elem = 13;
|
||
/// }
|
||
/// assert_eq!(x, &[1, 13, 4]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
|
||
where
|
||
I: SliceIndex<Self>,
|
||
{
|
||
// SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
|
||
// the slice is dereferencable because `self` is a safe reference.
|
||
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
||
unsafe { &mut *index.get_unchecked_mut(self) }
|
||
}
|
||
|
||
/// Returns a raw pointer to the slice's buffer.
|
||
///
|
||
/// The caller must ensure that the slice outlives the pointer this
|
||
/// function returns, or else it will end up pointing to garbage.
|
||
///
|
||
/// The caller must also ensure that the memory the pointer (non-transitively) points to
|
||
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
|
||
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
|
||
///
|
||
/// Modifying the container referenced by this slice may cause its buffer
|
||
/// to be reallocated, which would also make any pointers to it invalid.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &[1, 2, 4];
|
||
/// let x_ptr = x.as_ptr();
|
||
///
|
||
/// unsafe {
|
||
/// for i in 0..x.len() {
|
||
/// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// [`as_mut_ptr`]: #method.as_mut_ptr
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
|
||
#[inline]
|
||
pub const fn as_ptr(&self) -> *const T {
|
||
self as *const [T] as *const T
|
||
}
|
||
|
||
/// Returns an unsafe mutable pointer to the slice's buffer.
|
||
///
|
||
/// The caller must ensure that the slice outlives the pointer this
|
||
/// function returns, or else it will end up pointing to garbage.
|
||
///
|
||
/// Modifying the container referenced by this slice may cause its buffer
|
||
/// to be reallocated, which would also make any pointers to it invalid.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [1, 2, 4];
|
||
/// let x_ptr = x.as_mut_ptr();
|
||
///
|
||
/// unsafe {
|
||
/// for i in 0..x.len() {
|
||
/// *x_ptr.add(i) += 2;
|
||
/// }
|
||
/// }
|
||
/// assert_eq!(x, &[3, 4, 6]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn as_mut_ptr(&mut self) -> *mut T {
|
||
self as *mut [T] as *mut T
|
||
}
|
||
|
||
/// Returns the two raw pointers spanning the slice.
|
||
///
|
||
/// The returned range is half-open, which means that the end pointer
|
||
/// points *one past* the last element of the slice. This way, an empty
|
||
/// slice is represented by two equal pointers, and the difference between
|
||
/// the two pointers represents the size of the slice.
|
||
///
|
||
/// See [`as_ptr`] for warnings on using these pointers. The end pointer
|
||
/// requires extra caution, as it does not point to a valid element in the
|
||
/// slice.
|
||
///
|
||
/// This function is useful for interacting with foreign interfaces which
|
||
/// use two pointers to refer to a range of elements in memory, as is
|
||
/// common in C++.
|
||
///
|
||
/// It can also be useful to check if a pointer to an element refers to an
|
||
/// element of this slice:
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_ptr_range)]
|
||
///
|
||
/// let a = [1, 2, 3];
|
||
/// let x = &a[1] as *const _;
|
||
/// let y = &5 as *const _;
|
||
///
|
||
/// assert!(a.as_ptr_range().contains(&x));
|
||
/// assert!(!a.as_ptr_range().contains(&y));
|
||
/// ```
|
||
///
|
||
/// [`as_ptr`]: #method.as_ptr
|
||
#[unstable(feature = "slice_ptr_range", issue = "65807")]
|
||
#[inline]
|
||
pub fn as_ptr_range(&self) -> Range<*const T> {
|
||
// The `add` here is safe, because:
|
||
//
|
||
// - Both pointers are part of the same object, as pointing directly
|
||
// past the object also counts.
|
||
//
|
||
// - The size of the slice is never larger than isize::MAX bytes, as
|
||
// noted here:
|
||
// - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
|
||
// - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
|
||
// - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
|
||
// (This doesn't seem normative yet, but the very same assumption is
|
||
// made in many places, including the Index implementation of slices.)
|
||
//
|
||
// - There is no wrapping around involved, as slices do not wrap past
|
||
// the end of the address space.
|
||
//
|
||
// See the documentation of pointer::add.
|
||
let start = self.as_ptr();
|
||
let end = unsafe { start.add(self.len()) };
|
||
start..end
|
||
}
|
||
|
||
/// Returns the two unsafe mutable pointers spanning the slice.
|
||
///
|
||
/// The returned range is half-open, which means that the end pointer
|
||
/// points *one past* the last element of the slice. This way, an empty
|
||
/// slice is represented by two equal pointers, and the difference between
|
||
/// the two pointers represents the size of the slice.
|
||
///
|
||
/// See [`as_mut_ptr`] for warnings on using these pointers. The end
|
||
/// pointer requires extra caution, as it does not point to a valid element
|
||
/// in the slice.
|
||
///
|
||
/// This function is useful for interacting with foreign interfaces which
|
||
/// use two pointers to refer to a range of elements in memory, as is
|
||
/// common in C++.
|
||
///
|
||
/// [`as_mut_ptr`]: #method.as_mut_ptr
|
||
#[unstable(feature = "slice_ptr_range", issue = "65807")]
|
||
#[inline]
|
||
pub fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
|
||
// See as_ptr_range() above for why `add` here is safe.
|
||
let start = self.as_mut_ptr();
|
||
let end = unsafe { start.add(self.len()) };
|
||
start..end
|
||
}
|
||
|
||
/// Swaps two elements in the slice.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * a - The index of the first element
|
||
/// * b - The index of the second element
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `a` or `b` are out of bounds.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = ["a", "b", "c", "d"];
|
||
/// v.swap(1, 3);
|
||
/// assert!(v == ["a", "d", "c", "b"]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn swap(&mut self, a: usize, b: usize) {
|
||
unsafe {
|
||
// Can't take two mutable loans from one vector, so instead just cast
|
||
// them to their raw pointers to do the swap
|
||
let pa: *mut T = &mut self[a];
|
||
let pb: *mut T = &mut self[b];
|
||
ptr::swap(pa, pb);
|
||
}
|
||
}
|
||
|
||
/// Reverses the order of elements in the slice, in place.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [1, 2, 3];
|
||
/// v.reverse();
|
||
/// assert!(v == [3, 2, 1]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn reverse(&mut self) {
|
||
let mut i: usize = 0;
|
||
let ln = self.len();
|
||
|
||
// For very small types, all the individual reads in the normal
|
||
// path perform poorly. We can do better, given efficient unaligned
|
||
// load/store, by loading a larger chunk and reversing a register.
|
||
|
||
// Ideally LLVM would do this for us, as it knows better than we do
|
||
// whether unaligned reads are efficient (since that changes between
|
||
// different ARM versions, for example) and what the best chunk size
|
||
// would be. Unfortunately, as of LLVM 4.0 (2017-05) it only unrolls
|
||
// the loop, so we need to do this ourselves. (Hypothesis: reverse
|
||
// is troublesome because the sides can be aligned differently --
|
||
// will be, when the length is odd -- so there's no way of emitting
|
||
// pre- and postludes to use fully-aligned SIMD in the middle.)
|
||
|
||
let fast_unaligned = cfg!(any(target_arch = "x86", target_arch = "x86_64"));
|
||
|
||
if fast_unaligned && mem::size_of::<T>() == 1 {
|
||
// Use the llvm.bswap intrinsic to reverse u8s in a usize
|
||
let chunk = mem::size_of::<usize>();
|
||
while i + chunk - 1 < ln / 2 {
|
||
unsafe {
|
||
let pa: *mut T = self.get_unchecked_mut(i);
|
||
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
|
||
let va = ptr::read_unaligned(pa as *mut usize);
|
||
let vb = ptr::read_unaligned(pb as *mut usize);
|
||
ptr::write_unaligned(pa as *mut usize, vb.swap_bytes());
|
||
ptr::write_unaligned(pb as *mut usize, va.swap_bytes());
|
||
}
|
||
i += chunk;
|
||
}
|
||
}
|
||
|
||
if fast_unaligned && mem::size_of::<T>() == 2 {
|
||
// Use rotate-by-16 to reverse u16s in a u32
|
||
let chunk = mem::size_of::<u32>() / 2;
|
||
while i + chunk - 1 < ln / 2 {
|
||
unsafe {
|
||
let pa: *mut T = self.get_unchecked_mut(i);
|
||
let pb: *mut T = self.get_unchecked_mut(ln - i - chunk);
|
||
let va = ptr::read_unaligned(pa as *mut u32);
|
||
let vb = ptr::read_unaligned(pb as *mut u32);
|
||
ptr::write_unaligned(pa as *mut u32, vb.rotate_left(16));
|
||
ptr::write_unaligned(pb as *mut u32, va.rotate_left(16));
|
||
}
|
||
i += chunk;
|
||
}
|
||
}
|
||
|
||
while i < ln / 2 {
|
||
// Unsafe swap to avoid the bounds check in safe swap.
|
||
unsafe {
|
||
let pa: *mut T = self.get_unchecked_mut(i);
|
||
let pb: *mut T = self.get_unchecked_mut(ln - i - 1);
|
||
ptr::swap(pa, pb);
|
||
}
|
||
i += 1;
|
||
}
|
||
}
|
||
|
||
/// Returns an iterator over the slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &[1, 2, 4];
|
||
/// let mut iterator = x.iter();
|
||
///
|
||
/// assert_eq!(iterator.next(), Some(&1));
|
||
/// assert_eq!(iterator.next(), Some(&2));
|
||
/// assert_eq!(iterator.next(), Some(&4));
|
||
/// assert_eq!(iterator.next(), None);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn iter(&self) -> Iter<'_, T> {
|
||
unsafe {
|
||
let ptr = self.as_ptr();
|
||
assume(!ptr.is_null());
|
||
|
||
let end = if mem::size_of::<T>() == 0 {
|
||
(ptr as *const u8).wrapping_add(self.len()) as *const T
|
||
} else {
|
||
ptr.add(self.len())
|
||
};
|
||
|
||
Iter { ptr: NonNull::new_unchecked(ptr as *mut T), end, _marker: marker::PhantomData }
|
||
}
|
||
}
|
||
|
||
/// Returns an iterator that allows modifying each value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let x = &mut [1, 2, 4];
|
||
/// for elem in x.iter_mut() {
|
||
/// *elem += 2;
|
||
/// }
|
||
/// assert_eq!(x, &[3, 4, 6]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
|
||
unsafe {
|
||
let ptr = self.as_mut_ptr();
|
||
assume(!ptr.is_null());
|
||
|
||
let end = if mem::size_of::<T>() == 0 {
|
||
(ptr as *mut u8).wrapping_add(self.len()) as *mut T
|
||
} else {
|
||
ptr.add(self.len())
|
||
};
|
||
|
||
IterMut { ptr: NonNull::new_unchecked(ptr), end, _marker: marker::PhantomData }
|
||
}
|
||
}
|
||
|
||
/// Returns an iterator over all contiguous windows of length
|
||
/// `size`. The windows overlap. If the slice is shorter than
|
||
/// `size`, the iterator returns no values.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = ['r', 'u', 's', 't'];
|
||
/// let mut iter = slice.windows(2);
|
||
/// assert_eq!(iter.next().unwrap(), &['r', 'u']);
|
||
/// assert_eq!(iter.next().unwrap(), &['u', 's']);
|
||
/// assert_eq!(iter.next().unwrap(), &['s', 't']);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// If the slice is shorter than `size`:
|
||
///
|
||
/// ```
|
||
/// let slice = ['f', 'o', 'o'];
|
||
/// let mut iter = slice.windows(4);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn windows(&self, size: usize) -> Windows<'_, T> {
|
||
assert_ne!(size, 0);
|
||
Windows { v: self, size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
|
||
/// slice, then the last chunk will not have length `chunk_size`.
|
||
///
|
||
/// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
|
||
/// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
|
||
/// slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = ['l', 'o', 'r', 'e', 'm'];
|
||
/// let mut iter = slice.chunks(2);
|
||
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
|
||
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
|
||
/// assert_eq!(iter.next().unwrap(), &['m']);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// [`chunks_exact`]: #method.chunks_exact
|
||
/// [`rchunks`]: #method.rchunks
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
|
||
assert_ne!(chunk_size, 0);
|
||
Chunks { v: self, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
|
||
/// length of the slice, then the last chunk will not have length `chunk_size`.
|
||
///
|
||
/// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
|
||
/// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
|
||
/// the end of the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = &mut [0, 0, 0, 0, 0];
|
||
/// let mut count = 1;
|
||
///
|
||
/// for chunk in v.chunks_mut(2) {
|
||
/// for elem in chunk.iter_mut() {
|
||
/// *elem += count;
|
||
/// }
|
||
/// count += 1;
|
||
/// }
|
||
/// assert_eq!(v, &[1, 1, 2, 2, 3]);
|
||
/// ```
|
||
///
|
||
/// [`chunks_exact_mut`]: #method.chunks_exact_mut
|
||
/// [`rchunks_mut`]: #method.rchunks_mut
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
|
||
assert_ne!(chunk_size, 0);
|
||
ChunksMut { v: self, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
|
||
/// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
|
||
/// from the `remainder` function of the iterator.
|
||
///
|
||
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
|
||
/// resulting code better than in the case of [`chunks`].
|
||
///
|
||
/// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
|
||
/// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = ['l', 'o', 'r', 'e', 'm'];
|
||
/// let mut iter = slice.chunks_exact(2);
|
||
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
|
||
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
|
||
/// assert!(iter.next().is_none());
|
||
/// assert_eq!(iter.remainder(), &['m']);
|
||
/// ```
|
||
///
|
||
/// [`chunks`]: #method.chunks
|
||
/// [`rchunks_exact`]: #method.rchunks_exact
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
|
||
assert_ne!(chunk_size, 0);
|
||
let rem = self.len() % chunk_size;
|
||
let len = self.len() - rem;
|
||
let (fst, snd) = self.split_at(len);
|
||
ChunksExact { v: fst, rem: snd, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
|
||
/// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
|
||
/// retrieved from the `into_remainder` function of the iterator.
|
||
///
|
||
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
|
||
/// resulting code better than in the case of [`chunks_mut`].
|
||
///
|
||
/// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
|
||
/// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
|
||
/// the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = &mut [0, 0, 0, 0, 0];
|
||
/// let mut count = 1;
|
||
///
|
||
/// for chunk in v.chunks_exact_mut(2) {
|
||
/// for elem in chunk.iter_mut() {
|
||
/// *elem += count;
|
||
/// }
|
||
/// count += 1;
|
||
/// }
|
||
/// assert_eq!(v, &[1, 1, 2, 2, 0]);
|
||
/// ```
|
||
///
|
||
/// [`chunks_mut`]: #method.chunks_mut
|
||
/// [`rchunks_exact_mut`]: #method.rchunks_exact_mut
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
|
||
assert_ne!(chunk_size, 0);
|
||
let rem = self.len() % chunk_size;
|
||
let len = self.len() - rem;
|
||
let (fst, snd) = self.split_at_mut(len);
|
||
ChunksExactMut { v: fst, rem: snd, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `N` elements of the slice at a time, starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// The chunks are slices and do not overlap. If `N` does not divide the length of the
|
||
/// slice, then the last up to `N-1` elements will be omitted and can be retrieved
|
||
/// from the `remainder` function of the iterator.
|
||
///
|
||
/// This method is the const generic equivalent of [`chunks_exact`].
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `N` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(array_chunks)]
|
||
/// let slice = ['l', 'o', 'r', 'e', 'm'];
|
||
/// let mut iter = slice.array_chunks();
|
||
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
|
||
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
|
||
/// assert!(iter.next().is_none());
|
||
/// assert_eq!(iter.remainder(), &['m']);
|
||
/// ```
|
||
///
|
||
/// [`chunks_exact`]: #method.chunks_exact
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
#[inline]
|
||
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> {
|
||
assert_ne!(N, 0);
|
||
let rem = self.len() % N;
|
||
let len = self.len() - rem;
|
||
let (fst, snd) = self.split_at(len);
|
||
ArrayChunks { v: fst, rem: snd }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
|
||
/// of the slice.
|
||
///
|
||
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
|
||
/// slice, then the last chunk will not have length `chunk_size`.
|
||
///
|
||
/// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
|
||
/// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
|
||
/// of the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = ['l', 'o', 'r', 'e', 'm'];
|
||
/// let mut iter = slice.rchunks(2);
|
||
/// assert_eq!(iter.next().unwrap(), &['e', 'm']);
|
||
/// assert_eq!(iter.next().unwrap(), &['o', 'r']);
|
||
/// assert_eq!(iter.next().unwrap(), &['l']);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// [`rchunks_exact`]: #method.rchunks_exact
|
||
/// [`chunks`]: #method.chunks
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
|
||
assert!(chunk_size != 0);
|
||
RChunks { v: self, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
|
||
/// of the slice.
|
||
///
|
||
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
|
||
/// length of the slice, then the last chunk will not have length `chunk_size`.
|
||
///
|
||
/// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
|
||
/// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
|
||
/// beginning of the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = &mut [0, 0, 0, 0, 0];
|
||
/// let mut count = 1;
|
||
///
|
||
/// for chunk in v.rchunks_mut(2) {
|
||
/// for elem in chunk.iter_mut() {
|
||
/// *elem += count;
|
||
/// }
|
||
/// count += 1;
|
||
/// }
|
||
/// assert_eq!(v, &[3, 2, 2, 1, 1]);
|
||
/// ```
|
||
///
|
||
/// [`rchunks_exact_mut`]: #method.rchunks_exact_mut
|
||
/// [`chunks_mut`]: #method.chunks_mut
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
|
||
assert!(chunk_size != 0);
|
||
RChunksMut { v: self, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
|
||
/// end of the slice.
|
||
///
|
||
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
|
||
/// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
|
||
/// from the `remainder` function of the iterator.
|
||
///
|
||
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
|
||
/// resulting code better than in the case of [`chunks`].
|
||
///
|
||
/// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
|
||
/// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
|
||
/// slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = ['l', 'o', 'r', 'e', 'm'];
|
||
/// let mut iter = slice.rchunks_exact(2);
|
||
/// assert_eq!(iter.next().unwrap(), &['e', 'm']);
|
||
/// assert_eq!(iter.next().unwrap(), &['o', 'r']);
|
||
/// assert!(iter.next().is_none());
|
||
/// assert_eq!(iter.remainder(), &['l']);
|
||
/// ```
|
||
///
|
||
/// [`chunks`]: #method.chunks
|
||
/// [`rchunks`]: #method.rchunks
|
||
/// [`chunks_exact`]: #method.chunks_exact
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
|
||
assert!(chunk_size != 0);
|
||
let rem = self.len() % chunk_size;
|
||
let (fst, snd) = self.split_at(rem);
|
||
RChunksExact { v: snd, rem: fst, chunk_size }
|
||
}
|
||
|
||
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
|
||
/// of the slice.
|
||
///
|
||
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
|
||
/// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
|
||
/// retrieved from the `into_remainder` function of the iterator.
|
||
///
|
||
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
|
||
/// resulting code better than in the case of [`chunks_mut`].
|
||
///
|
||
/// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
|
||
/// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
|
||
/// of the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `chunk_size` is 0.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = &mut [0, 0, 0, 0, 0];
|
||
/// let mut count = 1;
|
||
///
|
||
/// for chunk in v.rchunks_exact_mut(2) {
|
||
/// for elem in chunk.iter_mut() {
|
||
/// *elem += count;
|
||
/// }
|
||
/// count += 1;
|
||
/// }
|
||
/// assert_eq!(v, &[0, 2, 2, 1, 1]);
|
||
/// ```
|
||
///
|
||
/// [`chunks_mut`]: #method.chunks_mut
|
||
/// [`rchunks_mut`]: #method.rchunks_mut
|
||
/// [`chunks_exact_mut`]: #method.chunks_exact_mut
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
#[inline]
|
||
pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
|
||
assert!(chunk_size != 0);
|
||
let rem = self.len() % chunk_size;
|
||
let (fst, snd) = self.split_at_mut(rem);
|
||
RChunksExactMut { v: snd, rem: fst, chunk_size }
|
||
}
|
||
|
||
/// Divides one slice into two at an index.
|
||
///
|
||
/// The first will contain all indices from `[0, mid)` (excluding
|
||
/// the index `mid` itself) and the second will contain all
|
||
/// indices from `[mid, len)` (excluding the index `len` itself).
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `mid > len`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [1, 2, 3, 4, 5, 6];
|
||
///
|
||
/// {
|
||
/// let (left, right) = v.split_at(0);
|
||
/// assert!(left == []);
|
||
/// assert!(right == [1, 2, 3, 4, 5, 6]);
|
||
/// }
|
||
///
|
||
/// {
|
||
/// let (left, right) = v.split_at(2);
|
||
/// assert!(left == [1, 2]);
|
||
/// assert!(right == [3, 4, 5, 6]);
|
||
/// }
|
||
///
|
||
/// {
|
||
/// let (left, right) = v.split_at(6);
|
||
/// assert!(left == [1, 2, 3, 4, 5, 6]);
|
||
/// assert!(right == []);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
|
||
(&self[..mid], &self[mid..])
|
||
}
|
||
|
||
/// Divides one mutable slice into two at an index.
|
||
///
|
||
/// The first will contain all indices from `[0, mid)` (excluding
|
||
/// the index `mid` itself) and the second will contain all
|
||
/// indices from `[mid, len)` (excluding the index `len` itself).
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if `mid > len`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [1, 0, 3, 0, 5, 6];
|
||
/// // scoped to restrict the lifetime of the borrows
|
||
/// {
|
||
/// let (left, right) = v.split_at_mut(2);
|
||
/// assert!(left == [1, 0]);
|
||
/// assert!(right == [3, 0, 5, 6]);
|
||
/// left[1] = 2;
|
||
/// right[1] = 4;
|
||
/// }
|
||
/// assert!(v == [1, 2, 3, 4, 5, 6]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
|
||
let len = self.len();
|
||
let ptr = self.as_mut_ptr();
|
||
|
||
unsafe {
|
||
assert!(mid <= len);
|
||
|
||
(from_raw_parts_mut(ptr, mid), from_raw_parts_mut(ptr.add(mid), len - mid))
|
||
}
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred`. The matched element is not contained in the subslices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = [10, 40, 33, 20];
|
||
/// let mut iter = slice.split(|num| num % 3 == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[10, 40]);
|
||
/// assert_eq!(iter.next().unwrap(), &[20]);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// If the first element is matched, an empty slice will be the first item
|
||
/// returned by the iterator. Similarly, if the last element in the slice
|
||
/// is matched, an empty slice will be the last item returned by the
|
||
/// iterator:
|
||
///
|
||
/// ```
|
||
/// let slice = [10, 40, 33];
|
||
/// let mut iter = slice.split(|num| num % 3 == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[10, 40]);
|
||
/// assert_eq!(iter.next().unwrap(), &[]);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// If two matched elements are directly adjacent, an empty slice will be
|
||
/// present between them:
|
||
///
|
||
/// ```
|
||
/// let slice = [10, 6, 33, 20];
|
||
/// let mut iter = slice.split(|num| num % 3 == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[10]);
|
||
/// assert_eq!(iter.next().unwrap(), &[]);
|
||
/// assert_eq!(iter.next().unwrap(), &[20]);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
Split { v: self, pred, finished: false }
|
||
}
|
||
|
||
/// Returns an iterator over mutable subslices separated by elements that
|
||
/// match `pred`. The matched element is not contained in the subslices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in v.split_mut(|num| *num % 3 == 0) {
|
||
/// group[0] = 1;
|
||
/// }
|
||
/// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
SplitMut { v: self, pred, finished: false }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred`. The matched element is contained in the end of the previous
|
||
/// subslice as a terminator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(split_inclusive)]
|
||
/// let slice = [10, 40, 33, 20];
|
||
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
|
||
/// assert_eq!(iter.next().unwrap(), &[20]);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
///
|
||
/// If the last element of the slice is matched,
|
||
/// that element will be considered the terminator of the preceding slice.
|
||
/// That slice will be the last item returned by the iterator.
|
||
///
|
||
/// ```
|
||
/// #![feature(split_inclusive)]
|
||
/// let slice = [3, 10, 40, 33];
|
||
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[3]);
|
||
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
|
||
/// assert!(iter.next().is_none());
|
||
/// ```
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
#[inline]
|
||
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
SplitInclusive { v: self, pred, finished: false }
|
||
}
|
||
|
||
/// Returns an iterator over mutable subslices separated by elements that
|
||
/// match `pred`. The matched element is contained in the previous
|
||
/// subslice as a terminator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(split_inclusive)]
|
||
/// let mut v = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
|
||
/// let terminator_idx = group.len()-1;
|
||
/// group[terminator_idx] = 1;
|
||
/// }
|
||
/// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
|
||
/// ```
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
#[inline]
|
||
pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
SplitInclusiveMut { v: self, pred, finished: false }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred`, starting at the end of the slice and working backwards.
|
||
/// The matched element is not contained in the subslices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let slice = [11, 22, 33, 0, 44, 55];
|
||
/// let mut iter = slice.rsplit(|num| *num == 0);
|
||
///
|
||
/// assert_eq!(iter.next().unwrap(), &[44, 55]);
|
||
/// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
|
||
/// assert_eq!(iter.next(), None);
|
||
/// ```
|
||
///
|
||
/// As with `split()`, if the first or last element is matched, an empty
|
||
/// slice will be the first (or last) item returned by the iterator.
|
||
///
|
||
/// ```
|
||
/// let v = &[0, 1, 1, 2, 3, 5, 8];
|
||
/// let mut it = v.rsplit(|n| *n % 2 == 0);
|
||
/// assert_eq!(it.next().unwrap(), &[]);
|
||
/// assert_eq!(it.next().unwrap(), &[3, 5]);
|
||
/// assert_eq!(it.next().unwrap(), &[1, 1]);
|
||
/// assert_eq!(it.next().unwrap(), &[]);
|
||
/// assert_eq!(it.next(), None);
|
||
/// ```
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
#[inline]
|
||
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
RSplit { inner: self.split(pred) }
|
||
}
|
||
|
||
/// Returns an iterator over mutable subslices separated by elements that
|
||
/// match `pred`, starting at the end of the slice and working
|
||
/// backwards. The matched element is not contained in the subslices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [100, 400, 300, 200, 600, 500];
|
||
///
|
||
/// let mut count = 0;
|
||
/// for group in v.rsplit_mut(|num| *num % 3 == 0) {
|
||
/// count += 1;
|
||
/// group[0] = count;
|
||
/// }
|
||
/// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
|
||
/// ```
|
||
///
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
#[inline]
|
||
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
RSplitMut { inner: self.split_mut(pred) }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred`, limited to returning at most `n` items. The matched element is
|
||
/// not contained in the subslices.
|
||
///
|
||
/// The last element returned, if any, will contain the remainder of the
|
||
/// slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
|
||
/// `[20, 60, 50]`):
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in v.splitn(2, |num| *num % 3 == 0) {
|
||
/// println!("{:?}", group);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
SplitN { inner: GenericSplitN { iter: self.split(pred), count: n } }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred`, limited to returning at most `n` items. The matched element is
|
||
/// not contained in the subslices.
|
||
///
|
||
/// The last element returned, if any, will contain the remainder of the
|
||
/// slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
|
||
/// group[0] = 1;
|
||
/// }
|
||
/// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
SplitNMut { inner: GenericSplitN { iter: self.split_mut(pred), count: n } }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred` limited to returning at most `n` items. This starts at the end of
|
||
/// the slice and works backwards. The matched element is not contained in
|
||
/// the subslices.
|
||
///
|
||
/// The last element returned, if any, will contain the remainder of the
|
||
/// slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Print the slice split once, starting from the end, by numbers divisible
|
||
/// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in v.rsplitn(2, |num| *num % 3 == 0) {
|
||
/// println!("{:?}", group);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
RSplitN { inner: GenericSplitN { iter: self.rsplit(pred), count: n } }
|
||
}
|
||
|
||
/// Returns an iterator over subslices separated by elements that match
|
||
/// `pred` limited to returning at most `n` items. This starts at the end of
|
||
/// the slice and works backwards. The matched element is not contained in
|
||
/// the subslices.
|
||
///
|
||
/// The last element returned, if any, will contain the remainder of the
|
||
/// slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut s = [10, 40, 30, 20, 60, 50];
|
||
///
|
||
/// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
|
||
/// group[0] = 1;
|
||
/// }
|
||
/// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
|
||
where
|
||
F: FnMut(&T) -> bool,
|
||
{
|
||
RSplitNMut { inner: GenericSplitN { iter: self.rsplit_mut(pred), count: n } }
|
||
}
|
||
|
||
/// Returns `true` if the slice contains an element with the given value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert!(v.contains(&30));
|
||
/// assert!(!v.contains(&50));
|
||
/// ```
|
||
///
|
||
/// If you do not have an `&T`, but just an `&U` such that `T: Borrow<U>`
|
||
/// (e.g. `String: Borrow<str>`), you can use `iter().any`:
|
||
///
|
||
/// ```
|
||
/// let v = [String::from("hello"), String::from("world")]; // slice of `String`
|
||
/// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
|
||
/// assert!(!v.iter().any(|e| e == "hi"));
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn contains(&self, x: &T) -> bool
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
x.slice_contains(self)
|
||
}
|
||
|
||
/// Returns `true` if `needle` is a prefix of the slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert!(v.starts_with(&[10]));
|
||
/// assert!(v.starts_with(&[10, 40]));
|
||
/// assert!(!v.starts_with(&[50]));
|
||
/// assert!(!v.starts_with(&[10, 50]));
|
||
/// ```
|
||
///
|
||
/// Always returns `true` if `needle` is an empty slice:
|
||
///
|
||
/// ```
|
||
/// let v = &[10, 40, 30];
|
||
/// assert!(v.starts_with(&[]));
|
||
/// let v: &[u8] = &[];
|
||
/// assert!(v.starts_with(&[]));
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn starts_with(&self, needle: &[T]) -> bool
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
let n = needle.len();
|
||
self.len() >= n && needle == &self[..n]
|
||
}
|
||
|
||
/// Returns `true` if `needle` is a suffix of the slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let v = [10, 40, 30];
|
||
/// assert!(v.ends_with(&[30]));
|
||
/// assert!(v.ends_with(&[40, 30]));
|
||
/// assert!(!v.ends_with(&[50]));
|
||
/// assert!(!v.ends_with(&[50, 30]));
|
||
/// ```
|
||
///
|
||
/// Always returns `true` if `needle` is an empty slice:
|
||
///
|
||
/// ```
|
||
/// let v = &[10, 40, 30];
|
||
/// assert!(v.ends_with(&[]));
|
||
/// let v: &[u8] = &[];
|
||
/// assert!(v.ends_with(&[]));
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn ends_with(&self, needle: &[T]) -> bool
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
let (m, n) = (self.len(), needle.len());
|
||
m >= n && needle == &self[m - n..]
|
||
}
|
||
|
||
/// Returns a subslice with the prefix removed.
|
||
///
|
||
/// This method returns [`None`] if slice does not start with `prefix`.
|
||
/// Also it returns the original slice if `prefix` is an empty slice.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_strip)]
|
||
/// let v = &[10, 40, 30];
|
||
/// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
|
||
/// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
|
||
/// assert_eq!(v.strip_prefix(&[50]), None);
|
||
/// assert_eq!(v.strip_prefix(&[10, 50]), None);
|
||
/// ```
|
||
#[must_use = "returns the subslice without modifying the original"]
|
||
#[unstable(feature = "slice_strip", issue = "73413")]
|
||
pub fn strip_prefix(&self, prefix: &[T]) -> Option<&[T]>
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
let n = prefix.len();
|
||
if n <= self.len() {
|
||
let (head, tail) = self.split_at(n);
|
||
if head == prefix {
|
||
return Some(tail);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Returns a subslice with the suffix removed.
|
||
///
|
||
/// This method returns [`None`] if slice does not end with `suffix`.
|
||
/// Also it returns the original slice if `suffix` is an empty slice
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_strip)]
|
||
/// let v = &[10, 40, 30];
|
||
/// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
|
||
/// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
|
||
/// assert_eq!(v.strip_suffix(&[50]), None);
|
||
/// assert_eq!(v.strip_suffix(&[50, 30]), None);
|
||
/// ```
|
||
#[must_use = "returns the subslice without modifying the original"]
|
||
#[unstable(feature = "slice_strip", issue = "73413")]
|
||
pub fn strip_suffix(&self, suffix: &[T]) -> Option<&[T]>
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
let (len, n) = (self.len(), suffix.len());
|
||
if n <= len {
|
||
let (head, tail) = self.split_at(len - n);
|
||
if tail == suffix {
|
||
return Some(head);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// Binary searches this sorted slice for a given element.
|
||
///
|
||
/// If the value is found then [`Result::Ok`] is returned, containing the
|
||
/// index of the matching element. If there are multiple matches, then any
|
||
/// one of the matches could be returned. If the value is not found then
|
||
/// [`Result::Err`] is returned, containing the index where a matching
|
||
/// element could be inserted while maintaining sorted order.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Looks up a series of four elements. The first is found, with a
|
||
/// uniquely determined position; the second and third are not
|
||
/// found; the fourth could match any position in `[1, 4]`.
|
||
///
|
||
/// ```
|
||
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
|
||
///
|
||
/// assert_eq!(s.binary_search(&13), Ok(9));
|
||
/// assert_eq!(s.binary_search(&4), Err(7));
|
||
/// assert_eq!(s.binary_search(&100), Err(13));
|
||
/// let r = s.binary_search(&1);
|
||
/// assert!(match r { Ok(1..=4) => true, _ => false, });
|
||
/// ```
|
||
///
|
||
/// If you want to insert an item to a sorted vector, while maintaining
|
||
/// sort order:
|
||
///
|
||
/// ```
|
||
/// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
|
||
/// let num = 42;
|
||
/// let idx = s.binary_search(&num).unwrap_or_else(|x| x);
|
||
/// s.insert(idx, num);
|
||
/// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
|
||
where
|
||
T: Ord,
|
||
{
|
||
self.binary_search_by(|p| p.cmp(x))
|
||
}
|
||
|
||
/// Binary searches this sorted slice with a comparator function.
|
||
///
|
||
/// The comparator function should implement an order consistent
|
||
/// with the sort order of the underlying slice, returning an
|
||
/// order code that indicates whether its argument is `Less`,
|
||
/// `Equal` or `Greater` the desired target.
|
||
///
|
||
/// If the value is found then [`Result::Ok`] is returned, containing the
|
||
/// index of the matching element. If there are multiple matches, then any
|
||
/// one of the matches could be returned. If the value is not found then
|
||
/// [`Result::Err`] is returned, containing the index where a matching
|
||
/// element could be inserted while maintaining sorted order.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Looks up a series of four elements. The first is found, with a
|
||
/// uniquely determined position; the second and third are not
|
||
/// found; the fourth could match any position in `[1, 4]`.
|
||
///
|
||
/// ```
|
||
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
|
||
///
|
||
/// let seek = 13;
|
||
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
|
||
/// let seek = 4;
|
||
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
|
||
/// let seek = 100;
|
||
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
|
||
/// let seek = 1;
|
||
/// let r = s.binary_search_by(|probe| probe.cmp(&seek));
|
||
/// assert!(match r { Ok(1..=4) => true, _ => false, });
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
|
||
where
|
||
F: FnMut(&'a T) -> Ordering,
|
||
{
|
||
let s = self;
|
||
let mut size = s.len();
|
||
if size == 0 {
|
||
return Err(0);
|
||
}
|
||
let mut base = 0usize;
|
||
while size > 1 {
|
||
let half = size / 2;
|
||
let mid = base + half;
|
||
// mid is always in [0, size), that means mid is >= 0 and < size.
|
||
// mid >= 0: by definition
|
||
// mid < size: mid = size / 2 + size / 4 + size / 8 ...
|
||
let cmp = f(unsafe { s.get_unchecked(mid) });
|
||
base = if cmp == Greater { base } else { mid };
|
||
size -= half;
|
||
}
|
||
// base is always in [0, size) because base <= mid.
|
||
let cmp = f(unsafe { s.get_unchecked(base) });
|
||
if cmp == Equal { Ok(base) } else { Err(base + (cmp == Less) as usize) }
|
||
}
|
||
|
||
/// Binary searches this sorted slice with a key extraction function.
|
||
///
|
||
/// Assumes that the slice is sorted by the key, for instance with
|
||
/// [`sort_by_key`] using the same key extraction function.
|
||
///
|
||
/// If the value is found then [`Result::Ok`] is returned, containing the
|
||
/// index of the matching element. If there are multiple matches, then any
|
||
/// one of the matches could be returned. If the value is not found then
|
||
/// [`Result::Err`] is returned, containing the index where a matching
|
||
/// element could be inserted while maintaining sorted order.
|
||
///
|
||
/// [`sort_by_key`]: #method.sort_by_key
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Looks up a series of four elements in a slice of pairs sorted by
|
||
/// their second elements. The first is found, with a uniquely
|
||
/// determined position; the second and third are not found; the
|
||
/// fourth could match any position in `[1, 4]`.
|
||
///
|
||
/// ```
|
||
/// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
|
||
/// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
|
||
/// (1, 21), (2, 34), (4, 55)];
|
||
///
|
||
/// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9));
|
||
/// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7));
|
||
/// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
|
||
/// let r = s.binary_search_by_key(&1, |&(a,b)| b);
|
||
/// assert!(match r { Ok(1..=4) => true, _ => false, });
|
||
/// ```
|
||
#[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
|
||
#[inline]
|
||
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
|
||
where
|
||
F: FnMut(&'a T) -> B,
|
||
B: Ord,
|
||
{
|
||
self.binary_search_by(|k| f(k).cmp(b))
|
||
}
|
||
|
||
/// Sorts the slice, but may not preserve the order of equal elements.
|
||
///
|
||
/// This sort is unstable (i.e., may reorder equal elements), in-place
|
||
/// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
|
||
/// which combines the fast average case of randomized quicksort with the fast worst case of
|
||
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
|
||
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
|
||
/// deterministic behavior.
|
||
///
|
||
/// It is typically faster than stable sorting, except in a few special cases, e.g., when the
|
||
/// slice consists of several concatenated sorted sequences.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [-5, 4, 1, -3, 2];
|
||
///
|
||
/// v.sort_unstable();
|
||
/// assert!(v == [-5, -3, 1, 2, 4]);
|
||
/// ```
|
||
///
|
||
/// [pdqsort]: https://github.com/orlp/pdqsort
|
||
#[stable(feature = "sort_unstable", since = "1.20.0")]
|
||
#[inline]
|
||
pub fn sort_unstable(&mut self)
|
||
where
|
||
T: Ord,
|
||
{
|
||
sort::quicksort(self, |a, b| a.lt(b));
|
||
}
|
||
|
||
/// Sorts the slice with a comparator function, but may not preserve the order of equal
|
||
/// elements.
|
||
///
|
||
/// This sort is unstable (i.e., may reorder equal elements), in-place
|
||
/// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
|
||
///
|
||
/// The comparator function must define a total ordering for the elements in the slice. If
|
||
/// the ordering is not total, the order of the elements is unspecified. An order is a
|
||
/// total order if it is (for all a, b and c):
|
||
///
|
||
/// * total and antisymmetric: exactly one of a < b, a == b or a > b is true; and
|
||
/// * transitive, a < b and b < c implies a < c. The same must hold for both == and >.
|
||
///
|
||
/// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
|
||
/// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
|
||
///
|
||
/// ```
|
||
/// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
|
||
/// floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
|
||
/// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
|
||
/// ```
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
|
||
/// which combines the fast average case of randomized quicksort with the fast worst case of
|
||
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
|
||
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
|
||
/// deterministic behavior.
|
||
///
|
||
/// It is typically faster than stable sorting, except in a few special cases, e.g., when the
|
||
/// slice consists of several concatenated sorted sequences.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [5, 4, 1, 3, 2];
|
||
/// v.sort_unstable_by(|a, b| a.cmp(b));
|
||
/// assert!(v == [1, 2, 3, 4, 5]);
|
||
///
|
||
/// // reverse sorting
|
||
/// v.sort_unstable_by(|a, b| b.cmp(a));
|
||
/// assert!(v == [5, 4, 3, 2, 1]);
|
||
/// ```
|
||
///
|
||
/// [pdqsort]: https://github.com/orlp/pdqsort
|
||
#[stable(feature = "sort_unstable", since = "1.20.0")]
|
||
#[inline]
|
||
pub fn sort_unstable_by<F>(&mut self, mut compare: F)
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
sort::quicksort(self, |a, b| compare(a, b) == Ordering::Less);
|
||
}
|
||
|
||
/// Sorts the slice with a key extraction function, but may not preserve the order of equal
|
||
/// elements.
|
||
///
|
||
/// This sort is unstable (i.e., may reorder equal elements), in-place
|
||
/// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, where the key function is
|
||
/// *O*(*m*).
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
|
||
/// which combines the fast average case of randomized quicksort with the fast worst case of
|
||
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
|
||
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
|
||
/// deterministic behavior.
|
||
///
|
||
/// Due to its key calling strategy, [`sort_unstable_by_key`](#method.sort_unstable_by_key)
|
||
/// is likely to be slower than [`sort_by_cached_key`](#method.sort_by_cached_key) in
|
||
/// cases where the key function is expensive.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut v = [-5i32, 4, 1, -3, 2];
|
||
///
|
||
/// v.sort_unstable_by_key(|k| k.abs());
|
||
/// assert!(v == [1, 2, -3, 4, -5]);
|
||
/// ```
|
||
///
|
||
/// [pdqsort]: https://github.com/orlp/pdqsort
|
||
#[stable(feature = "sort_unstable", since = "1.20.0")]
|
||
#[inline]
|
||
pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
|
||
where
|
||
F: FnMut(&T) -> K,
|
||
K: Ord,
|
||
{
|
||
sort::quicksort(self, |a, b| f(a).lt(&f(b)));
|
||
}
|
||
|
||
/// Reorder the slice such that the element at `index` is at its final sorted position.
|
||
///
|
||
/// This reordering has the additional property that any value at position `i < index` will be
|
||
/// less than or equal to any value at a position `j > index`. Additionally, this reordering is
|
||
/// unstable (i.e. any number of equal elements may end up at position `index`), in-place
|
||
/// (i.e. does not allocate), and *O*(*n*) worst-case. This function is also/ known as "kth
|
||
/// element" in other libraries. It returns a triplet of the following values: all elements less
|
||
/// than the one at the given index, the value at the given index, and all elements greater than
|
||
/// the one at the given index.
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
|
||
/// used for [`sort_unstable`].
|
||
///
|
||
/// [`sort_unstable`]: #method.sort_unstable
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics when `index >= len()`, meaning it always panics on empty slices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_at_index)]
|
||
///
|
||
/// let mut v = [-5i32, 4, 1, -3, 2];
|
||
///
|
||
/// // Find the median
|
||
/// v.partition_at_index(2);
|
||
///
|
||
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
|
||
/// // about the specified index.
|
||
/// assert!(v == [-3, -5, 1, 2, 4] ||
|
||
/// v == [-5, -3, 1, 2, 4] ||
|
||
/// v == [-3, -5, 1, 4, 2] ||
|
||
/// v == [-5, -3, 1, 4, 2]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_at_index", issue = "55300")]
|
||
#[inline]
|
||
pub fn partition_at_index(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
|
||
where
|
||
T: Ord,
|
||
{
|
||
let mut f = |a: &T, b: &T| a.lt(b);
|
||
sort::partition_at_index(self, index, &mut f)
|
||
}
|
||
|
||
/// Reorder the slice with a comparator function such that the element at `index` is at its
|
||
/// final sorted position.
|
||
///
|
||
/// This reordering has the additional property that any value at position `i < index` will be
|
||
/// less than or equal to any value at a position `j > index` using the comparator function.
|
||
/// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
|
||
/// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
|
||
/// is also known as "kth element" in other libraries. It returns a triplet of the following
|
||
/// values: all elements less than the one at the given index, the value at the given index,
|
||
/// and all elements greater than the one at the given index, using the provided comparator
|
||
/// function.
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
|
||
/// used for [`sort_unstable`].
|
||
///
|
||
/// [`sort_unstable`]: #method.sort_unstable
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics when `index >= len()`, meaning it always panics on empty slices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_at_index)]
|
||
///
|
||
/// let mut v = [-5i32, 4, 1, -3, 2];
|
||
///
|
||
/// // Find the median as if the slice were sorted in descending order.
|
||
/// v.partition_at_index_by(2, |a, b| b.cmp(a));
|
||
///
|
||
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
|
||
/// // about the specified index.
|
||
/// assert!(v == [2, 4, 1, -5, -3] ||
|
||
/// v == [2, 4, 1, -3, -5] ||
|
||
/// v == [4, 2, 1, -5, -3] ||
|
||
/// v == [4, 2, 1, -3, -5]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_at_index", issue = "55300")]
|
||
#[inline]
|
||
pub fn partition_at_index_by<F>(
|
||
&mut self,
|
||
index: usize,
|
||
mut compare: F,
|
||
) -> (&mut [T], &mut T, &mut [T])
|
||
where
|
||
F: FnMut(&T, &T) -> Ordering,
|
||
{
|
||
let mut f = |a: &T, b: &T| compare(a, b) == Less;
|
||
sort::partition_at_index(self, index, &mut f)
|
||
}
|
||
|
||
/// Reorder the slice with a key extraction function such that the element at `index` is at its
|
||
/// final sorted position.
|
||
///
|
||
/// This reordering has the additional property that any value at position `i < index` will be
|
||
/// less than or equal to any value at a position `j > index` using the key extraction function.
|
||
/// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
|
||
/// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
|
||
/// is also known as "kth element" in other libraries. It returns a triplet of the following
|
||
/// values: all elements less than the one at the given index, the value at the given index, and
|
||
/// all elements greater than the one at the given index, using the provided key extraction
|
||
/// function.
|
||
///
|
||
/// # Current implementation
|
||
///
|
||
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
|
||
/// used for [`sort_unstable`].
|
||
///
|
||
/// [`sort_unstable`]: #method.sort_unstable
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics when `index >= len()`, meaning it always panics on empty slices.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_at_index)]
|
||
///
|
||
/// let mut v = [-5i32, 4, 1, -3, 2];
|
||
///
|
||
/// // Return the median as if the array were sorted according to absolute value.
|
||
/// v.partition_at_index_by_key(2, |a| a.abs());
|
||
///
|
||
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
|
||
/// // about the specified index.
|
||
/// assert!(v == [1, 2, -3, 4, -5] ||
|
||
/// v == [1, 2, -3, -5, 4] ||
|
||
/// v == [2, 1, -3, 4, -5] ||
|
||
/// v == [2, 1, -3, -5, 4]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_at_index", issue = "55300")]
|
||
#[inline]
|
||
pub fn partition_at_index_by_key<K, F>(
|
||
&mut self,
|
||
index: usize,
|
||
mut f: F,
|
||
) -> (&mut [T], &mut T, &mut [T])
|
||
where
|
||
F: FnMut(&T) -> K,
|
||
K: Ord,
|
||
{
|
||
let mut g = |a: &T, b: &T| f(a).lt(&f(b));
|
||
sort::partition_at_index(self, index, &mut g)
|
||
}
|
||
|
||
/// Moves all consecutive repeated elements to the end of the slice according to the
|
||
/// [`PartialEq`] trait implementation.
|
||
///
|
||
/// Returns two slices. The first contains no consecutive repeated elements.
|
||
/// The second contains all the duplicates in no specified order.
|
||
///
|
||
/// If the slice is sorted, the first returned slice contains no duplicates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_dedup)]
|
||
///
|
||
/// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
|
||
///
|
||
/// let (dedup, duplicates) = slice.partition_dedup();
|
||
///
|
||
/// assert_eq!(dedup, [1, 2, 3, 2, 1]);
|
||
/// assert_eq!(duplicates, [2, 3, 1]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
|
||
#[inline]
|
||
pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
self.partition_dedup_by(|a, b| a == b)
|
||
}
|
||
|
||
/// Moves all but the first of consecutive elements to the end of the slice satisfying
|
||
/// a given equality relation.
|
||
///
|
||
/// Returns two slices. The first contains no consecutive repeated elements.
|
||
/// The second contains all the duplicates in no specified order.
|
||
///
|
||
/// The `same_bucket` function is passed references to two elements from the slice and
|
||
/// must determine if the elements compare equal. The elements are passed in opposite order
|
||
/// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
|
||
/// at the end of the slice.
|
||
///
|
||
/// If the slice is sorted, the first returned slice contains no duplicates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_dedup)]
|
||
///
|
||
/// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
|
||
///
|
||
/// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
|
||
///
|
||
/// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
|
||
/// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
|
||
#[inline]
|
||
pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
|
||
where
|
||
F: FnMut(&mut T, &mut T) -> bool,
|
||
{
|
||
// Although we have a mutable reference to `self`, we cannot make
|
||
// *arbitrary* changes. The `same_bucket` calls could panic, so we
|
||
// must ensure that the slice is in a valid state at all times.
|
||
//
|
||
// The way that we handle this is by using swaps; we iterate
|
||
// over all the elements, swapping as we go so that at the end
|
||
// the elements we wish to keep are in the front, and those we
|
||
// wish to reject are at the back. We can then split the slice.
|
||
// This operation is still `O(n)`.
|
||
//
|
||
// Example: We start in this state, where `r` represents "next
|
||
// read" and `w` represents "next_write`.
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], this is not a duplicate, so
|
||
// we swap self[r] and self[w] (no effect as r==w) and then increment both
|
||
// r and w, leaving us with:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], this value is a duplicate,
|
||
// so we increment `r` but leave everything else unchanged:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], this is not a duplicate,
|
||
// so swap self[r] and self[w] and advance r and w:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 2 | 1 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Not a duplicate, repeat:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 2 | 3 | 1 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Duplicate, advance r. End of slice. Split at w.
|
||
|
||
let len = self.len();
|
||
if len <= 1 {
|
||
return (self, &mut []);
|
||
}
|
||
|
||
let ptr = self.as_mut_ptr();
|
||
let mut next_read: usize = 1;
|
||
let mut next_write: usize = 1;
|
||
|
||
unsafe {
|
||
// Avoid bounds checks by using raw pointers.
|
||
while next_read < len {
|
||
let ptr_read = ptr.add(next_read);
|
||
let prev_ptr_write = ptr.add(next_write - 1);
|
||
if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
|
||
if next_read != next_write {
|
||
let ptr_write = prev_ptr_write.offset(1);
|
||
mem::swap(&mut *ptr_read, &mut *ptr_write);
|
||
}
|
||
next_write += 1;
|
||
}
|
||
next_read += 1;
|
||
}
|
||
}
|
||
|
||
self.split_at_mut(next_write)
|
||
}
|
||
|
||
/// Moves all but the first of consecutive elements to the end of the slice that resolve
|
||
/// to the same key.
|
||
///
|
||
/// Returns two slices. The first contains no consecutive repeated elements.
|
||
/// The second contains all the duplicates in no specified order.
|
||
///
|
||
/// If the slice is sorted, the first returned slice contains no duplicates.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_partition_dedup)]
|
||
///
|
||
/// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
|
||
///
|
||
/// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
|
||
///
|
||
/// assert_eq!(dedup, [10, 20, 30, 20, 11]);
|
||
/// assert_eq!(duplicates, [21, 30, 13]);
|
||
/// ```
|
||
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
|
||
#[inline]
|
||
pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
|
||
where
|
||
F: FnMut(&mut T) -> K,
|
||
K: PartialEq,
|
||
{
|
||
self.partition_dedup_by(|a, b| key(a) == key(b))
|
||
}
|
||
|
||
/// Rotates the slice in-place such that the first `mid` elements of the
|
||
/// slice move to the end while the last `self.len() - mid` elements move to
|
||
/// the front. After calling `rotate_left`, the element previously at index
|
||
/// `mid` will become the first element in the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if `mid` is greater than the length of the
|
||
/// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
|
||
/// rotation.
|
||
///
|
||
/// # Complexity
|
||
///
|
||
/// Takes linear (in `self.len()`) time.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
|
||
/// a.rotate_left(2);
|
||
/// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
|
||
/// ```
|
||
///
|
||
/// Rotating a subslice:
|
||
///
|
||
/// ```
|
||
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
|
||
/// a[1..5].rotate_left(1);
|
||
/// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
|
||
/// ```
|
||
#[stable(feature = "slice_rotate", since = "1.26.0")]
|
||
pub fn rotate_left(&mut self, mid: usize) {
|
||
assert!(mid <= self.len());
|
||
let k = self.len() - mid;
|
||
|
||
unsafe {
|
||
let p = self.as_mut_ptr();
|
||
rotate::ptr_rotate(mid, p.add(mid), k);
|
||
}
|
||
}
|
||
|
||
/// Rotates the slice in-place such that the first `self.len() - k`
|
||
/// elements of the slice move to the end while the last `k` elements move
|
||
/// to the front. After calling `rotate_right`, the element previously at
|
||
/// index `self.len() - k` will become the first element in the slice.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if `k` is greater than the length of the
|
||
/// slice. Note that `k == self.len()` does _not_ panic and is a no-op
|
||
/// rotation.
|
||
///
|
||
/// # Complexity
|
||
///
|
||
/// Takes linear (in `self.len()`) time.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
|
||
/// a.rotate_right(2);
|
||
/// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
|
||
/// ```
|
||
///
|
||
/// Rotate a subslice:
|
||
///
|
||
/// ```
|
||
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
|
||
/// a[1..5].rotate_right(1);
|
||
/// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
|
||
/// ```
|
||
#[stable(feature = "slice_rotate", since = "1.26.0")]
|
||
pub fn rotate_right(&mut self, k: usize) {
|
||
assert!(k <= self.len());
|
||
let mid = self.len() - k;
|
||
|
||
unsafe {
|
||
let p = self.as_mut_ptr();
|
||
rotate::ptr_rotate(mid, p.add(mid), k);
|
||
}
|
||
}
|
||
|
||
/// Fills `self` with elements by cloning `value`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(slice_fill)]
|
||
///
|
||
/// let mut buf = vec![0; 10];
|
||
/// buf.fill(1);
|
||
/// assert_eq!(buf, vec![1; 10]);
|
||
/// ```
|
||
#[unstable(feature = "slice_fill", issue = "70758")]
|
||
pub fn fill(&mut self, value: T)
|
||
where
|
||
T: Clone,
|
||
{
|
||
if let Some((last, elems)) = self.split_last_mut() {
|
||
for el in elems {
|
||
el.clone_from(&value);
|
||
}
|
||
|
||
*last = value
|
||
}
|
||
}
|
||
|
||
/// Copies the elements from `src` into `self`.
|
||
///
|
||
/// The length of `src` must be the same as `self`.
|
||
///
|
||
/// If `T` implements `Copy`, it can be more performant to use
|
||
/// [`copy_from_slice`].
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if the two slices have different lengths.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Cloning two elements from a slice into another:
|
||
///
|
||
/// ```
|
||
/// let src = [1, 2, 3, 4];
|
||
/// let mut dst = [0, 0];
|
||
///
|
||
/// // Because the slices have to be the same length,
|
||
/// // we slice the source slice from four elements
|
||
/// // to two. It will panic if we don't do this.
|
||
/// dst.clone_from_slice(&src[2..]);
|
||
///
|
||
/// assert_eq!(src, [1, 2, 3, 4]);
|
||
/// assert_eq!(dst, [3, 4]);
|
||
/// ```
|
||
///
|
||
/// Rust enforces that there can only be one mutable reference with no
|
||
/// immutable references to a particular piece of data in a particular
|
||
/// scope. Because of this, attempting to use `clone_from_slice` on a
|
||
/// single slice will result in a compile failure:
|
||
///
|
||
/// ```compile_fail
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
///
|
||
/// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
|
||
/// ```
|
||
///
|
||
/// To work around this, we can use [`split_at_mut`] to create two distinct
|
||
/// sub-slices from a slice:
|
||
///
|
||
/// ```
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
///
|
||
/// {
|
||
/// let (left, right) = slice.split_at_mut(2);
|
||
/// left.clone_from_slice(&right[1..]);
|
||
/// }
|
||
///
|
||
/// assert_eq!(slice, [4, 5, 3, 4, 5]);
|
||
/// ```
|
||
///
|
||
/// [`copy_from_slice`]: #method.copy_from_slice
|
||
/// [`split_at_mut`]: #method.split_at_mut
|
||
#[stable(feature = "clone_from_slice", since = "1.7.0")]
|
||
pub fn clone_from_slice(&mut self, src: &[T])
|
||
where
|
||
T: Clone,
|
||
{
|
||
assert!(self.len() == src.len(), "destination and source slices have different lengths");
|
||
// NOTE: We need to explicitly slice them to the same length
|
||
// for bounds checking to be elided, and the optimizer will
|
||
// generate memcpy for simple cases (for example T = u8).
|
||
let len = self.len();
|
||
let src = &src[..len];
|
||
for i in 0..len {
|
||
self[i].clone_from(&src[i]);
|
||
}
|
||
}
|
||
|
||
/// Copies all elements from `src` into `self`, using a memcpy.
|
||
///
|
||
/// The length of `src` must be the same as `self`.
|
||
///
|
||
/// If `T` does not implement `Copy`, use [`clone_from_slice`].
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if the two slices have different lengths.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Copying two elements from a slice into another:
|
||
///
|
||
/// ```
|
||
/// let src = [1, 2, 3, 4];
|
||
/// let mut dst = [0, 0];
|
||
///
|
||
/// // Because the slices have to be the same length,
|
||
/// // we slice the source slice from four elements
|
||
/// // to two. It will panic if we don't do this.
|
||
/// dst.copy_from_slice(&src[2..]);
|
||
///
|
||
/// assert_eq!(src, [1, 2, 3, 4]);
|
||
/// assert_eq!(dst, [3, 4]);
|
||
/// ```
|
||
///
|
||
/// Rust enforces that there can only be one mutable reference with no
|
||
/// immutable references to a particular piece of data in a particular
|
||
/// scope. Because of this, attempting to use `copy_from_slice` on a
|
||
/// single slice will result in a compile failure:
|
||
///
|
||
/// ```compile_fail
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
///
|
||
/// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
|
||
/// ```
|
||
///
|
||
/// To work around this, we can use [`split_at_mut`] to create two distinct
|
||
/// sub-slices from a slice:
|
||
///
|
||
/// ```
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
///
|
||
/// {
|
||
/// let (left, right) = slice.split_at_mut(2);
|
||
/// left.copy_from_slice(&right[1..]);
|
||
/// }
|
||
///
|
||
/// assert_eq!(slice, [4, 5, 3, 4, 5]);
|
||
/// ```
|
||
///
|
||
/// [`clone_from_slice`]: #method.clone_from_slice
|
||
/// [`split_at_mut`]: #method.split_at_mut
|
||
#[stable(feature = "copy_from_slice", since = "1.9.0")]
|
||
pub fn copy_from_slice(&mut self, src: &[T])
|
||
where
|
||
T: Copy,
|
||
{
|
||
assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
|
||
unsafe {
|
||
ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
|
||
}
|
||
}
|
||
|
||
/// Copies elements from one part of the slice to another part of itself,
|
||
/// using a memmove.
|
||
///
|
||
/// `src` is the range within `self` to copy from. `dest` is the starting
|
||
/// index of the range within `self` to copy to, which will have the same
|
||
/// length as `src`. The two ranges may overlap. The ends of the two ranges
|
||
/// must be less than or equal to `self.len()`.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if either range exceeds the end of the slice,
|
||
/// or if the end of `src` is before the start.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Copying four bytes within a slice:
|
||
///
|
||
/// ```
|
||
/// let mut bytes = *b"Hello, World!";
|
||
///
|
||
/// bytes.copy_within(1..5, 8);
|
||
///
|
||
/// assert_eq!(&bytes, b"Hello, Wello!");
|
||
/// ```
|
||
#[stable(feature = "copy_within", since = "1.37.0")]
|
||
#[track_caller]
|
||
pub fn copy_within<R: ops::RangeBounds<usize>>(&mut self, src: R, dest: usize)
|
||
where
|
||
T: Copy,
|
||
{
|
||
let src_start = match src.start_bound() {
|
||
ops::Bound::Included(&n) => n,
|
||
ops::Bound::Excluded(&n) => {
|
||
n.checked_add(1).unwrap_or_else(|| slice_index_overflow_fail())
|
||
}
|
||
ops::Bound::Unbounded => 0,
|
||
};
|
||
let src_end = match src.end_bound() {
|
||
ops::Bound::Included(&n) => {
|
||
n.checked_add(1).unwrap_or_else(|| slice_index_overflow_fail())
|
||
}
|
||
ops::Bound::Excluded(&n) => n,
|
||
ops::Bound::Unbounded => self.len(),
|
||
};
|
||
assert!(src_start <= src_end, "src end is before src start");
|
||
assert!(src_end <= self.len(), "src is out of bounds");
|
||
let count = src_end - src_start;
|
||
assert!(dest <= self.len() - count, "dest is out of bounds");
|
||
unsafe {
|
||
ptr::copy(self.as_ptr().add(src_start), self.as_mut_ptr().add(dest), count);
|
||
}
|
||
}
|
||
|
||
/// Swaps all elements in `self` with those in `other`.
|
||
///
|
||
/// The length of `other` must be the same as `self`.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// This function will panic if the two slices have different lengths.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// Swapping two elements across slices:
|
||
///
|
||
/// ```
|
||
/// let mut slice1 = [0, 0];
|
||
/// let mut slice2 = [1, 2, 3, 4];
|
||
///
|
||
/// slice1.swap_with_slice(&mut slice2[2..]);
|
||
///
|
||
/// assert_eq!(slice1, [3, 4]);
|
||
/// assert_eq!(slice2, [1, 2, 0, 0]);
|
||
/// ```
|
||
///
|
||
/// Rust enforces that there can only be one mutable reference to a
|
||
/// particular piece of data in a particular scope. Because of this,
|
||
/// attempting to use `swap_with_slice` on a single slice will result in
|
||
/// a compile failure:
|
||
///
|
||
/// ```compile_fail
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
/// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
|
||
/// ```
|
||
///
|
||
/// To work around this, we can use [`split_at_mut`] to create two distinct
|
||
/// mutable sub-slices from a slice:
|
||
///
|
||
/// ```
|
||
/// let mut slice = [1, 2, 3, 4, 5];
|
||
///
|
||
/// {
|
||
/// let (left, right) = slice.split_at_mut(2);
|
||
/// left.swap_with_slice(&mut right[1..]);
|
||
/// }
|
||
///
|
||
/// assert_eq!(slice, [4, 5, 3, 1, 2]);
|
||
/// ```
|
||
///
|
||
/// [`split_at_mut`]: #method.split_at_mut
|
||
#[stable(feature = "swap_with_slice", since = "1.27.0")]
|
||
pub fn swap_with_slice(&mut self, other: &mut [T]) {
|
||
assert!(self.len() == other.len(), "destination and source slices have different lengths");
|
||
unsafe {
|
||
ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
|
||
}
|
||
}
|
||
|
||
/// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
|
||
fn align_to_offsets<U>(&self) -> (usize, usize) {
|
||
// What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
|
||
// lowest number of `T`s. And how many `T`s we need for each such "multiple".
|
||
//
|
||
// Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
|
||
// for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
|
||
// place of every 3 Ts in the `rest` slice. A bit more complicated.
|
||
//
|
||
// Formula to calculate this is:
|
||
//
|
||
// Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
|
||
// Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
|
||
//
|
||
// Expanded and simplified:
|
||
//
|
||
// Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
|
||
// Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
|
||
//
|
||
// Luckily since all this is constant-evaluated... performance here matters not!
|
||
#[inline]
|
||
fn gcd(a: usize, b: usize) -> usize {
|
||
use crate::intrinsics;
|
||
// iterative stein’s algorithm
|
||
// We should still make this `const fn` (and revert to recursive algorithm if we do)
|
||
// because relying on llvm to consteval all this is… well, it makes me uncomfortable.
|
||
let (ctz_a, mut ctz_b) = unsafe {
|
||
if a == 0 {
|
||
return b;
|
||
}
|
||
if b == 0 {
|
||
return a;
|
||
}
|
||
(intrinsics::cttz_nonzero(a), intrinsics::cttz_nonzero(b))
|
||
};
|
||
let k = ctz_a.min(ctz_b);
|
||
let mut a = a >> ctz_a;
|
||
let mut b = b;
|
||
loop {
|
||
// remove all factors of 2 from b
|
||
b >>= ctz_b;
|
||
if a > b {
|
||
mem::swap(&mut a, &mut b);
|
||
}
|
||
b = b - a;
|
||
unsafe {
|
||
if b == 0 {
|
||
break;
|
||
}
|
||
ctz_b = intrinsics::cttz_nonzero(b);
|
||
}
|
||
}
|
||
a << k
|
||
}
|
||
let gcd: usize = gcd(mem::size_of::<T>(), mem::size_of::<U>());
|
||
let ts: usize = mem::size_of::<U>() / gcd;
|
||
let us: usize = mem::size_of::<T>() / gcd;
|
||
|
||
// Armed with this knowledge, we can find how many `U`s we can fit!
|
||
let us_len = self.len() / ts * us;
|
||
// And how many `T`s will be in the trailing slice!
|
||
let ts_len = self.len() % ts;
|
||
(us_len, ts_len)
|
||
}
|
||
|
||
/// Transmute the slice to a slice of another type, ensuring alignment of the types is
|
||
/// maintained.
|
||
///
|
||
/// This method splits the slice into three distinct slices: prefix, correctly aligned middle
|
||
/// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
|
||
/// length possible for a given type and input slice, but only your algorithm's performance
|
||
/// should depend on that, not its correctness. It is permissible for all of the input data to
|
||
/// be returned as the prefix or suffix slice.
|
||
///
|
||
/// This method has no purpose when either input element `T` or output element `U` are
|
||
/// zero-sized and will return the original slice without splitting anything.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// This method is essentially a `transmute` with respect to the elements in the returned
|
||
/// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// unsafe {
|
||
/// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
|
||
/// let (prefix, shorts, suffix) = bytes.align_to::<u16>();
|
||
/// // less_efficient_algorithm_for_bytes(prefix);
|
||
/// // more_efficient_algorithm_for_aligned_shorts(shorts);
|
||
/// // less_efficient_algorithm_for_bytes(suffix);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "slice_align_to", since = "1.30.0")]
|
||
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
|
||
// Note that most of this function will be constant-evaluated,
|
||
if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
|
||
// handle ZSTs specially, which is – don't handle them at all.
|
||
return (self, &[], &[]);
|
||
}
|
||
|
||
// First, find at what point do we split between the first and 2nd slice. Easy with
|
||
// ptr.align_offset.
|
||
let ptr = self.as_ptr();
|
||
let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
|
||
if offset > self.len() {
|
||
(self, &[], &[])
|
||
} else {
|
||
let (left, rest) = self.split_at(offset);
|
||
let (us_len, ts_len) = rest.align_to_offsets::<U>();
|
||
// SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
|
||
// since the caller guarantees that we can transmute `T` to `U` safely.
|
||
unsafe {
|
||
(
|
||
left,
|
||
from_raw_parts(rest.as_ptr() as *const U, us_len),
|
||
from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Transmute the slice to a slice of another type, ensuring alignment of the types is
|
||
/// maintained.
|
||
///
|
||
/// This method splits the slice into three distinct slices: prefix, correctly aligned middle
|
||
/// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
|
||
/// length possible for a given type and input slice, but only your algorithm's performance
|
||
/// should depend on that, not its correctness. It is permissible for all of the input data to
|
||
/// be returned as the prefix or suffix slice.
|
||
///
|
||
/// This method has no purpose when either input element `T` or output element `U` are
|
||
/// zero-sized and will return the original slice without splitting anything.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// This method is essentially a `transmute` with respect to the elements in the returned
|
||
/// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// unsafe {
|
||
/// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
|
||
/// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
|
||
/// // less_efficient_algorithm_for_bytes(prefix);
|
||
/// // more_efficient_algorithm_for_aligned_shorts(shorts);
|
||
/// // less_efficient_algorithm_for_bytes(suffix);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "slice_align_to", since = "1.30.0")]
|
||
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
|
||
// Note that most of this function will be constant-evaluated,
|
||
if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
|
||
// handle ZSTs specially, which is – don't handle them at all.
|
||
return (self, &mut [], &mut []);
|
||
}
|
||
|
||
// First, find at what point do we split between the first and 2nd slice. Easy with
|
||
// ptr.align_offset.
|
||
let ptr = self.as_ptr();
|
||
let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
|
||
if offset > self.len() {
|
||
(self, &mut [], &mut [])
|
||
} else {
|
||
let (left, rest) = self.split_at_mut(offset);
|
||
let (us_len, ts_len) = rest.align_to_offsets::<U>();
|
||
let rest_len = rest.len();
|
||
let mut_ptr = rest.as_mut_ptr();
|
||
// We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
|
||
// SAFETY: see comments for `align_to`.
|
||
unsafe {
|
||
(
|
||
left,
|
||
from_raw_parts_mut(mut_ptr as *mut U, us_len),
|
||
from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Checks if the elements of this slice are sorted.
|
||
///
|
||
/// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
|
||
/// slice yields exactly zero or one element, `true` is returned.
|
||
///
|
||
/// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
|
||
/// implies that this function returns `false` if any two consecutive items are not
|
||
/// comparable.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(is_sorted)]
|
||
/// let empty: [i32; 0] = [];
|
||
///
|
||
/// assert!([1, 2, 2, 9].is_sorted());
|
||
/// assert!(![1, 3, 2, 4].is_sorted());
|
||
/// assert!([0].is_sorted());
|
||
/// assert!(empty.is_sorted());
|
||
/// assert!(![0.0, 1.0, f32::NAN].is_sorted());
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
|
||
pub fn is_sorted(&self) -> bool
|
||
where
|
||
T: PartialOrd,
|
||
{
|
||
self.is_sorted_by(|a, b| a.partial_cmp(b))
|
||
}
|
||
|
||
/// Checks if the elements of this slice are sorted using the given comparator function.
|
||
///
|
||
/// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
|
||
/// function to determine the ordering of two elements. Apart from that, it's equivalent to
|
||
/// [`is_sorted`]; see its documentation for more information.
|
||
///
|
||
/// [`is_sorted`]: #method.is_sorted
|
||
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
|
||
pub fn is_sorted_by<F>(&self, mut compare: F) -> bool
|
||
where
|
||
F: FnMut(&T, &T) -> Option<Ordering>,
|
||
{
|
||
self.iter().is_sorted_by(|a, b| compare(*a, *b))
|
||
}
|
||
|
||
/// Checks if the elements of this slice are sorted using the given key extraction function.
|
||
///
|
||
/// Instead of comparing the slice's elements directly, this function compares the keys of the
|
||
/// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
|
||
/// documentation for more information.
|
||
///
|
||
/// [`is_sorted`]: #method.is_sorted
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(is_sorted)]
|
||
///
|
||
/// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
|
||
/// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
|
||
pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool
|
||
where
|
||
F: FnMut(&T) -> K,
|
||
K: PartialOrd,
|
||
{
|
||
self.iter().is_sorted_by_key(f)
|
||
}
|
||
|
||
/// Returns the index of the partition point according to the given predicate
|
||
/// (the index of the first element of the second partition).
|
||
///
|
||
/// The slice is assumed to be partitioned according to the given predicate.
|
||
/// This means that all elements for which the predicate returns true are at the start of the slice
|
||
/// and all elements for which the predicate returns false are at the end.
|
||
/// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
|
||
/// (all odd numbers are at the start, all even at the end).
|
||
///
|
||
/// If this slice is not partitioned, the returned result is unspecified and meaningless,
|
||
/// as this method performs a kind of binary search.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(partition_point)]
|
||
///
|
||
/// let v = [1, 2, 3, 3, 5, 6, 7];
|
||
/// let i = v.partition_point(|&x| x < 5);
|
||
///
|
||
/// assert_eq!(i, 4);
|
||
/// assert!(v[..i].iter().all(|&x| x < 5));
|
||
/// assert!(v[i..].iter().all(|&x| !(x < 5)));
|
||
/// ```
|
||
#[unstable(feature = "partition_point", reason = "new API", issue = "73831")]
|
||
pub fn partition_point<P>(&self, mut pred: P) -> usize
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
let mut left = 0;
|
||
let mut right = self.len();
|
||
|
||
while left != right {
|
||
let mid = left + (right - left) / 2;
|
||
// SAFETY:
|
||
// When left < right, left <= mid < right.
|
||
// Therefore left always increases and right always decreases,
|
||
// and eigher of them is selected.
|
||
// In both cases left <= right is satisfied.
|
||
// Therefore if left < right in a step,
|
||
// left <= right is satisfied in the next step.
|
||
// Therefore as long as left != right, 0 <= left < right <= len is satisfied
|
||
// and if this case 0 <= mid < len is satisfied too.
|
||
let value = unsafe { self.get_unchecked(mid) };
|
||
if pred(value) {
|
||
left = mid + 1;
|
||
} else {
|
||
right = mid;
|
||
}
|
||
}
|
||
|
||
left
|
||
}
|
||
}
|
||
|
||
#[lang = "slice_u8"]
|
||
#[cfg(not(test))]
|
||
impl [u8] {
|
||
/// Checks if all bytes in this slice are within the ASCII range.
|
||
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
||
#[inline]
|
||
pub fn is_ascii(&self) -> bool {
|
||
is_ascii(self)
|
||
}
|
||
|
||
/// Checks that two slices are an ASCII case-insensitive match.
|
||
///
|
||
/// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
|
||
/// but without allocating and copying temporaries.
|
||
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
||
#[inline]
|
||
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool {
|
||
self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a.eq_ignore_ascii_case(b))
|
||
}
|
||
|
||
/// Converts this slice to its ASCII upper case equivalent in-place.
|
||
///
|
||
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
|
||
/// but non-ASCII letters are unchanged.
|
||
///
|
||
/// To return a new uppercased value without modifying the existing one, use
|
||
/// [`to_ascii_uppercase`].
|
||
///
|
||
/// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
|
||
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
||
#[inline]
|
||
pub fn make_ascii_uppercase(&mut self) {
|
||
for byte in self {
|
||
byte.make_ascii_uppercase();
|
||
}
|
||
}
|
||
|
||
/// Converts this slice to its ASCII lower case equivalent in-place.
|
||
///
|
||
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
|
||
/// but non-ASCII letters are unchanged.
|
||
///
|
||
/// To return a new lowercased value without modifying the existing one, use
|
||
/// [`to_ascii_lowercase`].
|
||
///
|
||
/// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
|
||
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
||
#[inline]
|
||
pub fn make_ascii_lowercase(&mut self) {
|
||
for byte in self {
|
||
byte.make_ascii_lowercase();
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed
|
||
/// from `../str/mod.rs`, which does something similar for utf8 validation.
|
||
#[inline]
|
||
fn contains_nonascii(v: usize) -> bool {
|
||
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;
|
||
(NONASCII_MASK & v) != 0
|
||
}
|
||
|
||
/// Optimized ASCII test that will use usize-at-a-time operations instead of
|
||
/// byte-at-a-time operations (when possible).
|
||
///
|
||
/// The algorithm we use here is pretty simple. If `s` is too short, we just
|
||
/// check each byte and be done with it. Otherwise:
|
||
///
|
||
/// - Read the first word with an unaligned load.
|
||
/// - Align the pointer, read subsequent words until end with aligned loads.
|
||
/// - If there's a tail, the last `usize` from `s` with an unaligned load.
|
||
///
|
||
/// If any of these loads produces something for which `contains_nonascii`
|
||
/// (above) returns true, then we know the answer is false.
|
||
#[inline]
|
||
fn is_ascii(s: &[u8]) -> bool {
|
||
const USIZE_SIZE: usize = mem::size_of::<usize>();
|
||
|
||
let len = s.len();
|
||
let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
|
||
|
||
// If we wouldn't gain anything from the word-at-a-time implementation, fall
|
||
// back to a scalar loop.
|
||
//
|
||
// We also do this for architectures where `size_of::<usize>()` isn't
|
||
// sufficient alignment for `usize`, because it's a weird edge case.
|
||
if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
|
||
return s.iter().all(|b| b.is_ascii());
|
||
}
|
||
|
||
// We always read the first word unaligned, which means `align_offset` is
|
||
// 0, we'd read the same value again for the aligned read.
|
||
let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
|
||
|
||
let start = s.as_ptr();
|
||
// SAFETY: We verify `len < USIZE_SIZE` above.
|
||
let first_word = unsafe { (start as *const usize).read_unaligned() };
|
||
|
||
if contains_nonascii(first_word) {
|
||
return false;
|
||
}
|
||
// We checked this above, somewhat implicitly. Note that `offset_to_aligned`
|
||
// is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
|
||
// above.
|
||
debug_assert!(offset_to_aligned <= len);
|
||
|
||
// word_ptr is the (properly aligned) usize ptr we use to read the middle chunk of the slice.
|
||
let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
|
||
|
||
// `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
|
||
let mut byte_pos = offset_to_aligned;
|
||
|
||
// Paranoia check about alignment, since we're about to do a bunch of
|
||
// unaligned loads. In practice this should be impossible barring a bug in
|
||
// `align_offset` though.
|
||
debug_assert_eq!((word_ptr as usize) % mem::align_of::<usize>(), 0);
|
||
|
||
while byte_pos <= len - USIZE_SIZE {
|
||
debug_assert!(
|
||
// Sanity check that the read is in bounds
|
||
(word_ptr as usize + USIZE_SIZE) <= (start.wrapping_add(len) as usize) &&
|
||
// And that our assumptions about `byte_pos` hold.
|
||
(word_ptr as usize) - (start as usize) == byte_pos
|
||
);
|
||
|
||
// Safety: We know `word_ptr` is properly aligned (because of
|
||
// `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
|
||
let word = unsafe { word_ptr.read() };
|
||
if contains_nonascii(word) {
|
||
return false;
|
||
}
|
||
|
||
byte_pos += USIZE_SIZE;
|
||
// SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
|
||
// after this `add`, `word_ptr` will be at most one-past-the-end.
|
||
word_ptr = unsafe { word_ptr.add(1) };
|
||
}
|
||
|
||
// If we have anything left over, it should be at-most 1 usize worth of bytes,
|
||
// which we check with a read_unaligned.
|
||
if byte_pos == len {
|
||
return true;
|
||
}
|
||
|
||
// Sanity check to ensure there really is only one `usize` left. This should
|
||
// be guaranteed by our loop condition.
|
||
debug_assert!(byte_pos < len && len - byte_pos < USIZE_SIZE);
|
||
|
||
// SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
|
||
let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
|
||
|
||
!contains_nonascii(last_word)
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T, I> ops::Index<I> for [T]
|
||
where
|
||
I: SliceIndex<[T]>,
|
||
{
|
||
type Output = I::Output;
|
||
|
||
#[inline]
|
||
fn index(&self, index: I) -> &I::Output {
|
||
index.index(self)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T, I> ops::IndexMut<I> for [T]
|
||
where
|
||
I: SliceIndex<[T]>,
|
||
{
|
||
#[inline]
|
||
fn index_mut(&mut self, index: I) -> &mut I::Output {
|
||
index.index_mut(self)
|
||
}
|
||
}
|
||
|
||
#[inline(never)]
|
||
#[cold]
|
||
#[track_caller]
|
||
fn slice_start_index_len_fail(index: usize, len: usize) -> ! {
|
||
panic!("range start index {} out of range for slice of length {}", index, len);
|
||
}
|
||
|
||
#[inline(never)]
|
||
#[cold]
|
||
#[track_caller]
|
||
fn slice_end_index_len_fail(index: usize, len: usize) -> ! {
|
||
panic!("range end index {} out of range for slice of length {}", index, len);
|
||
}
|
||
|
||
#[inline(never)]
|
||
#[cold]
|
||
#[track_caller]
|
||
fn slice_index_order_fail(index: usize, end: usize) -> ! {
|
||
panic!("slice index starts at {} but ends at {}", index, end);
|
||
}
|
||
|
||
#[inline(never)]
|
||
#[cold]
|
||
#[track_caller]
|
||
fn slice_index_overflow_fail() -> ! {
|
||
panic!("attempted to index slice up to maximum usize");
|
||
}
|
||
|
||
mod private_slice_index {
|
||
use super::ops;
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
pub trait Sealed {}
|
||
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for usize {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::Range<usize> {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::RangeTo<usize> {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::RangeFrom<usize> {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::RangeFull {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::RangeInclusive<usize> {}
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
impl Sealed for ops::RangeToInclusive<usize> {}
|
||
}
|
||
|
||
/// A helper trait used for indexing operations.
|
||
///
|
||
/// Implementations of this trait have to promise that if the argument
|
||
/// to `get_(mut_)unchecked` is a safe reference, then so is the result.
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
#[rustc_on_unimplemented(
|
||
on(T = "str", label = "string indices are ranges of `usize`",),
|
||
on(
|
||
all(any(T = "str", T = "&str", T = "std::string::String"), _Self = "{integer}"),
|
||
note = "you can use `.chars().nth()` or `.bytes().nth()`
|
||
see chapter in The Book <https://doc.rust-lang.org/book/ch08-02-strings.html#indexing-into-strings>"
|
||
),
|
||
message = "the type `{T}` cannot be indexed by `{Self}`",
|
||
label = "slice indices are of type `usize` or ranges of `usize`"
|
||
)]
|
||
pub unsafe trait SliceIndex<T: ?Sized>: private_slice_index::Sealed {
|
||
/// The output type returned by methods.
|
||
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
||
type Output: ?Sized;
|
||
|
||
/// Returns a shared reference to the output at this location, if in
|
||
/// bounds.
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
fn get(self, slice: &T) -> Option<&Self::Output>;
|
||
|
||
/// Returns a mutable reference to the output at this location, if in
|
||
/// bounds.
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
fn get_mut(self, slice: &mut T) -> Option<&mut Self::Output>;
|
||
|
||
/// Returns a shared reference to the output at this location, without
|
||
/// performing any bounds checking.
|
||
/// Calling this method with an out-of-bounds index or a dangling `slice` pointer
|
||
/// is *[undefined behavior]* even if the resulting reference is not used.
|
||
///
|
||
/// [undefined behavior]: ../../reference/behavior-considered-undefined.html
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
unsafe fn get_unchecked(self, slice: *const T) -> *const Self::Output;
|
||
|
||
/// Returns a mutable reference to the output at this location, without
|
||
/// performing any bounds checking.
|
||
/// Calling this method with an out-of-bounds index or a dangling `slice` pointer
|
||
/// is *[undefined behavior]* even if the resulting reference is not used.
|
||
///
|
||
/// [undefined behavior]: ../../reference/behavior-considered-undefined.html
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut T) -> *mut Self::Output;
|
||
|
||
/// Returns a shared reference to the output at this location, panicking
|
||
/// if out of bounds.
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
#[track_caller]
|
||
fn index(self, slice: &T) -> &Self::Output;
|
||
|
||
/// Returns a mutable reference to the output at this location, panicking
|
||
/// if out of bounds.
|
||
#[unstable(feature = "slice_index_methods", issue = "none")]
|
||
#[track_caller]
|
||
fn index_mut(self, slice: &mut T) -> &mut Self::Output;
|
||
}
|
||
|
||
#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for usize {
|
||
type Output = T;
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&T> {
|
||
if self < slice.len() { unsafe { Some(&*self.get_unchecked(slice)) } } else { None }
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut T> {
|
||
if self < slice.len() { unsafe { Some(&mut *self.get_unchecked_mut(slice)) } } else { None }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const T {
|
||
// SAFETY: the caller guarantees that `slice` is not dangling, so it
|
||
// cannot be longer than `isize::MAX`. They also guarantee that
|
||
// `self` is in bounds of `slice` so `self` cannot overflow an `isize`,
|
||
// so the call to `add` is safe.
|
||
unsafe { slice.as_ptr().add(self) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T {
|
||
// SAFETY: see comments for `get_unchecked` above.
|
||
unsafe { slice.as_mut_ptr().add(self) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &T {
|
||
// N.B., use intrinsic indexing
|
||
&(*slice)[self]
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut T {
|
||
// N.B., use intrinsic indexing
|
||
&mut (*slice)[self]
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::Range<usize> {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
if self.start > self.end || self.end > slice.len() {
|
||
None
|
||
} else {
|
||
unsafe { Some(&*self.get_unchecked(slice)) }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
if self.start > self.end || self.end > slice.len() {
|
||
None
|
||
} else {
|
||
unsafe { Some(&mut *self.get_unchecked_mut(slice)) }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
// SAFETY: the caller guarantees that `slice` is not dangling, so it
|
||
// cannot be longer than `isize::MAX`. They also guarantee that
|
||
// `self` is in bounds of `slice` so `self` cannot overflow an `isize`,
|
||
// so the call to `add` is safe.
|
||
unsafe { ptr::slice_from_raw_parts(slice.as_ptr().add(self.start), self.end - self.start) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
// SAFETY: see comments for `get_unchecked` above.
|
||
unsafe {
|
||
ptr::slice_from_raw_parts_mut(slice.as_mut_ptr().add(self.start), self.end - self.start)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
if self.start > self.end {
|
||
slice_index_order_fail(self.start, self.end);
|
||
} else if self.end > slice.len() {
|
||
slice_end_index_len_fail(self.end, slice.len());
|
||
}
|
||
unsafe { &*self.get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
if self.start > self.end {
|
||
slice_index_order_fail(self.start, self.end);
|
||
} else if self.end > slice.len() {
|
||
slice_end_index_len_fail(self.end, slice.len());
|
||
}
|
||
unsafe { &mut *self.get_unchecked_mut(slice) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::RangeTo<usize> {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
(0..self.end).get(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
(0..self.end).get_mut(slice)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
|
||
unsafe { (0..self.end).get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
|
||
unsafe { (0..self.end).get_unchecked_mut(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
(0..self.end).index(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
(0..self.end).index_mut(slice)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::RangeFrom<usize> {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
(self.start..slice.len()).get(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
(self.start..slice.len()).get_mut(slice)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
|
||
unsafe { (self.start..slice.len()).get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
|
||
unsafe { (self.start..slice.len()).get_unchecked_mut(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
if self.start > slice.len() {
|
||
slice_start_index_len_fail(self.start, slice.len());
|
||
}
|
||
unsafe { &*self.get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
if self.start > slice.len() {
|
||
slice_start_index_len_fail(self.start, slice.len());
|
||
}
|
||
unsafe { &mut *self.get_unchecked_mut(slice) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_get_slice_impls", since = "1.15.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::RangeFull {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
Some(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
Some(slice)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
slice
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
slice
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
slice
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
slice
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "inclusive_range", since = "1.26.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::RangeInclusive<usize> {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
if *self.end() == usize::MAX { None } else { (*self.start()..self.end() + 1).get(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
if *self.end() == usize::MAX {
|
||
None
|
||
} else {
|
||
(*self.start()..self.end() + 1).get_mut(slice)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
|
||
unsafe { (*self.start()..self.end() + 1).get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
|
||
unsafe { (*self.start()..self.end() + 1).get_unchecked_mut(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
if *self.end() == usize::MAX {
|
||
slice_index_overflow_fail();
|
||
}
|
||
(*self.start()..self.end() + 1).index(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
if *self.end() == usize::MAX {
|
||
slice_index_overflow_fail();
|
||
}
|
||
(*self.start()..self.end() + 1).index_mut(slice)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "inclusive_range", since = "1.26.0")]
|
||
unsafe impl<T> SliceIndex<[T]> for ops::RangeToInclusive<usize> {
|
||
type Output = [T];
|
||
|
||
#[inline]
|
||
fn get(self, slice: &[T]) -> Option<&[T]> {
|
||
(0..=self.end).get(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]> {
|
||
(0..=self.end).get_mut(slice)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked`.
|
||
unsafe { (0..=self.end).get_unchecked(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T] {
|
||
// SAFETY: the caller has to uphold the safety contract for `get_unchecked_mut`.
|
||
unsafe { (0..=self.end).get_unchecked_mut(slice) }
|
||
}
|
||
|
||
#[inline]
|
||
fn index(self, slice: &[T]) -> &[T] {
|
||
(0..=self.end).index(slice)
|
||
}
|
||
|
||
#[inline]
|
||
fn index_mut(self, slice: &mut [T]) -> &mut [T] {
|
||
(0..=self.end).index_mut(slice)
|
||
}
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Common traits
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> Default for &[T] {
|
||
/// Creates an empty slice.
|
||
fn default() -> Self {
|
||
&[]
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "mut_slice_default", since = "1.5.0")]
|
||
impl<T> Default for &mut [T] {
|
||
/// Creates a mutable empty slice.
|
||
fn default() -> Self {
|
||
&mut []
|
||
}
|
||
}
|
||
|
||
//
|
||
// Iterators
|
||
//
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> IntoIterator for &'a [T] {
|
||
type Item = &'a T;
|
||
type IntoIter = Iter<'a, T>;
|
||
|
||
fn into_iter(self) -> Iter<'a, T> {
|
||
self.iter()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> IntoIterator for &'a mut [T] {
|
||
type Item = &'a mut T;
|
||
type IntoIter = IterMut<'a, T>;
|
||
|
||
fn into_iter(self) -> IterMut<'a, T> {
|
||
self.iter_mut()
|
||
}
|
||
}
|
||
|
||
// Macro helper functions
|
||
#[inline(always)]
|
||
fn size_from_ptr<T>(_: *const T) -> usize {
|
||
mem::size_of::<T>()
|
||
}
|
||
|
||
// Inlining is_empty and len makes a huge performance difference
|
||
macro_rules! is_empty {
|
||
// The way we encode the length of a ZST iterator, this works both for ZST
|
||
// and non-ZST.
|
||
($self: ident) => {
|
||
$self.ptr.as_ptr() as *const T == $self.end
|
||
};
|
||
}
|
||
|
||
// To get rid of some bounds checks (see `position`), we compute the length in a somewhat
|
||
// unexpected way. (Tested by `codegen/slice-position-bounds-check`.)
|
||
macro_rules! len {
|
||
($self: ident) => {{
|
||
#![allow(unused_unsafe)] // we're sometimes used within an unsafe block
|
||
|
||
let start = $self.ptr;
|
||
let size = size_from_ptr(start.as_ptr());
|
||
if size == 0 {
|
||
// This _cannot_ use `unchecked_sub` because we depend on wrapping
|
||
// to represent the length of long ZST slice iterators.
|
||
($self.end as usize).wrapping_sub(start.as_ptr() as usize)
|
||
} else {
|
||
// We know that `start <= end`, so can do better than `offset_from`,
|
||
// which needs to deal in signed. By setting appropriate flags here
|
||
// we can tell LLVM this, which helps it remove bounds checks.
|
||
// SAFETY: By the type invariant, `start <= end`
|
||
let diff = unsafe { unchecked_sub($self.end as usize, start.as_ptr() as usize) };
|
||
// By also telling LLVM that the pointers are apart by an exact
|
||
// multiple of the type size, it can optimize `len() == 0` down to
|
||
// `start == end` instead of `(end - start) < size`.
|
||
// SAFETY: By the type invariant, the pointers are aligned so the
|
||
// distance between them must be a multiple of pointee size
|
||
unsafe { exact_div(diff, size) }
|
||
}
|
||
}};
|
||
}
|
||
|
||
// The shared definition of the `Iter` and `IterMut` iterators
|
||
macro_rules! iterator {
|
||
(
|
||
struct $name:ident -> $ptr:ty,
|
||
$elem:ty,
|
||
$raw_mut:tt,
|
||
{$( $mut_:tt )*},
|
||
{$($extra:tt)*}
|
||
) => {
|
||
// Returns the first element and moves the start of the iterator forwards by 1.
|
||
// Greatly improves performance compared to an inlined function. The iterator
|
||
// must not be empty.
|
||
macro_rules! next_unchecked {
|
||
($self: ident) => {& $( $mut_ )* *$self.post_inc_start(1)}
|
||
}
|
||
|
||
// Returns the last element and moves the end of the iterator backwards by 1.
|
||
// Greatly improves performance compared to an inlined function. The iterator
|
||
// must not be empty.
|
||
macro_rules! next_back_unchecked {
|
||
($self: ident) => {& $( $mut_ )* *$self.pre_dec_end(1)}
|
||
}
|
||
|
||
// Shrinks the iterator when T is a ZST, by moving the end of the iterator
|
||
// backwards by `n`. `n` must not exceed `self.len()`.
|
||
macro_rules! zst_shrink {
|
||
($self: ident, $n: ident) => {
|
||
$self.end = ($self.end as * $raw_mut u8).wrapping_offset(-$n) as * $raw_mut T;
|
||
}
|
||
}
|
||
|
||
impl<'a, T> $name<'a, T> {
|
||
// Helper function for creating a slice from the iterator.
|
||
#[inline(always)]
|
||
fn make_slice(&self) -> &'a [T] {
|
||
unsafe { from_raw_parts(self.ptr.as_ptr(), len!(self)) }
|
||
}
|
||
|
||
// Helper function for moving the start of the iterator forwards by `offset` elements,
|
||
// returning the old start.
|
||
// Unsafe because the offset must not exceed `self.len()`.
|
||
#[inline(always)]
|
||
unsafe fn post_inc_start(&mut self, offset: isize) -> * $raw_mut T {
|
||
if mem::size_of::<T>() == 0 {
|
||
zst_shrink!(self, offset);
|
||
self.ptr.as_ptr()
|
||
} else {
|
||
let old = self.ptr.as_ptr();
|
||
// SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
|
||
// so this new pointer is inside `self` and thus guaranteed to be non-null.
|
||
self.ptr = unsafe { NonNull::new_unchecked(self.ptr.as_ptr().offset(offset)) };
|
||
old
|
||
}
|
||
}
|
||
|
||
// Helper function for moving the end of the iterator backwards by `offset` elements,
|
||
// returning the new end.
|
||
// Unsafe because the offset must not exceed `self.len()`.
|
||
#[inline(always)]
|
||
unsafe fn pre_dec_end(&mut self, offset: isize) -> * $raw_mut T {
|
||
if mem::size_of::<T>() == 0 {
|
||
zst_shrink!(self, offset);
|
||
self.ptr.as_ptr()
|
||
} else {
|
||
// SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
|
||
// which is guaranteed to not overflow an `isize`. Also, the resulting pointer
|
||
// is in bounds of `slice`, which fulfills the other requirements for `offset`.
|
||
self.end = unsafe { self.end.offset(-offset) };
|
||
self.end
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> ExactSizeIterator for $name<'_, T> {
|
||
#[inline(always)]
|
||
fn len(&self) -> usize {
|
||
len!(self)
|
||
}
|
||
|
||
#[inline(always)]
|
||
fn is_empty(&self) -> bool {
|
||
is_empty!(self)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> Iterator for $name<'a, T> {
|
||
type Item = $elem;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<$elem> {
|
||
// could be implemented with slices, but this avoids bounds checks
|
||
unsafe {
|
||
assume(!self.ptr.as_ptr().is_null());
|
||
if mem::size_of::<T>() != 0 {
|
||
assume(!self.end.is_null());
|
||
}
|
||
if is_empty!(self) {
|
||
None
|
||
} else {
|
||
Some(next_unchecked!(self))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let exact = len!(self);
|
||
(exact, Some(exact))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
len!(self)
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<$elem> {
|
||
if n >= len!(self) {
|
||
// This iterator is now empty.
|
||
if mem::size_of::<T>() == 0 {
|
||
// We have to do it this way as `ptr` may never be 0, but `end`
|
||
// could be (due to wrapping).
|
||
self.end = self.ptr.as_ptr();
|
||
} else {
|
||
unsafe {
|
||
// End can't be 0 if T isn't ZST because ptr isn't 0 and end >= ptr
|
||
self.ptr = NonNull::new_unchecked(self.end as *mut T);
|
||
}
|
||
}
|
||
return None;
|
||
}
|
||
// We are in bounds. `post_inc_start` does the right thing even for ZSTs.
|
||
unsafe {
|
||
self.post_inc_start(n as isize);
|
||
Some(next_unchecked!(self))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<$elem> {
|
||
self.next_back()
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile.
|
||
#[inline]
|
||
fn for_each<F>(mut self, mut f: F)
|
||
where
|
||
Self: Sized,
|
||
F: FnMut(Self::Item),
|
||
{
|
||
while let Some(x) = self.next() {
|
||
f(x);
|
||
}
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile.
|
||
#[inline]
|
||
fn all<F>(&mut self, mut f: F) -> bool
|
||
where
|
||
Self: Sized,
|
||
F: FnMut(Self::Item) -> bool,
|
||
{
|
||
while let Some(x) = self.next() {
|
||
if !f(x) {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile.
|
||
#[inline]
|
||
fn any<F>(&mut self, mut f: F) -> bool
|
||
where
|
||
Self: Sized,
|
||
F: FnMut(Self::Item) -> bool,
|
||
{
|
||
while let Some(x) = self.next() {
|
||
if f(x) {
|
||
return true;
|
||
}
|
||
}
|
||
false
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile.
|
||
#[inline]
|
||
fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item>
|
||
where
|
||
Self: Sized,
|
||
P: FnMut(&Self::Item) -> bool,
|
||
{
|
||
while let Some(x) = self.next() {
|
||
if predicate(&x) {
|
||
return Some(x);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile.
|
||
#[inline]
|
||
fn find_map<B, F>(&mut self, mut f: F) -> Option<B>
|
||
where
|
||
Self: Sized,
|
||
F: FnMut(Self::Item) -> Option<B>,
|
||
{
|
||
while let Some(x) = self.next() {
|
||
if let Some(y) = f(x) {
|
||
return Some(y);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile. Also, the `assume` avoids a bounds check.
|
||
#[inline]
|
||
#[rustc_inherit_overflow_checks]
|
||
fn position<P>(&mut self, mut predicate: P) -> Option<usize> where
|
||
Self: Sized,
|
||
P: FnMut(Self::Item) -> bool,
|
||
{
|
||
let n = len!(self);
|
||
let mut i = 0;
|
||
while let Some(x) = self.next() {
|
||
if predicate(x) {
|
||
unsafe { assume(i < n) };
|
||
return Some(i);
|
||
}
|
||
i += 1;
|
||
}
|
||
None
|
||
}
|
||
|
||
// We override the default implementation, which uses `try_fold`,
|
||
// because this simple implementation generates less LLVM IR and is
|
||
// faster to compile. Also, the `assume` avoids a bounds check.
|
||
#[inline]
|
||
fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where
|
||
P: FnMut(Self::Item) -> bool,
|
||
Self: Sized + ExactSizeIterator + DoubleEndedIterator
|
||
{
|
||
let n = len!(self);
|
||
let mut i = n;
|
||
while let Some(x) = self.next_back() {
|
||
i -= 1;
|
||
if predicate(x) {
|
||
unsafe { assume(i < n) };
|
||
return Some(i);
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
$($extra)*
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> DoubleEndedIterator for $name<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<$elem> {
|
||
// could be implemented with slices, but this avoids bounds checks
|
||
unsafe {
|
||
assume(!self.ptr.as_ptr().is_null());
|
||
if mem::size_of::<T>() != 0 {
|
||
assume(!self.end.is_null());
|
||
}
|
||
if is_empty!(self) {
|
||
None
|
||
} else {
|
||
Some(next_back_unchecked!(self))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<$elem> {
|
||
if n >= len!(self) {
|
||
// This iterator is now empty.
|
||
self.end = self.ptr.as_ptr();
|
||
return None;
|
||
}
|
||
// We are in bounds. `pre_dec_end` does the right thing even for ZSTs.
|
||
unsafe {
|
||
self.pre_dec_end(n as isize);
|
||
Some(next_back_unchecked!(self))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T> FusedIterator for $name<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for $name<'_, T> {}
|
||
}
|
||
}
|
||
|
||
/// Immutable slice iterator
|
||
///
|
||
/// This struct is created by the [`iter`] method on [slices].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// // First, we declare a type which has `iter` method to get the `Iter` struct (&[usize here]):
|
||
/// let slice = &[1, 2, 3];
|
||
///
|
||
/// // Then, we iterate over it:
|
||
/// for element in slice.iter() {
|
||
/// println!("{}", element);
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// [`iter`]: ../../std/primitive.slice.html#method.iter
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Iter<'a, T: 'a> {
|
||
ptr: NonNull<T>,
|
||
end: *const T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that
|
||
// ptr == end is a quick test for the Iterator being empty, that works
|
||
// for both ZST and non-ZST.
|
||
_marker: marker::PhantomData<&'a T>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_tuple("Iter").field(&self.as_slice()).finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: Sync> Sync for Iter<'_, T> {}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: Sync> Send for Iter<'_, T> {}
|
||
|
||
impl<'a, T> Iter<'a, T> {
|
||
/// Views the underlying data as a subslice of the original data.
|
||
///
|
||
/// This has the same lifetime as the original slice, and so the
|
||
/// iterator can continue to be used while this exists.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// // First, we declare a type which has the `iter` method to get the `Iter`
|
||
/// // struct (&[usize here]):
|
||
/// let slice = &[1, 2, 3];
|
||
///
|
||
/// // Then, we get the iterator:
|
||
/// let mut iter = slice.iter();
|
||
/// // So if we print what `as_slice` method returns here, we have "[1, 2, 3]":
|
||
/// println!("{:?}", iter.as_slice());
|
||
///
|
||
/// // Next, we move to the second element of the slice:
|
||
/// iter.next();
|
||
/// // Now `as_slice` returns "[2, 3]":
|
||
/// println!("{:?}", iter.as_slice());
|
||
/// ```
|
||
#[stable(feature = "iter_to_slice", since = "1.4.0")]
|
||
pub fn as_slice(&self) -> &'a [T] {
|
||
self.make_slice()
|
||
}
|
||
}
|
||
|
||
iterator! {struct Iter -> *const T, &'a T, const, {/* no mut */}, {
|
||
fn is_sorted_by<F>(self, mut compare: F) -> bool
|
||
where
|
||
Self: Sized,
|
||
F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
|
||
{
|
||
self.as_slice().windows(2).all(|w| {
|
||
compare(&&w[0], &&w[1]).map(|o| o != Ordering::Greater).unwrap_or(false)
|
||
})
|
||
}
|
||
}}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> Clone for Iter<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
Iter { ptr: self.ptr, end: self.end, _marker: self._marker }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_iter_as_ref", since = "1.13.0")]
|
||
impl<T> AsRef<[T]> for Iter<'_, T> {
|
||
fn as_ref(&self) -> &[T] {
|
||
self.as_slice()
|
||
}
|
||
}
|
||
|
||
/// Mutable slice iterator.
|
||
///
|
||
/// This struct is created by the [`iter_mut`] method on [slices].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// // First, we declare a type which has `iter_mut` method to get the `IterMut`
|
||
/// // struct (&[usize here]):
|
||
/// let mut slice = &mut [1, 2, 3];
|
||
///
|
||
/// // Then, we iterate over it and increment each element value:
|
||
/// for element in slice.iter_mut() {
|
||
/// *element += 1;
|
||
/// }
|
||
///
|
||
/// // We now have "[2, 3, 4]":
|
||
/// println!("{:?}", slice);
|
||
/// ```
|
||
///
|
||
/// [`iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct IterMut<'a, T: 'a> {
|
||
ptr: NonNull<T>,
|
||
end: *mut T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that
|
||
// ptr == end is a quick test for the Iterator being empty, that works
|
||
// for both ZST and non-ZST.
|
||
_marker: marker::PhantomData<&'a mut T>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_tuple("IterMut").field(&self.make_slice()).finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
unsafe impl<T: Send> Send for IterMut<'_, T> {}
|
||
|
||
impl<'a, T> IterMut<'a, T> {
|
||
/// Views the underlying data as a subslice of the original data.
|
||
///
|
||
/// To avoid creating `&mut` references that alias, this is forced
|
||
/// to consume the iterator.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// // First, we declare a type which has `iter_mut` method to get the `IterMut`
|
||
/// // struct (&[usize here]):
|
||
/// let mut slice = &mut [1, 2, 3];
|
||
///
|
||
/// {
|
||
/// // Then, we get the iterator:
|
||
/// let mut iter = slice.iter_mut();
|
||
/// // We move to next element:
|
||
/// iter.next();
|
||
/// // So if we print what `into_slice` method returns here, we have "[2, 3]":
|
||
/// println!("{:?}", iter.into_slice());
|
||
/// }
|
||
///
|
||
/// // Now let's modify a value of the slice:
|
||
/// {
|
||
/// // First we get back the iterator:
|
||
/// let mut iter = slice.iter_mut();
|
||
/// // We change the value of the first element of the slice returned by the `next` method:
|
||
/// *iter.next().unwrap() += 1;
|
||
/// }
|
||
/// // Now slice is "[2, 2, 3]":
|
||
/// println!("{:?}", slice);
|
||
/// ```
|
||
#[stable(feature = "iter_to_slice", since = "1.4.0")]
|
||
pub fn into_slice(self) -> &'a mut [T] {
|
||
unsafe { from_raw_parts_mut(self.ptr.as_ptr(), len!(self)) }
|
||
}
|
||
|
||
/// Views the underlying data as a subslice of the original data.
|
||
///
|
||
/// To avoid creating `&mut [T]` references that alias, the returned slice
|
||
/// borrows its lifetime from the iterator the method is applied on.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// Basic usage:
|
||
///
|
||
/// ```
|
||
/// # #![feature(slice_iter_mut_as_slice)]
|
||
/// let mut slice: &mut [usize] = &mut [1, 2, 3];
|
||
///
|
||
/// // First, we get the iterator:
|
||
/// let mut iter = slice.iter_mut();
|
||
/// // So if we check what the `as_slice` method returns here, we have "[1, 2, 3]":
|
||
/// assert_eq!(iter.as_slice(), &[1, 2, 3]);
|
||
///
|
||
/// // Next, we move to the second element of the slice:
|
||
/// iter.next();
|
||
/// // Now `as_slice` returns "[2, 3]":
|
||
/// assert_eq!(iter.as_slice(), &[2, 3]);
|
||
/// ```
|
||
#[unstable(feature = "slice_iter_mut_as_slice", reason = "recently added", issue = "58957")]
|
||
pub fn as_slice(&self) -> &[T] {
|
||
self.make_slice()
|
||
}
|
||
}
|
||
|
||
iterator! {struct IterMut -> *mut T, &'a mut T, mut, {mut}, {}}
|
||
|
||
/// An internal abstraction over the splitting iterators, so that
|
||
/// splitn, splitn_mut etc can be implemented once.
|
||
#[doc(hidden)]
|
||
trait SplitIter: DoubleEndedIterator {
|
||
/// Marks the underlying iterator as complete, extracting the remaining
|
||
/// portion of the slice.
|
||
fn finish(&mut self) -> Option<Self::Item>;
|
||
}
|
||
|
||
/// An iterator over subslices separated by elements that match a predicate
|
||
/// function.
|
||
///
|
||
/// This struct is created by the [`split`] method on [slices].
|
||
///
|
||
/// [`split`]: ../../std/primitive.slice.html#method.split
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Split<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
v: &'a [T],
|
||
pred: P,
|
||
finished: bool,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for Split<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("Split").field("v", &self.v).field("finished", &self.finished).finish()
|
||
}
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T, P> Clone for Split<'_, T, P>
|
||
where
|
||
P: Clone + FnMut(&T) -> bool,
|
||
{
|
||
fn clone(&self) -> Self {
|
||
Split { v: self.v, pred: self.pred.clone(), finished: self.finished }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T, P> Iterator for Split<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
match self.v.iter().position(|x| (self.pred)(x)) {
|
||
None => self.finish(),
|
||
Some(idx) => {
|
||
let ret = Some(&self.v[..idx]);
|
||
self.v = &self.v[idx + 1..];
|
||
ret
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.finished { (0, Some(0)) } else { (1, Some(self.v.len() + 1)) }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T, P> DoubleEndedIterator for Split<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
match self.v.iter().rposition(|x| (self.pred)(x)) {
|
||
None => self.finish(),
|
||
Some(idx) => {
|
||
let ret = Some(&self.v[idx + 1..]);
|
||
self.v = &self.v[..idx];
|
||
ret
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T, P> SplitIter for Split<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn finish(&mut self) -> Option<&'a [T]> {
|
||
if self.finished {
|
||
None
|
||
} else {
|
||
self.finished = true;
|
||
Some(self.v)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T, P> FusedIterator for Split<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An iterator over subslices separated by elements that match a predicate
|
||
/// function. Unlike `Split`, it contains the matched part as a terminator
|
||
/// of the subslice.
|
||
///
|
||
/// This struct is created by the [`split_inclusive`] method on [slices].
|
||
///
|
||
/// [`split_inclusive`]: ../../std/primitive.slice.html#method.split_inclusive
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
pub struct SplitInclusive<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
v: &'a [T],
|
||
pred: P,
|
||
finished: bool,
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for SplitInclusive<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("SplitInclusive")
|
||
.field("v", &self.v)
|
||
.field("finished", &self.finished)
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<T, P> Clone for SplitInclusive<'_, T, P>
|
||
where
|
||
P: Clone + FnMut(&T) -> bool,
|
||
{
|
||
fn clone(&self) -> Self {
|
||
SplitInclusive { v: self.v, pred: self.pred.clone(), finished: self.finished }
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<'a, T, P> Iterator for SplitInclusive<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
let idx =
|
||
self.v.iter().position(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(self.v.len());
|
||
if idx == self.v.len() {
|
||
self.finished = true;
|
||
}
|
||
let ret = Some(&self.v[..idx]);
|
||
self.v = &self.v[idx..];
|
||
ret
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.finished { (0, Some(0)) } else { (1, Some(self.v.len() + 1)) }
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<'a, T, P> DoubleEndedIterator for SplitInclusive<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
// The last index of self.v is already checked and found to match
|
||
// by the last iteration, so we start searching a new match
|
||
// one index to the left.
|
||
let remainder = if self.v.is_empty() { &[] } else { &self.v[..(self.v.len() - 1)] };
|
||
let idx = remainder.iter().rposition(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(0);
|
||
if idx == 0 {
|
||
self.finished = true;
|
||
}
|
||
let ret = Some(&self.v[idx..]);
|
||
self.v = &self.v[..idx];
|
||
ret
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<T, P> FusedIterator for SplitInclusive<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An iterator over the mutable subslices of the vector which are separated
|
||
/// by elements that match `pred`.
|
||
///
|
||
/// This struct is created by the [`split_mut`] method on [slices].
|
||
///
|
||
/// [`split_mut`]: ../../std/primitive.slice.html#method.split_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct SplitMut<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
v: &'a mut [T],
|
||
pred: P,
|
||
finished: bool,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for SplitMut<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("SplitMut").field("v", &self.v).field("finished", &self.finished).finish()
|
||
}
|
||
}
|
||
|
||
impl<'a, T, P> SplitIter for SplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn finish(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished {
|
||
None
|
||
} else {
|
||
self.finished = true;
|
||
Some(mem::replace(&mut self.v, &mut []))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T, P> Iterator for SplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
let idx_opt = {
|
||
// work around borrowck limitations
|
||
let pred = &mut self.pred;
|
||
self.v.iter().position(|x| (*pred)(x))
|
||
};
|
||
match idx_opt {
|
||
None => self.finish(),
|
||
Some(idx) => {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(idx);
|
||
self.v = &mut tail[1..];
|
||
Some(head)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.finished {
|
||
(0, Some(0))
|
||
} else {
|
||
// if the predicate doesn't match anything, we yield one slice
|
||
// if it matches every element, we yield len+1 empty slices.
|
||
(1, Some(self.v.len() + 1))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T, P> DoubleEndedIterator for SplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
let idx_opt = {
|
||
// work around borrowck limitations
|
||
let pred = &mut self.pred;
|
||
self.v.iter().rposition(|x| (*pred)(x))
|
||
};
|
||
match idx_opt {
|
||
None => self.finish(),
|
||
Some(idx) => {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(idx);
|
||
self.v = head;
|
||
Some(&mut tail[1..])
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T, P> FusedIterator for SplitMut<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An iterator over the mutable subslices of the vector which are separated
|
||
/// by elements that match `pred`. Unlike `SplitMut`, it contains the matched
|
||
/// parts in the ends of the subslices.
|
||
///
|
||
/// This struct is created by the [`split_inclusive_mut`] method on [slices].
|
||
///
|
||
/// [`split_inclusive_mut`]: ../../std/primitive.slice.html#method.split_inclusive_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
pub struct SplitInclusiveMut<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
v: &'a mut [T],
|
||
pred: P,
|
||
finished: bool,
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for SplitInclusiveMut<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("SplitInclusiveMut")
|
||
.field("v", &self.v)
|
||
.field("finished", &self.finished)
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<'a, T, P> Iterator for SplitInclusiveMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
let idx_opt = {
|
||
// work around borrowck limitations
|
||
let pred = &mut self.pred;
|
||
self.v.iter().position(|x| (*pred)(x))
|
||
};
|
||
let idx = idx_opt.map(|idx| idx + 1).unwrap_or(self.v.len());
|
||
if idx == self.v.len() {
|
||
self.finished = true;
|
||
}
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(idx);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.finished {
|
||
(0, Some(0))
|
||
} else {
|
||
// if the predicate doesn't match anything, we yield one slice
|
||
// if it matches every element, we yield len+1 empty slices.
|
||
(1, Some(self.v.len() + 1))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<'a, T, P> DoubleEndedIterator for SplitInclusiveMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished {
|
||
return None;
|
||
}
|
||
|
||
let idx_opt = if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
// work around borrowck limitations
|
||
let pred = &mut self.pred;
|
||
|
||
// The last index of self.v is already checked and found to match
|
||
// by the last iteration, so we start searching a new match
|
||
// one index to the left.
|
||
let remainder = &self.v[..(self.v.len() - 1)];
|
||
remainder.iter().rposition(|x| (*pred)(x))
|
||
};
|
||
let idx = idx_opt.map(|idx| idx + 1).unwrap_or(0);
|
||
if idx == 0 {
|
||
self.finished = true;
|
||
}
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(idx);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "split_inclusive", issue = "72360")]
|
||
impl<T, P> FusedIterator for SplitInclusiveMut<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An iterator over subslices separated by elements that match a predicate
|
||
/// function, starting from the end of the slice.
|
||
///
|
||
/// This struct is created by the [`rsplit`] method on [slices].
|
||
///
|
||
/// [`rsplit`]: ../../std/primitive.slice.html#method.rsplit
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
#[derive(Clone)] // Is this correct, or does it incorrectly require `T: Clone`?
|
||
pub struct RSplit<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: Split<'a, T, P>,
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for RSplit<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("RSplit")
|
||
.field("v", &self.inner.v)
|
||
.field("finished", &self.inner.finished)
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> Iterator for RSplit<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
self.inner.next_back()
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> DoubleEndedIterator for RSplit<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
self.inner.next()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> SplitIter for RSplit<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn finish(&mut self) -> Option<&'a [T]> {
|
||
self.inner.finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<T, P> FusedIterator for RSplit<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An iterator over the subslices of the vector which are separated
|
||
/// by elements that match `pred`, starting from the end of the slice.
|
||
///
|
||
/// This struct is created by the [`rsplit_mut`] method on [slices].
|
||
///
|
||
/// [`rsplit_mut`]: ../../std/primitive.slice.html#method.rsplit_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
pub struct RSplitMut<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: SplitMut<'a, T, P>,
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for RSplitMut<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("RSplitMut")
|
||
.field("v", &self.inner.v)
|
||
.field("finished", &self.inner.finished)
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> SplitIter for RSplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn finish(&mut self) -> Option<&'a mut [T]> {
|
||
self.inner.finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> Iterator for RSplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
self.inner.next_back()
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<'a, T, P> DoubleEndedIterator for RSplitMut<'a, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
self.inner.next()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
||
impl<T, P> FusedIterator for RSplitMut<'_, T, P> where P: FnMut(&T) -> bool {}
|
||
|
||
/// An private iterator over subslices separated by elements that
|
||
/// match a predicate function, splitting at most a fixed number of
|
||
/// times.
|
||
#[derive(Debug)]
|
||
struct GenericSplitN<I> {
|
||
iter: I,
|
||
count: usize,
|
||
}
|
||
|
||
impl<T, I: SplitIter<Item = T>> Iterator for GenericSplitN<I> {
|
||
type Item = T;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<T> {
|
||
match self.count {
|
||
0 => None,
|
||
1 => {
|
||
self.count -= 1;
|
||
self.iter.finish()
|
||
}
|
||
_ => {
|
||
self.count -= 1;
|
||
self.iter.next()
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let (lower, upper_opt) = self.iter.size_hint();
|
||
(lower, upper_opt.map(|upper| cmp::min(self.count, upper)))
|
||
}
|
||
}
|
||
|
||
/// An iterator over subslices separated by elements that match a predicate
|
||
/// function, limited to a given number of splits.
|
||
///
|
||
/// This struct is created by the [`splitn`] method on [slices].
|
||
///
|
||
/// [`splitn`]: ../../std/primitive.slice.html#method.splitn
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct SplitN<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: GenericSplitN<Split<'a, T, P>>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for SplitN<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("SplitN").field("inner", &self.inner).finish()
|
||
}
|
||
}
|
||
|
||
/// An iterator over subslices separated by elements that match a
|
||
/// predicate function, limited to a given number of splits, starting
|
||
/// from the end of the slice.
|
||
///
|
||
/// This struct is created by the [`rsplitn`] method on [slices].
|
||
///
|
||
/// [`rsplitn`]: ../../std/primitive.slice.html#method.rsplitn
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct RSplitN<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: GenericSplitN<RSplit<'a, T, P>>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for RSplitN<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("RSplitN").field("inner", &self.inner).finish()
|
||
}
|
||
}
|
||
|
||
/// An iterator over subslices separated by elements that match a predicate
|
||
/// function, limited to a given number of splits.
|
||
///
|
||
/// This struct is created by the [`splitn_mut`] method on [slices].
|
||
///
|
||
/// [`splitn_mut`]: ../../std/primitive.slice.html#method.splitn_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct SplitNMut<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: GenericSplitN<SplitMut<'a, T, P>>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for SplitNMut<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("SplitNMut").field("inner", &self.inner).finish()
|
||
}
|
||
}
|
||
|
||
/// An iterator over subslices separated by elements that match a
|
||
/// predicate function, limited to a given number of splits, starting
|
||
/// from the end of the slice.
|
||
///
|
||
/// This struct is created by the [`rsplitn_mut`] method on [slices].
|
||
///
|
||
/// [`rsplitn_mut`]: ../../std/primitive.slice.html#method.rsplitn_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct RSplitNMut<'a, T: 'a, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
inner: GenericSplitN<RSplitMut<'a, T, P>>,
|
||
}
|
||
|
||
#[stable(feature = "core_impl_debug", since = "1.9.0")]
|
||
impl<T: fmt::Debug, P> fmt::Debug for RSplitNMut<'_, T, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
f.debug_struct("RSplitNMut").field("inner", &self.inner).finish()
|
||
}
|
||
}
|
||
|
||
macro_rules! forward_iterator {
|
||
($name:ident: $elem:ident, $iter_of:ty) => {
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, $elem, P> Iterator for $name<'a, $elem, P>
|
||
where
|
||
P: FnMut(&T) -> bool,
|
||
{
|
||
type Item = $iter_of;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<$iter_of> {
|
||
self.inner.next()
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<'a, $elem, P> FusedIterator for $name<'a, $elem, P> where P: FnMut(&T) -> bool {}
|
||
};
|
||
}
|
||
|
||
forward_iterator! { SplitN: T, &'a [T] }
|
||
forward_iterator! { RSplitN: T, &'a [T] }
|
||
forward_iterator! { SplitNMut: T, &'a mut [T] }
|
||
forward_iterator! { RSplitNMut: T, &'a mut [T] }
|
||
|
||
/// An iterator over overlapping subslices of length `size`.
|
||
///
|
||
/// This struct is created by the [`windows`] method on [slices].
|
||
///
|
||
/// [`windows`]: ../../std/primitive.slice.html#method.windows
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Windows<'a, T: 'a> {
|
||
v: &'a [T],
|
||
size: usize,
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> Clone for Windows<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
Windows { v: self.v, size: self.size }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> Iterator for Windows<'a, T> {
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.size > self.v.len() {
|
||
None
|
||
} else {
|
||
let ret = Some(&self.v[..self.size]);
|
||
self.v = &self.v[1..];
|
||
ret
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.size > self.v.len() {
|
||
(0, Some(0))
|
||
} else {
|
||
let size = self.v.len() - self.size + 1;
|
||
(size, Some(size))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (end, overflow) = self.size.overflowing_add(n);
|
||
if end > self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let nth = &self.v[n..end];
|
||
self.v = &self.v[n + 1..];
|
||
Some(nth)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(self) -> Option<Self::Item> {
|
||
if self.size > self.v.len() {
|
||
None
|
||
} else {
|
||
let start = self.v.len() - self.size;
|
||
Some(&self.v[start..])
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> DoubleEndedIterator for Windows<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.size > self.v.len() {
|
||
None
|
||
} else {
|
||
let ret = Some(&self.v[self.v.len() - self.size..]);
|
||
self.v = &self.v[..self.v.len() - 1];
|
||
ret
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (end, overflow) = self.v.len().overflowing_sub(n);
|
||
if end < self.size || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let ret = &self.v[end - self.size..end];
|
||
self.v = &self.v[..end - 1];
|
||
Some(ret)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> ExactSizeIterator for Windows<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for Windows<'_, T> {}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T> FusedIterator for Windows<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
unsafe impl<'a, T> TrustedRandomAccess for Windows<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
|
||
// SAFETY: since the caller guarantees that `i` is in bounds,
|
||
// which means that `i` cannot overflow an `isize`, and the
|
||
// slice created by `from_raw_parts` is a subslice of `self.v`
|
||
// thus is guaranteed to be valid for the lifetime `'a` of `self.v`.
|
||
unsafe { from_raw_parts(self.v.as_ptr().add(i), self.size) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
|
||
/// time), starting at the beginning of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last slice
|
||
/// of the iteration will be the remainder.
|
||
///
|
||
/// This struct is created by the [`chunks`] method on [slices].
|
||
///
|
||
/// [`chunks`]: ../../std/primitive.slice.html#method.chunks
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Chunks<'a, T: 'a> {
|
||
v: &'a [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> Clone for Chunks<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
Chunks { v: self.v, chunk_size: self.chunk_size }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> Iterator for Chunks<'a, T> {
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let chunksz = cmp::min(self.v.len(), self.chunk_size);
|
||
let (fst, snd) = self.v.split_at(chunksz);
|
||
self.v = snd;
|
||
Some(fst)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.v.is_empty() {
|
||
(0, Some(0))
|
||
} else {
|
||
let n = self.v.len() / self.chunk_size;
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let n = if rem > 0 { n + 1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (start, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if start >= self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
Some(sum) => cmp::min(self.v.len(), sum),
|
||
None => self.v.len(),
|
||
};
|
||
let nth = &self.v[start..end];
|
||
self.v = &self.v[end..];
|
||
Some(nth)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(self) -> Option<Self::Item> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let start = (self.v.len() - 1) / self.chunk_size * self.chunk_size;
|
||
Some(&self.v[start..])
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> DoubleEndedIterator for Chunks<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.chunk_size;
|
||
let chunksz = if remainder != 0 { remainder } else { self.chunk_size };
|
||
let (fst, snd) = self.v.split_at(self.v.len() - chunksz);
|
||
self.v = fst;
|
||
Some(snd)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let start = (len - 1 - n) * self.chunk_size;
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
Some(res) => cmp::min(res, self.v.len()),
|
||
None => self.v.len(),
|
||
};
|
||
let nth_back = &self.v[start..end];
|
||
self.v = &self.v[..start];
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> ExactSizeIterator for Chunks<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for Chunks<'_, T> {}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T> FusedIterator for Chunks<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
unsafe impl<'a, T> TrustedRandomAccess for Chunks<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
|
||
let start = i * self.chunk_size;
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
None => self.v.len(),
|
||
Some(end) => cmp::min(end, self.v.len()),
|
||
};
|
||
// SAFETY: the caller guarantees that `i` is in bounds,
|
||
// which means that `start` must be in bounds of the
|
||
// underlying `self.v` slice, and we made sure that `end`
|
||
// is also in bounds of `self.v`. Thus, `start` cannot overflow
|
||
// an `isize`, and the slice constructed by `from_raw_parts`
|
||
// is a subslice of `self.v` which is guaranteed to be valid
|
||
// for the lifetime `'a` of `self.v`.
|
||
unsafe { from_raw_parts(self.v.as_ptr().add(start), end - start) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
|
||
/// elements at a time), starting at the beginning of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last slice
|
||
/// of the iteration will be the remainder.
|
||
///
|
||
/// This struct is created by the [`chunks_mut`] method on [slices].
|
||
///
|
||
/// [`chunks_mut`]: ../../std/primitive.slice.html#method.chunks_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct ChunksMut<'a, T: 'a> {
|
||
v: &'a mut [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> Iterator for ChunksMut<'a, T> {
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let sz = cmp::min(self.v.len(), self.chunk_size);
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(sz);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.v.is_empty() {
|
||
(0, Some(0))
|
||
} else {
|
||
let n = self.v.len() / self.chunk_size;
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let n = if rem > 0 { n + 1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
|
||
let (start, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if start >= self.v.len() || overflow {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
Some(sum) => cmp::min(self.v.len(), sum),
|
||
None => self.v.len(),
|
||
};
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(end);
|
||
let (_, nth) = head.split_at_mut(start);
|
||
self.v = tail;
|
||
Some(nth)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(self) -> Option<Self::Item> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let start = (self.v.len() - 1) / self.chunk_size * self.chunk_size;
|
||
Some(&mut self.v[start..])
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, T> DoubleEndedIterator for ChunksMut<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.chunk_size;
|
||
let sz = if remainder != 0 { remainder } else { self.chunk_size };
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (head, tail) = tmp.split_at_mut(tmp_len - sz);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
let start = (len - 1 - n) * self.chunk_size;
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
Some(res) => cmp::min(res, self.v.len()),
|
||
None => self.v.len(),
|
||
};
|
||
let (temp, _tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
|
||
let (head, nth_back) = temp.split_at_mut(start);
|
||
self.v = head;
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T> ExactSizeIterator for ChunksMut<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for ChunksMut<'_, T> {}
|
||
|
||
#[stable(feature = "fused", since = "1.26.0")]
|
||
impl<T> FusedIterator for ChunksMut<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
unsafe impl<'a, T> TrustedRandomAccess for ChunksMut<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
|
||
let start = i * self.chunk_size;
|
||
let end = match start.checked_add(self.chunk_size) {
|
||
None => self.v.len(),
|
||
Some(end) => cmp::min(end, self.v.len()),
|
||
};
|
||
// SAFETY: see comments for `Chunks::get_unchecked`.
|
||
unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), end - start) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
|
||
/// time), starting at the beginning of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last
|
||
/// up to `chunk_size-1` elements will be omitted but can be retrieved from
|
||
/// the [`remainder`] function from the iterator.
|
||
///
|
||
/// This struct is created by the [`chunks_exact`] method on [slices].
|
||
///
|
||
/// [`chunks_exact`]: ../../std/primitive.slice.html#method.chunks_exact
|
||
/// [`remainder`]: ../../std/slice/struct.ChunksExact.html#method.remainder
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
pub struct ChunksExact<'a, T: 'a> {
|
||
v: &'a [T],
|
||
rem: &'a [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
impl<'a, T> ChunksExact<'a, T> {
|
||
/// Returns the remainder of the original slice that is not going to be
|
||
/// returned by the iterator. The returned slice has at most `chunk_size-1`
|
||
/// elements.
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
pub fn remainder(&self) -> &'a [T] {
|
||
self.rem
|
||
}
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<T> Clone for ChunksExact<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
ChunksExact { v: self.v, rem: self.rem, chunk_size: self.chunk_size }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<'a, T> Iterator for ChunksExact<'a, T> {
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(self.chunk_size);
|
||
self.v = snd;
|
||
Some(fst)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let n = self.v.len() / self.chunk_size;
|
||
(n, Some(n))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (start, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if start >= self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let (_, snd) = self.v.split_at(start);
|
||
self.v = snd;
|
||
self.next()
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<Self::Item> {
|
||
self.next_back()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for ChunksExact<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(self.v.len() - self.chunk_size);
|
||
self.v = fst;
|
||
Some(snd)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let start = (len - 1 - n) * self.chunk_size;
|
||
let end = start + self.chunk_size;
|
||
let nth_back = &self.v[start..end];
|
||
self.v = &self.v[..start];
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<T> ExactSizeIterator for ChunksExact<'_, T> {
|
||
fn is_empty(&self) -> bool {
|
||
self.v.is_empty()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for ChunksExact<'_, T> {}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<T> FusedIterator for ChunksExact<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for ChunksExact<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
|
||
let start = i * self.chunk_size;
|
||
// SAFETY: mostly identical to `Chunks::get_unchecked`.
|
||
unsafe { from_raw_parts(self.v.as_ptr().add(start), self.chunk_size) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
|
||
/// elements at a time), starting at the beginning of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last up to
|
||
/// `chunk_size-1` elements will be omitted but can be retrieved from the
|
||
/// [`into_remainder`] function from the iterator.
|
||
///
|
||
/// This struct is created by the [`chunks_exact_mut`] method on [slices].
|
||
///
|
||
/// [`chunks_exact_mut`]: ../../std/primitive.slice.html#method.chunks_exact_mut
|
||
/// [`into_remainder`]: ../../std/slice/struct.ChunksExactMut.html#method.into_remainder
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
pub struct ChunksExactMut<'a, T: 'a> {
|
||
v: &'a mut [T],
|
||
rem: &'a mut [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
impl<'a, T> ChunksExactMut<'a, T> {
|
||
/// Returns the remainder of the original slice that is not going to be
|
||
/// returned by the iterator. The returned slice has at most `chunk_size-1`
|
||
/// elements.
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
pub fn into_remainder(self) -> &'a mut [T] {
|
||
self.rem
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<'a, T> Iterator for ChunksExactMut<'a, T> {
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(self.chunk_size);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let n = self.v.len() / self.chunk_size;
|
||
(n, Some(n))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
|
||
let (start, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if start >= self.v.len() || overflow {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (_, snd) = tmp.split_at_mut(start);
|
||
self.v = snd;
|
||
self.next()
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<Self::Item> {
|
||
self.next_back()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for ChunksExactMut<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (head, tail) = tmp.split_at_mut(tmp_len - self.chunk_size);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
let start = (len - 1 - n) * self.chunk_size;
|
||
let end = start + self.chunk_size;
|
||
let (temp, _tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
|
||
let (head, nth_back) = temp.split_at_mut(start);
|
||
self.v = head;
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<T> ExactSizeIterator for ChunksExactMut<'_, T> {
|
||
fn is_empty(&self) -> bool {
|
||
self.v.is_empty()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for ChunksExactMut<'_, T> {}
|
||
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
impl<T> FusedIterator for ChunksExactMut<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for ChunksExactMut<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
|
||
let start = i * self.chunk_size;
|
||
// SAFETY: see comments for `ChunksExactMut::get_unchecked`.
|
||
unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), self.chunk_size) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) chunks (`N` elements at a
|
||
/// time), starting at the beginning of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last
|
||
/// up to `chunk_size-1` elements will be omitted but can be retrieved from
|
||
/// the [`remainder`] function from the iterator.
|
||
///
|
||
/// This struct is created by the [`array_chunks`] method on [slices].
|
||
///
|
||
/// [`array_chunks`]: ../../std/primitive.slice.html#method.array_chunks
|
||
/// [`remainder`]: ../../std/slice/struct.ArrayChunks.html#method.remainder
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
pub struct ArrayChunks<'a, T: 'a, const N: usize> {
|
||
v: &'a [T],
|
||
rem: &'a [T],
|
||
}
|
||
|
||
impl<'a, T, const N: usize> ArrayChunks<'a, T, N> {
|
||
/// Returns the remainder of the original slice that is not going to be
|
||
/// returned by the iterator. The returned slice has at most `chunk_size-1`
|
||
/// elements.
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
pub fn remainder(&self) -> &'a [T] {
|
||
self.rem
|
||
}
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
impl<T, const N: usize> Clone for ArrayChunks<'_, T, N> {
|
||
fn clone(&self) -> Self {
|
||
ArrayChunks { v: self.v, rem: self.rem }
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
impl<'a, T, const N: usize> Iterator for ArrayChunks<'a, T, N> {
|
||
type Item = &'a [T; N];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T; N]> {
|
||
if self.v.len() < N {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(N);
|
||
self.v = snd;
|
||
// SAFETY: This is safe as fst is exactly N elements long.
|
||
let ptr = fst.as_ptr() as *const [T; N];
|
||
unsafe { Some(&*ptr) }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let n = self.v.len() / N;
|
||
(n, Some(n))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (start, overflow) = n.overflowing_mul(N);
|
||
if start >= self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let (_, snd) = self.v.split_at(start);
|
||
self.v = snd;
|
||
self.next()
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<Self::Item> {
|
||
self.next_back()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
impl<'a, T, const N: usize> DoubleEndedIterator for ArrayChunks<'a, T, N> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T; N]> {
|
||
if self.v.len() < N {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(self.v.len() - N);
|
||
self.v = fst;
|
||
// SAFETY: This is safe as snd is exactly N elements long.
|
||
let ptr = snd.as_ptr() as *const [T; N];
|
||
unsafe { Some(&*ptr) }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let start = (len - 1 - n) * N;
|
||
let end = start + N;
|
||
let nth_back = &self.v[start..end];
|
||
self.v = &self.v[..start];
|
||
// SAFETY: This is safe as snd is exactly N elements long.
|
||
let ptr = nth_back.as_ptr() as *const [T; N];
|
||
unsafe { Some(&*ptr) }
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
impl<T, const N: usize> ExactSizeIterator for ArrayChunks<'_, T, N> {
|
||
fn is_empty(&self) -> bool {
|
||
self.v.is_empty()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T, const N: usize> TrustedLen for ArrayChunks<'_, T, N> {}
|
||
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
impl<T, const N: usize> FusedIterator for ArrayChunks<'_, T, N> {}
|
||
|
||
#[doc(hidden)]
|
||
#[unstable(feature = "array_chunks", issue = "none")]
|
||
unsafe impl<'a, T, const N: usize> TrustedRandomAccess for ArrayChunks<'a, T, N> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T; N] {
|
||
let start = i * N;
|
||
// SAFETY: This is safe as `i` must be less than `self.size_hint`.
|
||
let segment = unsafe { from_raw_parts(self.v.as_ptr().add(start), N) };
|
||
// SAFETY: This is safe as segment is exactly `N` elements long.
|
||
unsafe { &*(segment.as_ptr() as *const [T; N]) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
|
||
/// time), starting at the end of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last slice
|
||
/// of the iteration will be the remainder.
|
||
///
|
||
/// This struct is created by the [`rchunks`] method on [slices].
|
||
///
|
||
/// [`rchunks`]: ../../std/primitive.slice.html#method.rchunks
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub struct RChunks<'a, T: 'a> {
|
||
v: &'a [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> Clone for RChunks<'_, T> {
|
||
fn clone(&self) -> Self {
|
||
RChunks { v: self.v, chunk_size: self.chunk_size }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> Iterator for RChunks<'a, T> {
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let chunksz = cmp::min(self.v.len(), self.chunk_size);
|
||
let (fst, snd) = self.v.split_at(self.v.len() - chunksz);
|
||
self.v = fst;
|
||
Some(snd)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.v.is_empty() {
|
||
(0, Some(0))
|
||
} else {
|
||
let n = self.v.len() / self.chunk_size;
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let n = if rem > 0 { n + 1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (end, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if end >= self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
// Can't underflow because of the check above
|
||
let end = self.v.len() - end;
|
||
let start = match end.checked_sub(self.chunk_size) {
|
||
Some(sum) => sum,
|
||
None => 0,
|
||
};
|
||
let nth = &self.v[start..end];
|
||
self.v = &self.v[0..start];
|
||
Some(nth)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(self) -> Option<Self::Item> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let end = if rem == 0 { self.chunk_size } else { rem };
|
||
Some(&self.v[0..end])
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for RChunks<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.chunk_size;
|
||
let chunksz = if remainder != 0 { remainder } else { self.chunk_size };
|
||
let (fst, snd) = self.v.split_at(chunksz);
|
||
self.v = snd;
|
||
Some(fst)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
// can't underflow because `n < len`
|
||
let offset_from_end = (len - 1 - n) * self.chunk_size;
|
||
let end = self.v.len() - offset_from_end;
|
||
let start = end.saturating_sub(self.chunk_size);
|
||
let nth_back = &self.v[start..end];
|
||
self.v = &self.v[end..];
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> ExactSizeIterator for RChunks<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for RChunks<'_, T> {}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> FusedIterator for RChunks<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for RChunks<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
|
||
let end = self.v.len() - i * self.chunk_size;
|
||
let start = match end.checked_sub(self.chunk_size) {
|
||
None => 0,
|
||
Some(start) => start,
|
||
};
|
||
// SAFETY: mostly identical to `Chunks::get_unchecked`.
|
||
unsafe { from_raw_parts(self.v.as_ptr().add(start), end - start) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
|
||
/// elements at a time), starting at the end of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last slice
|
||
/// of the iteration will be the remainder.
|
||
///
|
||
/// This struct is created by the [`rchunks_mut`] method on [slices].
|
||
///
|
||
/// [`rchunks_mut`]: ../../std/primitive.slice.html#method.rchunks_mut
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub struct RChunksMut<'a, T: 'a> {
|
||
v: &'a mut [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> Iterator for RChunksMut<'a, T> {
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let sz = cmp::min(self.v.len(), self.chunk_size);
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (head, tail) = tmp.split_at_mut(tmp_len - sz);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
if self.v.is_empty() {
|
||
(0, Some(0))
|
||
} else {
|
||
let n = self.v.len() / self.chunk_size;
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let n = if rem > 0 { n + 1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
|
||
let (end, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if end >= self.v.len() || overflow {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
// Can't underflow because of the check above
|
||
let end = self.v.len() - end;
|
||
let start = match end.checked_sub(self.chunk_size) {
|
||
Some(sum) => sum,
|
||
None => 0,
|
||
};
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(start);
|
||
let (nth, _) = tail.split_at_mut(end - start);
|
||
self.v = head;
|
||
Some(nth)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(self) -> Option<Self::Item> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let rem = self.v.len() % self.chunk_size;
|
||
let end = if rem == 0 { self.chunk_size } else { rem };
|
||
Some(&mut self.v[0..end])
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for RChunksMut<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.is_empty() {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.chunk_size;
|
||
let sz = if remainder != 0 { remainder } else { self.chunk_size };
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(sz);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
// can't underflow because `n < len`
|
||
let offset_from_end = (len - 1 - n) * self.chunk_size;
|
||
let end = self.v.len() - offset_from_end;
|
||
let start = end.saturating_sub(self.chunk_size);
|
||
let (tmp, tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
|
||
let (_, nth_back) = tmp.split_at_mut(start);
|
||
self.v = tail;
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> ExactSizeIterator for RChunksMut<'_, T> {}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for RChunksMut<'_, T> {}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> FusedIterator for RChunksMut<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for RChunksMut<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
|
||
let end = self.v.len() - i * self.chunk_size;
|
||
let start = match end.checked_sub(self.chunk_size) {
|
||
None => 0,
|
||
Some(start) => start,
|
||
};
|
||
// SAFETY: see comments for `RChunks::get_unchecked`.
|
||
unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), end - start) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) chunks (`chunk_size` elements at a
|
||
/// time), starting at the end of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last
|
||
/// up to `chunk_size-1` elements will be omitted but can be retrieved from
|
||
/// the [`remainder`] function from the iterator.
|
||
///
|
||
/// This struct is created by the [`rchunks_exact`] method on [slices].
|
||
///
|
||
/// [`rchunks_exact`]: ../../std/primitive.slice.html#method.rchunks_exact
|
||
/// [`remainder`]: ../../std/slice/struct.ChunksExact.html#method.remainder
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub struct RChunksExact<'a, T: 'a> {
|
||
v: &'a [T],
|
||
rem: &'a [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
impl<'a, T> RChunksExact<'a, T> {
|
||
/// Returns the remainder of the original slice that is not going to be
|
||
/// returned by the iterator. The returned slice has at most `chunk_size-1`
|
||
/// elements.
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub fn remainder(&self) -> &'a [T] {
|
||
self.rem
|
||
}
|
||
}
|
||
|
||
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> Clone for RChunksExact<'a, T> {
|
||
fn clone(&self) -> RChunksExact<'a, T> {
|
||
RChunksExact { v: self.v, rem: self.rem, chunk_size: self.chunk_size }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> Iterator for RChunksExact<'a, T> {
|
||
type Item = &'a [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(self.v.len() - self.chunk_size);
|
||
self.v = fst;
|
||
Some(snd)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let n = self.v.len() / self.chunk_size;
|
||
(n, Some(n))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
let (end, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if end >= self.v.len() || overflow {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
let (fst, _) = self.v.split_at(self.v.len() - end);
|
||
self.v = fst;
|
||
self.next()
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<Self::Item> {
|
||
self.next_back()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for RChunksExact<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let (fst, snd) = self.v.split_at(self.chunk_size);
|
||
self.v = snd;
|
||
Some(fst)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &[];
|
||
None
|
||
} else {
|
||
// now that we know that `n` corresponds to a chunk,
|
||
// none of these operations can underflow/overflow
|
||
let offset = (len - n) * self.chunk_size;
|
||
let start = self.v.len() - offset;
|
||
let end = start + self.chunk_size;
|
||
let nth_back = &self.v[start..end];
|
||
self.v = &self.v[end..];
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> ExactSizeIterator for RChunksExact<'a, T> {
|
||
fn is_empty(&self) -> bool {
|
||
self.v.is_empty()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for RChunksExact<'_, T> {}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> FusedIterator for RChunksExact<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for RChunksExact<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a [T] {
|
||
let end = self.v.len() - i * self.chunk_size;
|
||
let start = end - self.chunk_size;
|
||
// SAFETY: mostmy identical to `Chunks::get_unchecked`.
|
||
unsafe { from_raw_parts(self.v.as_ptr().add(start), self.chunk_size) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
/// An iterator over a slice in (non-overlapping) mutable chunks (`chunk_size`
|
||
/// elements at a time), starting at the end of the slice.
|
||
///
|
||
/// When the slice len is not evenly divided by the chunk size, the last up to
|
||
/// `chunk_size-1` elements will be omitted but can be retrieved from the
|
||
/// [`into_remainder`] function from the iterator.
|
||
///
|
||
/// This struct is created by the [`rchunks_exact_mut`] method on [slices].
|
||
///
|
||
/// [`rchunks_exact_mut`]: ../../std/primitive.slice.html#method.rchunks_exact_mut
|
||
/// [`into_remainder`]: ../../std/slice/struct.ChunksExactMut.html#method.into_remainder
|
||
/// [slices]: ../../std/primitive.slice.html
|
||
#[derive(Debug)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub struct RChunksExactMut<'a, T: 'a> {
|
||
v: &'a mut [T],
|
||
rem: &'a mut [T],
|
||
chunk_size: usize,
|
||
}
|
||
|
||
impl<'a, T> RChunksExactMut<'a, T> {
|
||
/// Returns the remainder of the original slice that is not going to be
|
||
/// returned by the iterator. The returned slice has at most `chunk_size-1`
|
||
/// elements.
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
pub fn into_remainder(self) -> &'a mut [T] {
|
||
self.rem
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> Iterator for RChunksExactMut<'a, T> {
|
||
type Item = &'a mut [T];
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (head, tail) = tmp.split_at_mut(tmp_len - self.chunk_size);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let n = self.v.len() / self.chunk_size;
|
||
(n, Some(n))
|
||
}
|
||
|
||
#[inline]
|
||
fn count(self) -> usize {
|
||
self.len()
|
||
}
|
||
|
||
#[inline]
|
||
fn nth(&mut self, n: usize) -> Option<&'a mut [T]> {
|
||
let (end, overflow) = n.overflowing_mul(self.chunk_size);
|
||
if end >= self.v.len() || overflow {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (fst, _) = tmp.split_at_mut(tmp_len - end);
|
||
self.v = fst;
|
||
self.next()
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn last(mut self) -> Option<Self::Item> {
|
||
self.next_back()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<'a, T> DoubleEndedIterator for RChunksExactMut<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() < self.chunk_size {
|
||
None
|
||
} else {
|
||
let tmp = mem::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.split_at_mut(self.chunk_size);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
|
||
let len = self.len();
|
||
if n >= len {
|
||
self.v = &mut [];
|
||
None
|
||
} else {
|
||
// now that we know that `n` corresponds to a chunk,
|
||
// none of these operations can underflow/overflow
|
||
let offset = (len - n) * self.chunk_size;
|
||
let start = self.v.len() - offset;
|
||
let end = start + self.chunk_size;
|
||
let (tmp, tail) = mem::replace(&mut self.v, &mut []).split_at_mut(end);
|
||
let (_, nth_back) = tmp.split_at_mut(start);
|
||
self.v = tail;
|
||
Some(nth_back)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> ExactSizeIterator for RChunksExactMut<'_, T> {
|
||
fn is_empty(&self) -> bool {
|
||
self.v.is_empty()
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "trusted_len", issue = "37572")]
|
||
unsafe impl<T> TrustedLen for RChunksExactMut<'_, T> {}
|
||
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
impl<T> FusedIterator for RChunksExactMut<'_, T> {}
|
||
|
||
#[doc(hidden)]
|
||
#[stable(feature = "rchunks", since = "1.31.0")]
|
||
unsafe impl<'a, T> TrustedRandomAccess for RChunksExactMut<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut [T] {
|
||
let end = self.v.len() - i * self.chunk_size;
|
||
let start = end - self.chunk_size;
|
||
// SAFETY: see comments for `RChunksExact::get_unchecked`.
|
||
unsafe { from_raw_parts_mut(self.v.as_mut_ptr().add(start), self.chunk_size) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
//
|
||
// Free functions
|
||
//
|
||
|
||
/// Forms a slice from a pointer and a length.
|
||
///
|
||
/// The `len` argument is the number of **elements**, not the number of bytes.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// Behavior is undefined if any of the following conditions are violated:
|
||
///
|
||
/// * `data` must be [valid] for reads for `len * mem::size_of::<T>()` many bytes,
|
||
/// and it must be properly aligned. This means in particular:
|
||
///
|
||
/// * The entire memory range of this slice must be contained within a single allocated object!
|
||
/// Slices can never span across multiple allocated objects. See [below](#incorrect-usage)
|
||
/// for an example incorrectly not taking this into account.
|
||
/// * `data` must be non-null and aligned even for zero-length slices. One
|
||
/// reason for this is that enum layout optimizations may rely on references
|
||
/// (including slices of any length) being aligned and non-null to distinguish
|
||
/// them from other data. You can obtain a pointer that is usable as `data`
|
||
/// for zero-length slices using [`NonNull::dangling()`].
|
||
///
|
||
/// * The memory referenced by the returned slice must not be mutated for the duration
|
||
/// of lifetime `'a`, except inside an `UnsafeCell`.
|
||
///
|
||
/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
|
||
/// See the safety documentation of [`pointer::offset`].
|
||
///
|
||
/// # Caveat
|
||
///
|
||
/// The lifetime for the returned slice is inferred from its usage. To
|
||
/// prevent accidental misuse, it's suggested to tie the lifetime to whichever
|
||
/// source lifetime is safe in the context, such as by providing a helper
|
||
/// function taking the lifetime of a host value for the slice, or by explicit
|
||
/// annotation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::slice;
|
||
///
|
||
/// // manifest a slice for a single element
|
||
/// let x = 42;
|
||
/// let ptr = &x as *const _;
|
||
/// let slice = unsafe { slice::from_raw_parts(ptr, 1) };
|
||
/// assert_eq!(slice[0], 42);
|
||
/// ```
|
||
///
|
||
/// ### Incorrect usage
|
||
///
|
||
/// The following `join_slices` function is **unsound** ⚠️
|
||
///
|
||
/// ```rust,no_run
|
||
/// use std::slice;
|
||
///
|
||
/// fn join_slices<'a, T>(fst: &'a [T], snd: &'a [T]) -> &'a [T] {
|
||
/// let fst_end = fst.as_ptr().wrapping_add(fst.len());
|
||
/// let snd_start = snd.as_ptr();
|
||
/// assert_eq!(fst_end, snd_start, "Slices must be contiguous!");
|
||
/// unsafe {
|
||
/// // The assertion above ensures `fst` and `snd` are contiguous, but they might
|
||
/// // still be contained within _different allocated objects_, in which case
|
||
/// // creating this slice is undefined behavior.
|
||
/// slice::from_raw_parts(fst.as_ptr(), fst.len() + snd.len())
|
||
/// }
|
||
/// }
|
||
///
|
||
/// fn main() {
|
||
/// // `a` and `b` are different allocated objects...
|
||
/// let a = 42;
|
||
/// let b = 27;
|
||
/// // ... which may nevertheless be laid out contiguously in memory: | a | b |
|
||
/// let _ = join_slices(slice::from_ref(&a), slice::from_ref(&b)); // UB
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// [valid]: ../../std/ptr/index.html#safety
|
||
/// [`NonNull::dangling()`]: ../../std/ptr/struct.NonNull.html#method.dangling
|
||
/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub unsafe fn from_raw_parts<'a, T>(data: *const T, len: usize) -> &'a [T] {
|
||
debug_assert!(is_aligned_and_not_null(data), "attempt to create unaligned or null slice");
|
||
debug_assert!(
|
||
mem::size_of::<T>().saturating_mul(len) <= isize::MAX as usize,
|
||
"attempt to create slice covering at least half the address space"
|
||
);
|
||
// SAFETY: the caller must uphold the safety contract for `from_raw_parts`.
|
||
unsafe { &*ptr::slice_from_raw_parts(data, len) }
|
||
}
|
||
|
||
/// Performs the same functionality as [`from_raw_parts`], except that a
|
||
/// mutable slice is returned.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// Behavior is undefined if any of the following conditions are violated:
|
||
///
|
||
/// * `data` must be [valid] for boths reads and writes for `len * mem::size_of::<T>()` many bytes,
|
||
/// and it must be properly aligned. This means in particular:
|
||
///
|
||
/// * The entire memory range of this slice must be contained within a single allocated object!
|
||
/// Slices can never span across multiple allocated objects.
|
||
/// * `data` must be non-null and aligned even for zero-length slices. One
|
||
/// reason for this is that enum layout optimizations may rely on references
|
||
/// (including slices of any length) being aligned and non-null to distinguish
|
||
/// them from other data. You can obtain a pointer that is usable as `data`
|
||
/// for zero-length slices using [`NonNull::dangling()`].
|
||
///
|
||
/// * The memory referenced by the returned slice must not be accessed through any other pointer
|
||
/// (not derived from the return value) for the duration of lifetime `'a`.
|
||
/// Both read and write accesses are forbidden.
|
||
///
|
||
/// * The total size `len * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
|
||
/// See the safety documentation of [`pointer::offset`].
|
||
///
|
||
/// [valid]: ../../std/ptr/index.html#safety
|
||
/// [`NonNull::dangling()`]: ../../std/ptr/struct.NonNull.html#method.dangling
|
||
/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
|
||
/// [`from_raw_parts`]: ../../std/slice/fn.from_raw_parts.html
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub unsafe fn from_raw_parts_mut<'a, T>(data: *mut T, len: usize) -> &'a mut [T] {
|
||
debug_assert!(is_aligned_and_not_null(data), "attempt to create unaligned or null slice");
|
||
debug_assert!(
|
||
mem::size_of::<T>().saturating_mul(len) <= isize::MAX as usize,
|
||
"attempt to create slice covering at least half the address space"
|
||
);
|
||
// SAFETY: the caller must uphold the safety contract for `from_raw_parts_mut`.
|
||
unsafe { &mut *ptr::slice_from_raw_parts_mut(data, len) }
|
||
}
|
||
|
||
/// Converts a reference to T into a slice of length 1 (without copying).
|
||
#[stable(feature = "from_ref", since = "1.28.0")]
|
||
pub fn from_ref<T>(s: &T) -> &[T] {
|
||
unsafe { from_raw_parts(s, 1) }
|
||
}
|
||
|
||
/// Converts a reference to T into a slice of length 1 (without copying).
|
||
#[stable(feature = "from_ref", since = "1.28.0")]
|
||
pub fn from_mut<T>(s: &mut T) -> &mut [T] {
|
||
unsafe { from_raw_parts_mut(s, 1) }
|
||
}
|
||
|
||
// This function is public only because there is no other way to unit test heapsort.
|
||
#[unstable(feature = "sort_internals", reason = "internal to sort module", issue = "none")]
|
||
#[doc(hidden)]
|
||
pub fn heapsort<T, F>(v: &mut [T], mut is_less: F)
|
||
where
|
||
F: FnMut(&T, &T) -> bool,
|
||
{
|
||
sort::heapsort(v, &mut is_less);
|
||
}
|
||
|
||
//
|
||
// Comparison traits
|
||
//
|
||
|
||
extern "C" {
|
||
/// Calls implementation provided memcmp.
|
||
///
|
||
/// Interprets the data as u8.
|
||
///
|
||
/// Returns 0 for equal, < 0 for less than and > 0 for greater
|
||
/// than.
|
||
// FIXME(#32610): Return type should be c_int
|
||
fn memcmp(s1: *const u8, s2: *const u8, n: usize) -> i32;
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<A, B> PartialEq<[B]> for [A]
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
fn eq(&self, other: &[B]) -> bool {
|
||
SlicePartialEq::equal(self, other)
|
||
}
|
||
|
||
fn ne(&self, other: &[B]) -> bool {
|
||
SlicePartialEq::not_equal(self, other)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: Eq> Eq for [T] {}
|
||
|
||
/// Implements comparison of vectors lexicographically.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: Ord> Ord for [T] {
|
||
fn cmp(&self, other: &[T]) -> Ordering {
|
||
SliceOrd::compare(self, other)
|
||
}
|
||
}
|
||
|
||
/// Implements comparison of vectors lexicographically.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: PartialOrd> PartialOrd for [T] {
|
||
fn partial_cmp(&self, other: &[T]) -> Option<Ordering> {
|
||
SlicePartialOrd::partial_compare(self, other)
|
||
}
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
// intermediate trait for specialization of slice's PartialEq
|
||
trait SlicePartialEq<B> {
|
||
fn equal(&self, other: &[B]) -> bool;
|
||
|
||
fn not_equal(&self, other: &[B]) -> bool {
|
||
!self.equal(other)
|
||
}
|
||
}
|
||
|
||
// Generic slice equality
|
||
impl<A, B> SlicePartialEq<B> for [A]
|
||
where
|
||
A: PartialEq<B>,
|
||
{
|
||
default fn equal(&self, other: &[B]) -> bool {
|
||
if self.len() != other.len() {
|
||
return false;
|
||
}
|
||
|
||
self.iter().zip(other.iter()).all(|(x, y)| x == y)
|
||
}
|
||
}
|
||
|
||
// Use an equal-pointer optimization when types are `Eq`
|
||
impl<A> SlicePartialEq<A> for [A]
|
||
where
|
||
A: PartialEq<A> + Eq,
|
||
{
|
||
default fn equal(&self, other: &[A]) -> bool {
|
||
if self.len() != other.len() {
|
||
return false;
|
||
}
|
||
|
||
// While performance would suffer if `guaranteed_eq` just returned `false`
|
||
// for all arguments, correctness and return value of this function are not affected.
|
||
if self.as_ptr().guaranteed_eq(other.as_ptr()) {
|
||
return true;
|
||
}
|
||
|
||
self.iter().zip(other.iter()).all(|(x, y)| x == y)
|
||
}
|
||
}
|
||
|
||
// Use memcmp for bytewise equality when the types allow
|
||
impl<A> SlicePartialEq<A> for [A]
|
||
where
|
||
A: PartialEq<A> + BytewiseEquality,
|
||
{
|
||
fn equal(&self, other: &[A]) -> bool {
|
||
if self.len() != other.len() {
|
||
return false;
|
||
}
|
||
|
||
// While performance would suffer if `guaranteed_eq` just returned `false`
|
||
// for all arguments, correctness and return value of this function are not affected.
|
||
if self.as_ptr().guaranteed_eq(other.as_ptr()) {
|
||
return true;
|
||
}
|
||
unsafe {
|
||
let size = mem::size_of_val(self);
|
||
memcmp(self.as_ptr() as *const u8, other.as_ptr() as *const u8, size) == 0
|
||
}
|
||
}
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
// intermediate trait for specialization of slice's PartialOrd
|
||
trait SlicePartialOrd: Sized {
|
||
fn partial_compare(left: &[Self], right: &[Self]) -> Option<Ordering>;
|
||
}
|
||
|
||
impl<A: PartialOrd> SlicePartialOrd for A {
|
||
default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
|
||
let l = cmp::min(left.len(), right.len());
|
||
|
||
// Slice to the loop iteration range to enable bound check
|
||
// elimination in the compiler
|
||
let lhs = &left[..l];
|
||
let rhs = &right[..l];
|
||
|
||
for i in 0..l {
|
||
match lhs[i].partial_cmp(&rhs[i]) {
|
||
Some(Ordering::Equal) => (),
|
||
non_eq => return non_eq,
|
||
}
|
||
}
|
||
|
||
left.len().partial_cmp(&right.len())
|
||
}
|
||
}
|
||
|
||
// This is the impl that we would like to have. Unfortunately it's not sound.
|
||
// See `partial_ord_slice.rs`.
|
||
/*
|
||
impl<A> SlicePartialOrd for A
|
||
where
|
||
A: Ord,
|
||
{
|
||
default fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
|
||
Some(SliceOrd::compare(left, right))
|
||
}
|
||
}
|
||
*/
|
||
|
||
impl<A: AlwaysApplicableOrd> SlicePartialOrd for A {
|
||
fn partial_compare(left: &[A], right: &[A]) -> Option<Ordering> {
|
||
Some(SliceOrd::compare(left, right))
|
||
}
|
||
}
|
||
|
||
trait AlwaysApplicableOrd: SliceOrd + Ord {}
|
||
|
||
macro_rules! always_applicable_ord {
|
||
($([$($p:tt)*] $t:ty,)*) => {
|
||
$(impl<$($p)*> AlwaysApplicableOrd for $t {})*
|
||
}
|
||
}
|
||
|
||
always_applicable_ord! {
|
||
[] u8, [] u16, [] u32, [] u64, [] u128, [] usize,
|
||
[] i8, [] i16, [] i32, [] i64, [] i128, [] isize,
|
||
[] bool, [] char,
|
||
[T: ?Sized] *const T, [T: ?Sized] *mut T,
|
||
[T: AlwaysApplicableOrd] &T,
|
||
[T: AlwaysApplicableOrd] &mut T,
|
||
[T: AlwaysApplicableOrd] Option<T>,
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
// intermediate trait for specialization of slice's Ord
|
||
trait SliceOrd: Sized {
|
||
fn compare(left: &[Self], right: &[Self]) -> Ordering;
|
||
}
|
||
|
||
impl<A: Ord> SliceOrd for A {
|
||
default fn compare(left: &[Self], right: &[Self]) -> Ordering {
|
||
let l = cmp::min(left.len(), right.len());
|
||
|
||
// Slice to the loop iteration range to enable bound check
|
||
// elimination in the compiler
|
||
let lhs = &left[..l];
|
||
let rhs = &right[..l];
|
||
|
||
for i in 0..l {
|
||
match lhs[i].cmp(&rhs[i]) {
|
||
Ordering::Equal => (),
|
||
non_eq => return non_eq,
|
||
}
|
||
}
|
||
|
||
left.len().cmp(&right.len())
|
||
}
|
||
}
|
||
|
||
// memcmp compares a sequence of unsigned bytes lexicographically.
|
||
// this matches the order we want for [u8], but no others (not even [i8]).
|
||
impl SliceOrd for u8 {
|
||
#[inline]
|
||
fn compare(left: &[Self], right: &[Self]) -> Ordering {
|
||
let order =
|
||
unsafe { memcmp(left.as_ptr(), right.as_ptr(), cmp::min(left.len(), right.len())) };
|
||
if order == 0 {
|
||
left.len().cmp(&right.len())
|
||
} else if order < 0 {
|
||
Less
|
||
} else {
|
||
Greater
|
||
}
|
||
}
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
/// Trait implemented for types that can be compared for equality using
|
||
/// their bytewise representation
|
||
trait BytewiseEquality: Eq + Copy {}
|
||
|
||
macro_rules! impl_marker_for {
|
||
($traitname:ident, $($ty:ty)*) => {
|
||
$(
|
||
impl $traitname for $ty { }
|
||
)*
|
||
}
|
||
}
|
||
|
||
impl_marker_for!(BytewiseEquality,
|
||
u8 i8 u16 i16 u32 i32 u64 i64 u128 i128 usize isize char bool);
|
||
|
||
#[doc(hidden)]
|
||
unsafe impl<'a, T> TrustedRandomAccess for Iter<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a T {
|
||
// SAFETY: the caller must guarantee that `i` is in bounds
|
||
// of the underlying slice, so `i` cannot overflow an `isize`,
|
||
// and the returned references is guaranteed to refer to an element
|
||
// of the slice and thus guaranteed to be valid.
|
||
unsafe { &*self.ptr.as_ptr().add(i) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
#[doc(hidden)]
|
||
unsafe impl<'a, T> TrustedRandomAccess for IterMut<'a, T> {
|
||
unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut T {
|
||
// SAFETY: see comments for `Iter::get_unchecked`.
|
||
unsafe { &mut *self.ptr.as_ptr().add(i) }
|
||
}
|
||
fn may_have_side_effect() -> bool {
|
||
false
|
||
}
|
||
}
|
||
|
||
trait SliceContains: Sized {
|
||
fn slice_contains(&self, x: &[Self]) -> bool;
|
||
}
|
||
|
||
impl<T> SliceContains for T
|
||
where
|
||
T: PartialEq,
|
||
{
|
||
default fn slice_contains(&self, x: &[Self]) -> bool {
|
||
x.iter().any(|y| *y == *self)
|
||
}
|
||
}
|
||
|
||
impl SliceContains for u8 {
|
||
fn slice_contains(&self, x: &[Self]) -> bool {
|
||
memchr::memchr(*self, x).is_some()
|
||
}
|
||
}
|
||
|
||
impl SliceContains for i8 {
|
||
fn slice_contains(&self, x: &[Self]) -> bool {
|
||
let byte = *self as u8;
|
||
let bytes: &[u8] = unsafe { from_raw_parts(x.as_ptr() as *const u8, x.len()) };
|
||
memchr::memchr(byte, bytes).is_some()
|
||
}
|
||
}
|