1
Fork 0
rust/compiler/rustc_infer/src/infer/mod.rs
Nicholas Nethercote 7619792107 Fix ErrorGuaranteed unsoundness with stash/steal.
When you stash an error, the error count is incremented. You can then
use the non-zero error count to get an `ErrorGuaranteed`. You can then
steal the error, which decrements the error count. You can then cancel
the error.

Example code:
```
fn unsound(dcx: &DiagCtxt) -> ErrorGuaranteed {
    let sp = rustc_span::DUMMY_SP;
    let k = rustc_errors::StashKey::Cycle;
    dcx.struct_err("bogus").stash(sp, k);           // increment error count on stash
    let guar = dcx.has_errors().unwrap();           // ErrorGuaranteed from error count > 0
    let err = dcx.steal_diagnostic(sp, k).unwrap(); // decrement error count on steal
    err.cancel();                                   // cancel error
    guar                                            // ErrorGuaranteed with no error emitted!
}
```

This commit fixes the problem in the simplest way: by not counting
stashed errors in `DiagCtxt::{err_count,has_errors}`.

However, just doing this without any other changes leads to over 40 ui
test failures. Mostly because of uninteresting extra errors (many saying
"type annotations needed" when type inference fails), and in a few
cases, due to delayed bugs causing ICEs when no normal errors are
printed.

To fix these, this commit adds `DiagCtxt::stashed_err_count`, and uses
it in three places alongside `DiagCtxt::{has_errors,err_count}`. It's
dodgy to rely on it, because unlike `DiagCtxt::err_count` it can go up
and down. But it's needed to preserve existing behaviour, and at least
the three places that need it are now obvious.
2024-02-09 13:50:03 +11:00

2132 lines
80 KiB
Rust

pub use self::at::DefineOpaqueTypes;
pub use self::freshen::TypeFreshener;
pub use self::lexical_region_resolve::RegionResolutionError;
pub use self::BoundRegionConversionTime::*;
pub use self::RegionVariableOrigin::*;
pub use self::SubregionOrigin::*;
pub use self::ValuePairs::*;
pub use relate::combine::ObligationEmittingRelation;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::undo_log::UndoLogs;
use rustc_middle::infer::unify_key::EffectVarValue;
use rustc_middle::infer::unify_key::{ConstVidKey, EffectVidKey};
use self::opaque_types::OpaqueTypeStorage;
pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
use crate::traits::{
self, ObligationCause, ObligationInspector, PredicateObligations, TraitEngine, TraitEngineExt,
};
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::undo_log::Rollback;
use rustc_data_structures::unify as ut;
use rustc_errors::{DiagCtxt, DiagnosticBuilder, ErrorGuaranteed};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_middle::infer::unify_key::ConstVariableValue;
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::traits::{select, DefiningAnchor};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BoundVarReplacerDelegate;
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::visit::TypeVisitableExt;
pub use rustc_middle::ty::IntVarValue;
use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt};
use rustc_middle::ty::{ConstVid, EffectVid, FloatVid, IntVid, TyVid};
use rustc_middle::ty::{GenericArg, GenericArgKind, GenericArgs, GenericArgsRef};
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use std::cell::{Cell, RefCell};
use std::fmt;
use self::error_reporting::TypeErrCtxt;
use self::free_regions::RegionRelations;
use self::lexical_region_resolve::LexicalRegionResolutions;
use self::region_constraints::{GenericKind, VarInfos, VerifyBound};
use self::region_constraints::{
RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
};
pub use self::relate::combine::CombineFields;
pub use self::relate::nll as nll_relate;
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
pub mod at;
pub mod canonical;
pub mod error_reporting;
pub mod free_regions;
mod freshen;
mod fudge;
mod lexical_region_resolve;
pub mod opaque_types;
pub mod outlives;
mod projection;
pub mod region_constraints;
mod relate;
pub mod resolve;
pub mod type_variable;
mod undo_log;
#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
pub value: T,
pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
>;
/// This type contains all the things within `InferCtxt` that sit within a
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
/// operations are hot enough that we want only one call to `borrow_mut` per
/// call to `start_snapshot` and `rollback_to`.
#[derive(Clone)]
pub struct InferCtxtInner<'tcx> {
undo_log: InferCtxtUndoLogs<'tcx>,
/// Cache for projections.
///
/// This cache is snapshotted along with the infcx.
projection_cache: traits::ProjectionCacheStorage<'tcx>,
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
/// that might instantiate a general type variable have an order,
/// represented by its upper and lower bounds.
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
/// Map from const parameter variable to the kind of const it represents.
const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,
/// Map from integral variable to the kind of integer it represents.
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
/// Map from floating variable to the kind of float it represents.
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
/// Map from effect variable to the effect param it represents.
effect_unification_storage: ut::UnificationTableStorage<EffectVidKey<'tcx>>,
/// Tracks the set of region variables and the constraints between them.
///
/// This is initially `Some(_)` but when
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
/// -- further attempts to perform unification, etc., may fail if new
/// region constraints would've been added.
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
/// A set of constraints that regionck must validate.
///
/// Each constraint has the form `T:'a`, meaning "some type `T` must
/// outlive the lifetime 'a". These constraints derive from
/// instantiated type parameters. So if you had a struct defined
/// like the following:
/// ```ignore (illustrative)
/// struct Foo<T: 'static> { ... }
/// ```
/// In some expression `let x = Foo { ... }`, it will
/// instantiate the type parameter `T` with a fresh type `$0`. At
/// the same time, it will record a region obligation of
/// `$0: 'static`. This will get checked later by regionck. (We
/// can't generally check these things right away because we have
/// to wait until types are resolved.)
///
/// These are stored in a map keyed to the id of the innermost
/// enclosing fn body / static initializer expression. This is
/// because the location where the obligation was incurred can be
/// relevant with respect to which sublifetime assumptions are in
/// place. The reason that we store under the fn-id, and not
/// something more fine-grained, is so that it is easier for
/// regionck to be sure that it has found *all* the region
/// obligations (otherwise, it's easy to fail to walk to a
/// particular node-id).
///
/// Before running `resolve_regions_and_report_errors`, the creator
/// of the inference context is expected to invoke
/// [`InferCtxt::process_registered_region_obligations`]
/// for each body-id in this map, which will process the
/// obligations within. This is expected to be done 'late enough'
/// that all type inference variables have been bound and so forth.
region_obligations: Vec<RegionObligation<'tcx>>,
/// Caches for opaque type inference.
opaque_type_storage: OpaqueTypeStorage<'tcx>,
}
impl<'tcx> InferCtxtInner<'tcx> {
fn new() -> InferCtxtInner<'tcx> {
InferCtxtInner {
undo_log: InferCtxtUndoLogs::default(),
projection_cache: Default::default(),
type_variable_storage: type_variable::TypeVariableStorage::new(),
const_unification_storage: ut::UnificationTableStorage::new(),
int_unification_storage: ut::UnificationTableStorage::new(),
float_unification_storage: ut::UnificationTableStorage::new(),
effect_unification_storage: ut::UnificationTableStorage::new(),
region_constraint_storage: Some(RegionConstraintStorage::new()),
region_obligations: vec![],
opaque_type_storage: Default::default(),
}
}
#[inline]
pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
&self.region_obligations
}
#[inline]
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
self.projection_cache.with_log(&mut self.undo_log)
}
#[inline]
fn try_type_variables_probe_ref(
&self,
vid: ty::TyVid,
) -> Option<&type_variable::TypeVariableValue<'tcx>> {
// Uses a read-only view of the unification table, this way we don't
// need an undo log.
self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
}
#[inline]
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
self.type_variable_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
self.opaque_type_storage.with_log(&mut self.undo_log)
}
#[inline]
fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
self.int_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
self.float_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
self.const_unification_storage.with_log(&mut self.undo_log)
}
fn effect_unification_table(&mut self) -> UnificationTable<'_, 'tcx, EffectVidKey<'tcx>> {
self.effect_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
self.region_constraint_storage
.as_mut()
.expect("region constraints already solved")
.with_log(&mut self.undo_log)
}
}
pub struct InferCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
/// The `DefId` of the item in whose context we are performing inference or typeck.
/// It is used to check whether an opaque type use is a defining use.
///
/// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
/// the obligation. This frequently happens for
/// short lived InferCtxt within queries. The opaque type obligations are forwarded
/// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
///
/// Its default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
/// might come up during inference or typeck.
pub defining_use_anchor: DefiningAnchor,
/// Whether this inference context should care about region obligations in
/// the root universe. Most notably, this is used during hir typeck as region
/// solving is left to borrowck instead.
pub considering_regions: bool,
/// If set, this flag causes us to skip the 'leak check' during
/// higher-ranked subtyping operations. This flag is a temporary one used
/// to manage the removal of the leak-check: for the time being, we still run the
/// leak-check, but we issue warnings.
skip_leak_check: bool,
pub inner: RefCell<InferCtxtInner<'tcx>>,
/// Once region inference is done, the values for each variable.
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: select::SelectionCache<'tcx>,
/// Caches the results of trait evaluation.
pub evaluation_cache: select::EvaluationCache<'tcx>,
/// The set of predicates on which errors have been reported, to
/// avoid reporting the same error twice.
pub reported_trait_errors:
RefCell<FxIndexMap<Span, (Vec<ty::Predicate<'tcx>>, ErrorGuaranteed)>>,
pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
/// When an error occurs, we want to avoid reporting "derived"
/// errors that are due to this original failure. Normally, we
/// handle this with the `err_count_on_creation` count, which
/// basically just tracks how many errors were reported when we
/// started type-checking a fn and checks to see if any new errors
/// have been reported since then. Not great, but it works.
///
/// However, when errors originated in other passes -- notably
/// resolve -- this heuristic breaks down. Therefore, we have this
/// auxiliary flag that one can set whenever one creates a
/// type-error that is due to an error in a prior pass.
///
/// Don't read this flag directly, call `is_tainted_by_errors()`
/// and `set_tainted_by_errors()`.
tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
/// Track how many errors were reported when this infcx is created.
/// If the number of errors increases, that's also a sign (like
/// `tainted_by_errors`) to avoid reporting certain kinds of errors.
// FIXME(matthewjasper) Merge into `tainted_by_errors`
err_count_on_creation: usize,
/// Track how many errors were stashed when this infcx is created.
/// Used for the same purpose as `err_count_on_creation`, even
/// though it's weaker because the count can go up and down.
// FIXME(matthewjasper) Merge into `tainted_by_errors`
stashed_err_count_on_creation: usize,
/// What is the innermost universe we have created? Starts out as
/// `UniverseIndex::root()` but grows from there as we enter
/// universal quantifiers.
///
/// N.B., at present, we exclude the universal quantifiers on the
/// item we are type-checking, and just consider those names as
/// part of the root universe. So this would only get incremented
/// when we enter into a higher-ranked (`for<..>`) type or trait
/// bound.
universe: Cell<ty::UniverseIndex>,
/// During coherence we have to assume that other crates may add
/// additional impls which we currently don't know about.
///
/// To deal with this evaluation, we should be conservative
/// and consider the possibility of impls from outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0: Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`.
///
/// Outside of coherence, we set this to false because we are only
/// interested in types that the user could actually have written.
/// In other words, we consider `$0: Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
pub intercrate: bool,
next_trait_solver: bool,
pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
}
impl<'tcx> ty::InferCtxtLike for InferCtxt<'tcx> {
type Interner = TyCtxt<'tcx>;
fn interner(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn universe_of_ty(&self, vid: TyVid) -> Option<ty::UniverseIndex> {
// FIXME(BoxyUwU): this is kind of jank and means that printing unresolved
// ty infers will give you the universe of the var it resolved to not the universe
// it actually had. It also means that if you have a `?0.1` and infer it to `u8` then
// try to print out `?0.1` it will just print `?0`.
match self.probe_ty_var(vid) {
Err(universe) => Some(universe),
Ok(_) => None,
}
}
fn universe_of_ct(&self, ct: ConstVid) -> Option<ty::UniverseIndex> {
// Same issue as with `universe_of_ty`
match self.probe_const_var(ct) {
Err(universe) => Some(universe),
Ok(_) => None,
}
}
fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> {
Some(self.universe_of_region_vid(lt))
}
fn root_ty_var(&self, vid: TyVid) -> TyVid {
self.root_var(vid)
}
fn probe_ty_var(&self, vid: TyVid) -> Option<Ty<'tcx>> {
self.probe_ty_var(vid).ok()
}
fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> Option<ty::Region<'tcx>> {
let re = self
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.tcx, vid);
if *re == ty::ReVar(vid) { None } else { Some(re) }
}
fn root_ct_var(&self, vid: ConstVid) -> ConstVid {
self.root_const_var(vid)
}
fn probe_ct_var(&self, vid: ConstVid) -> Option<ty::Const<'tcx>> {
self.probe_const_var(vid).ok()
}
}
/// See the `error_reporting` module for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
pub enum ValuePairs<'tcx> {
Regions(ExpectedFound<ty::Region<'tcx>>),
Terms(ExpectedFound<ty::Term<'tcx>>),
Aliases(ExpectedFound<ty::AliasTy<'tcx>>),
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
}
impl<'tcx> ValuePairs<'tcx> {
pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
&& let Some(expected) = expected.ty()
&& let Some(found) = found.ty()
{
Some((expected, found))
} else {
None
}
}
}
/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See the `error_reporting` module for more details.
#[derive(Clone, Debug)]
pub struct TypeTrace<'tcx> {
pub cause: ObligationCause<'tcx>,
pub values: ValuePairs<'tcx>,
}
/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
/// Arose from a subtyping relation
Subtype(Box<TypeTrace<'tcx>>),
/// When casting `&'a T` to an `&'b Trait` object,
/// relating `'a` to `'b`.
RelateObjectBound(Span),
/// Some type parameter was instantiated with the given type,
/// and that type must outlive some region.
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
/// The given region parameter was instantiated with a region
/// that must outlive some other region.
RelateRegionParamBound(Span),
/// Creating a pointer `b` to contents of another reference.
Reborrow(Span),
/// (&'a &'b T) where a >= b
ReferenceOutlivesReferent(Ty<'tcx>, Span),
/// Comparing the signature and requirements of an impl method against
/// the containing trait.
CompareImplItemObligation {
span: Span,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
/// Checking that the bounds of a trait's associated type hold for a given impl.
CheckAssociatedTypeBounds {
parent: Box<SubregionOrigin<'tcx>>,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
AscribeUserTypeProvePredicate(Span),
}
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(SubregionOrigin<'_>, 32);
impl<'tcx> SubregionOrigin<'tcx> {
pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
match self {
Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
_ => ConstraintCategory::BoringNoLocation,
}
}
}
/// Times when we replace bound regions with existentials:
#[derive(Clone, Copy, Debug)]
pub enum BoundRegionConversionTime {
/// when a fn is called
FnCall,
/// when two higher-ranked types are compared
HigherRankedType,
/// when projecting an associated type
AssocTypeProjection(DefId),
}
/// Reasons to create a region inference variable.
///
/// See `error_reporting` module for more details.
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
/// Region variables created for ill-categorized reasons.
///
/// They mostly indicate places in need of refactoring.
MiscVariable(Span),
/// Regions created by a `&P` or `[...]` pattern.
PatternRegion(Span),
/// Regions created by `&` operator.
///
AddrOfRegion(Span),
/// Regions created as part of an autoref of a method receiver.
Autoref(Span),
/// Regions created as part of an automatic coercion.
Coercion(Span),
/// Region variables created as the values for early-bound regions.
///
/// FIXME(@lcnr): This can also store a `DefId`, similar to
/// `TypeVariableOriginKind::TypeParameterDefinition`.
RegionParameterDefinition(Span, Symbol),
/// Region variables created when instantiating a binder with
/// existential variables, e.g. when calling a function or method.
BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),
UpvarRegion(ty::UpvarId, Span),
/// This origin is used for the inference variables that we create
/// during NLL region processing.
Nll(NllRegionVariableOrigin),
}
#[derive(Copy, Clone, Debug)]
pub enum NllRegionVariableOrigin {
/// During NLL region processing, we create variables for free
/// regions that we encounter in the function signature and
/// elsewhere. This origin indices we've got one of those.
FreeRegion,
/// "Universal" instantiation of a higher-ranked region (e.g.,
/// from a `for<'a> T` binder). Meant to represent "any region".
Placeholder(ty::PlaceholderRegion),
Existential {
/// If this is true, then this variable was created to represent a lifetime
/// bound in a `for` binder. For example, it might have been created to
/// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
/// Such variables are created when we are trying to figure out if there
/// is any valid instantiation of `'a` that could fit into some scenario.
///
/// This is used to inform error reporting: in the case that we are trying to
/// determine whether there is any valid instantiation of a `'a` variable that meets
/// some constraint C, we want to blame the "source" of that `for` type,
/// rather than blaming the source of the constraint C.
from_forall: bool,
},
}
// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
#[derive(Copy, Clone, Debug)]
pub enum FixupError {
UnresolvedIntTy(IntVid),
UnresolvedFloatTy(FloatVid),
UnresolvedTy(TyVid),
UnresolvedConst(ConstVid),
}
/// See the `region_obligations` field for more information.
#[derive(Clone, Debug)]
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region<'tcx>,
pub sup_type: Ty<'tcx>,
pub origin: SubregionOrigin<'tcx>,
}
impl fmt::Display for FixupError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::FixupError::*;
match *self {
UnresolvedIntTy(_) => write!(
f,
"cannot determine the type of this integer; \
add a suffix to specify the type explicitly"
),
UnresolvedFloatTy(_) => write!(
f,
"cannot determine the type of this number; \
add a suffix to specify the type explicitly"
),
UnresolvedTy(_) => write!(f, "unconstrained type"),
UnresolvedConst(_) => write!(f, "unconstrained const value"),
}
}
}
/// Used to configure inference contexts before their creation.
pub struct InferCtxtBuilder<'tcx> {
tcx: TyCtxt<'tcx>,
defining_use_anchor: DefiningAnchor,
considering_regions: bool,
skip_leak_check: bool,
/// Whether we are in coherence mode.
intercrate: bool,
/// Whether we should use the new trait solver in the local inference context,
/// which affects things like which solver is used in `predicate_may_hold`.
next_trait_solver: bool,
}
pub trait TyCtxtInferExt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
}
impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
InferCtxtBuilder {
tcx: self,
defining_use_anchor: DefiningAnchor::Error,
considering_regions: true,
skip_leak_check: false,
intercrate: false,
next_trait_solver: self.next_trait_solver_globally(),
}
}
}
impl<'tcx> InferCtxtBuilder<'tcx> {
/// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
/// you need to call this function. Otherwise the opaque type will be treated opaquely.
///
/// It is only meant to be called in two places, for typeck
/// (via `Inherited::build`) and for the inference context used
/// in mir borrowck.
pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
self.defining_use_anchor = defining_use_anchor;
self
}
pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
self.next_trait_solver = next_trait_solver;
self
}
pub fn intercrate(mut self, intercrate: bool) -> Self {
self.intercrate = intercrate;
self
}
pub fn ignoring_regions(mut self) -> Self {
self.considering_regions = false;
self
}
pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
self.skip_leak_check = skip_leak_check;
self
}
/// Given a canonical value `C` as a starting point, create an
/// inference context that contains each of the bound values
/// within instantiated as a fresh variable. The `f` closure is
/// invoked with the new infcx, along with the instantiated value
/// `V` and a substitution `S`. This substitution `S` maps from
/// the bound values in `C` to their instantiated values in `V`
/// (in other words, `S(C) = V`).
pub fn build_with_canonical<T>(
&mut self,
span: Span,
canonical: &Canonical<'tcx, T>,
) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
let infcx = self.build();
let (value, subst) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
(infcx, value, subst)
}
pub fn build(&mut self) -> InferCtxt<'tcx> {
let InferCtxtBuilder {
tcx,
defining_use_anchor,
considering_regions,
skip_leak_check,
intercrate,
next_trait_solver,
} = *self;
InferCtxt {
tcx,
defining_use_anchor,
considering_regions,
skip_leak_check,
inner: RefCell::new(InferCtxtInner::new()),
lexical_region_resolutions: RefCell::new(None),
selection_cache: Default::default(),
evaluation_cache: Default::default(),
reported_trait_errors: Default::default(),
reported_signature_mismatch: Default::default(),
tainted_by_errors: Cell::new(None),
err_count_on_creation: tcx.dcx().err_count(),
stashed_err_count_on_creation: tcx.dcx().stashed_err_count(),
universe: Cell::new(ty::UniverseIndex::ROOT),
intercrate,
next_trait_solver,
obligation_inspector: Cell::new(None),
}
}
}
impl<'tcx, T> InferOk<'tcx, T> {
/// Extracts `value`, registering any obligations into `fulfill_cx`.
pub fn into_value_registering_obligations(
self,
infcx: &InferCtxt<'tcx>,
fulfill_cx: &mut dyn TraitEngine<'tcx>,
) -> T {
let InferOk { value, obligations } = self;
fulfill_cx.register_predicate_obligations(infcx, obligations);
value
}
}
impl<'tcx> InferOk<'tcx, ()> {
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
self.obligations
}
}
#[must_use = "once you start a snapshot, you should always consume it"]
pub struct CombinedSnapshot<'tcx> {
undo_snapshot: Snapshot<'tcx>,
region_constraints_snapshot: RegionSnapshot,
universe: ty::UniverseIndex,
}
impl<'tcx> InferCtxt<'tcx> {
pub fn dcx(&self) -> &'tcx DiagCtxt {
self.tcx.dcx()
}
pub fn next_trait_solver(&self) -> bool {
self.next_trait_solver
}
/// Creates a `TypeErrCtxt` for emitting various inference errors.
/// During typeck, use `FnCtxt::err_ctxt` instead.
pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
TypeErrCtxt {
infcx: self,
typeck_results: None,
fallback_has_occurred: false,
normalize_fn_sig: Box::new(|fn_sig| fn_sig),
autoderef_steps: Box::new(|ty| {
debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck");
vec![(ty, vec![])]
}),
}
}
pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
t.fold_with(&mut self.freshener())
}
/// Returns the origin of the type variable identified by `vid`, or `None`
/// if this is not a type variable.
///
/// No attempt is made to resolve `ty`.
pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
match *ty.kind() {
ty::Infer(ty::TyVar(vid)) => {
Some(self.inner.borrow_mut().type_variables().var_origin(vid))
}
_ => None,
}
}
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
freshen::TypeFreshener::new(self)
}
pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
let mut inner = self.inner.borrow_mut();
let mut vars: Vec<Ty<'_>> = inner
.type_variables()
.unresolved_variables()
.into_iter()
.map(|t| Ty::new_var(self.tcx, t))
.collect();
vars.extend(
(0..inner.int_unification_table().len())
.map(|i| ty::IntVid::from_u32(i as u32))
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
.map(|v| Ty::new_int_var(self.tcx, v)),
);
vars.extend(
(0..inner.float_unification_table().len())
.map(|i| ty::FloatVid::from_u32(i as u32))
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
.map(|v| Ty::new_float_var(self.tcx, v)),
);
vars
}
pub fn unsolved_effects(&self) -> Vec<ty::Const<'tcx>> {
let mut inner = self.inner.borrow_mut();
let mut table = inner.effect_unification_table();
(0..table.len())
.map(|i| ty::EffectVid::from_usize(i))
.filter(|&vid| table.probe_value(vid).is_unknown())
.map(|v| {
ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(v), self.tcx.types.bool)
})
.collect()
}
fn combine_fields<'a>(
&'a self,
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
define_opaque_types: DefineOpaqueTypes,
) -> CombineFields<'a, 'tcx> {
CombineFields {
infcx: self,
trace,
cause: None,
param_env,
obligations: PredicateObligations::new(),
define_opaque_types,
}
}
pub fn in_snapshot(&self) -> bool {
UndoLogs::<UndoLog<'tcx>>::in_snapshot(&self.inner.borrow_mut().undo_log)
}
pub fn num_open_snapshots(&self) -> usize {
UndoLogs::<UndoLog<'tcx>>::num_open_snapshots(&self.inner.borrow_mut().undo_log)
}
fn start_snapshot(&self) -> CombinedSnapshot<'tcx> {
debug!("start_snapshot()");
let mut inner = self.inner.borrow_mut();
CombinedSnapshot {
undo_snapshot: inner.undo_log.start_snapshot(),
region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
universe: self.universe(),
}
}
#[instrument(skip(self, snapshot), level = "debug")]
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>) {
let CombinedSnapshot { undo_snapshot, region_constraints_snapshot, universe } = snapshot;
self.universe.set(universe);
let mut inner = self.inner.borrow_mut();
inner.rollback_to(undo_snapshot);
inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
}
#[instrument(skip(self, snapshot), level = "debug")]
fn commit_from(&self, snapshot: CombinedSnapshot<'tcx>) {
let CombinedSnapshot { undo_snapshot, region_constraints_snapshot: _, universe: _ } =
snapshot;
self.inner.borrow_mut().commit(undo_snapshot);
}
/// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
#[instrument(skip(self, f), level = "debug")]
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
where
F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,
{
let snapshot = self.start_snapshot();
let r = f(&snapshot);
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
match r {
Ok(_) => {
self.commit_from(snapshot);
}
Err(_) => {
self.rollback_to("commit_if_ok -- error", snapshot);
}
}
r
}
/// Execute `f` then unroll any bindings it creates.
#[instrument(skip(self, f), level = "debug")]
pub fn probe<R, F>(&self, f: F) -> R
where
F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
{
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.rollback_to("probe", snapshot);
r
}
/// Scan the constraints produced since `snapshot` and check whether
/// we added any region constraints.
pub fn region_constraints_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
self.inner
.borrow_mut()
.unwrap_region_constraints()
.region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
}
pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
}
pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, expected: T, actual: T) -> bool
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env).sub(DefineOpaqueTypes::No, expected, actual).is_ok()
})
}
pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok())
}
#[instrument(skip(self), level = "debug")]
pub fn sub_regions(
&self,
origin: SubregionOrigin<'tcx>,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) {
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
}
/// Require that the region `r` be equal to one of the regions in
/// the set `regions`.
#[instrument(skip(self), level = "debug")]
pub fn member_constraint(
&self,
key: ty::OpaqueTypeKey<'tcx>,
definition_span: Span,
hidden_ty: Ty<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
) {
self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
key,
definition_span,
hidden_ty,
region,
in_regions,
);
}
/// Processes a `Coerce` predicate from the fulfillment context.
/// This is NOT the preferred way to handle coercion, which is to
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
///
/// This method here is actually a fallback that winds up being
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
/// and records a coercion predicate. Presently, this method is equivalent
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
/// actually requiring `a <: b`. This is of course a valid coercion,
/// but it's not as flexible as `FnCtxt::coerce` would be.
///
/// (We may refactor this in the future, but there are a number of
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
/// records adjustments that are required on the HIR in order to perform
/// the coercion, and we don't currently have a way to manage that.)
pub fn coerce_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolyCoercePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
a: p.a,
b: p.b,
});
self.subtype_predicate(cause, param_env, subtype_predicate)
}
pub fn subtype_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolySubtypePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
// Check for two unresolved inference variables, in which case we can
// make no progress. This is partly a micro-optimization, but it's
// also an opportunity to "sub-unify" the variables. This isn't
// *necessary* to prevent cycles, because they would eventually be sub-unified
// anyhow during generalization, but it helps with diagnostics (we can detect
// earlier that they are sub-unified).
//
// Note that we can just skip the binders here because
// type variables can't (at present, at
// least) capture any of the things bound by this binder.
//
// Note that this sub here is not just for diagnostics - it has semantic
// effects as well.
let r_a = self.shallow_resolve(predicate.skip_binder().a);
let r_b = self.shallow_resolve(predicate.skip_binder().b);
match (r_a.kind(), r_b.kind()) {
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
return Err((a_vid, b_vid));
}
_ => {}
}
let ty::SubtypePredicate { a_is_expected, a, b } =
self.instantiate_binder_with_placeholders(predicate);
Ok(self.at(cause, param_env).sub_exp(DefineOpaqueTypes::No, a_is_expected, a, b))
}
pub fn region_outlives_predicate(
&self,
cause: &traits::ObligationCause<'tcx>,
predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
) {
let ty::OutlivesPredicate(r_a, r_b) = self.instantiate_binder_with_placeholders(predicate);
let origin =
SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
}
/// Number of type variables created so far.
pub fn num_ty_vars(&self) -> usize {
self.inner.borrow_mut().type_variables().num_vars()
}
pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
}
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
Ty::new_var(self.tcx, self.next_ty_var_id(origin))
}
pub fn next_ty_var_id_in_universe(
&self,
origin: TypeVariableOrigin,
universe: ty::UniverseIndex,
) -> TyVid {
self.inner.borrow_mut().type_variables().new_var(universe, origin)
}
pub fn next_ty_var_in_universe(
&self,
origin: TypeVariableOrigin,
universe: ty::UniverseIndex,
) -> Ty<'tcx> {
let vid = self.next_ty_var_id_in_universe(origin, universe);
Ty::new_var(self.tcx, vid)
}
pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
ty::Const::new_var(self.tcx, self.next_const_var_id(origin), ty)
}
pub fn next_const_var_in_universe(
&self,
ty: Ty<'tcx>,
origin: ConstVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Const<'tcx> {
let vid = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe })
.vid;
ty::Const::new_var(self.tcx, vid, ty)
}
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid {
self.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
.vid
}
fn next_int_var_id(&self) -> IntVid {
self.inner.borrow_mut().int_unification_table().new_key(None)
}
pub fn next_int_var(&self) -> Ty<'tcx> {
Ty::new_int_var(self.tcx, self.next_int_var_id())
}
fn next_float_var_id(&self) -> FloatVid {
self.inner.borrow_mut().float_unification_table().new_key(None)
}
pub fn next_float_var(&self) -> Ty<'tcx> {
Ty::new_float_var(self.tcx, self.next_float_var_id())
}
/// Creates a fresh region variable with the next available index.
/// The variable will be created in the maximum universe created
/// thus far, allowing it to name any region created thus far.
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var_in_universe(origin, self.universe())
}
/// Creates a fresh region variable with the next available index
/// in the given universe; typically, you can use
/// `next_region_var` and just use the maximal universe.
pub fn next_region_var_in_universe(
&self,
origin: RegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
let region_var =
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
ty::Region::new_var(self.tcx, region_var)
}
/// Return the universe that the region `r` was created in. For
/// most regions (e.g., `'static`, named regions from the user,
/// etc) this is the root universe U0. For inference variables or
/// placeholders, however, it will return the universe which they
/// are associated.
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
}
/// Return the universe that the region variable `r` was created in.
pub fn universe_of_region_vid(&self, vid: ty::RegionVid) -> ty::UniverseIndex {
self.inner.borrow_mut().unwrap_region_constraints().var_universe(vid)
}
/// Number of region variables created so far.
pub fn num_region_vars(&self) -> usize {
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
#[instrument(skip(self), level = "debug")]
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var(RegionVariableOrigin::Nll(origin))
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
#[instrument(skip(self), level = "debug")]
pub fn next_nll_region_var_in_universe(
&self,
origin: NllRegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
}
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
match param.kind {
GenericParamDefKind::Lifetime => {
// Create a region inference variable for the given
// region parameter definition.
self.next_region_var(RegionParameterDefinition(span, param.name)).into()
}
GenericParamDefKind::Type { .. } => {
// Create a type inference variable for the given
// type parameter definition. The substitutions are
// for actual parameters that may be referred to by
// the default of this type parameter, if it exists.
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
// used in a path such as `Foo::<T, U>::new()` will
// use an inference variable for `C` with `[T, U]`
// as the substitutions for the default, `(T, U)`.
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
self.universe(),
TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeParameterDefinition(
param.name,
param.def_id,
),
span,
},
);
Ty::new_var(self.tcx, ty_var_id).into()
}
GenericParamDefKind::Const { is_host_effect, .. } => {
if is_host_effect {
return self.var_for_effect(param);
}
let origin = ConstVariableOrigin {
kind: ConstVariableOriginKind::ConstParameterDefinition(
param.name,
param.def_id,
),
span,
};
let const_var_id = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
.vid;
ty::Const::new_var(
self.tcx,
const_var_id,
self.tcx
.type_of(param.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic"),
)
.into()
}
}
}
pub fn var_for_effect(&self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
let effect_vid =
self.inner.borrow_mut().effect_unification_table().new_key(EffectVarValue::Unknown).vid;
let ty = self
.tcx
.type_of(param.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic");
debug_assert_eq!(self.tcx.types.bool, ty);
ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(effect_vid), ty).into()
}
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
/// type/region parameter to a fresh inference variable.
pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
}
/// Returns `true` if errors have been reported since this infcx was
/// created. This is sometimes used as a heuristic to skip
/// reporting errors that often occur as a result of earlier
/// errors, but where it's hard to be 100% sure (e.g., unresolved
/// inference variables, regionck errors).
#[must_use = "this method does not have any side effects"]
pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
if let Some(guar) = self.tainted_by_errors.get() {
Some(guar)
} else if self.dcx().err_count() > self.err_count_on_creation {
// Errors reported since this infcx was made.
let guar = self.dcx().has_errors().unwrap();
self.set_tainted_by_errors(guar);
Some(guar)
} else if self.dcx().stashed_err_count() > self.stashed_err_count_on_creation {
// Errors stashed since this infcx was made. Not entirely reliable
// because the count of stashed errors can go down. But without
// this case we get a moderate number of uninteresting and
// extraneous "type annotations needed" errors.
let guar = self.dcx().delayed_bug("tainted_by_errors: stashed bug awaiting emission");
self.set_tainted_by_errors(guar);
Some(guar)
} else {
None
}
}
/// Set the "tainted by errors" flag to true. We call this when we
/// observe an error from a prior pass.
pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
debug!("set_tainted_by_errors(ErrorGuaranteed)");
self.tainted_by_errors.set(Some(e));
}
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
let mut inner = self.inner.borrow_mut();
let inner = &mut *inner;
inner.unwrap_region_constraints().var_origin(vid)
}
/// Clone the list of variable regions. This is used only during NLL processing
/// to put the set of region variables into the NLL region context.
pub fn get_region_var_origins(&self) -> VarInfos {
let mut inner = self.inner.borrow_mut();
let (var_infos, data) = inner
.region_constraint_storage
// We clone instead of taking because borrowck still wants to use
// the inference context after calling this for diagnostics
// and the new trait solver.
.clone()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.into_infos_and_data();
assert!(data.is_empty());
var_infos
}
#[instrument(level = "debug", skip(self), ret)]
pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
debug_assert_ne!(self.defining_use_anchor, DefiningAnchor::Error);
std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
}
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
self.resolve_vars_if_possible(t).to_string()
}
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
/// universe index of `TyVar(vid)`.
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
use self::type_variable::TypeVariableValue;
match self.inner.borrow_mut().type_variables().probe(vid) {
TypeVariableValue::Known { value } => Ok(value),
TypeVariableValue::Unknown { universe } => Err(universe),
}
}
/// Resolve any type variables found in `value` -- but only one
/// level. So, if the variable `?X` is bound to some type
/// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
/// itself be bound to a type).
///
/// Useful when you only need to inspect the outermost level of
/// the type and don't care about nested types (or perhaps you
/// will be resolving them as well, e.g. in a loop).
pub fn shallow_resolve<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
value.fold_with(&mut ShallowResolver { infcx: self })
}
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
self.inner.borrow_mut().type_variables().root_var(var)
}
pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
self.inner.borrow_mut().const_unification_table().find(var).vid
}
pub fn root_effect_var(&self, var: ty::EffectVid) -> ty::EffectVid {
self.inner.borrow_mut().effect_unification_table().find(var).vid
}
/// Resolves an int var to a rigid int type, if it was constrained to one,
/// or else the root int var in the unification table.
pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
let mut inner = self.inner.borrow_mut();
if let Some(value) = inner.int_unification_table().probe_value(vid) {
value.to_type(self.tcx)
} else {
Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
}
}
/// Resolves a float var to a rigid int type, if it was constrained to one,
/// or else the root float var in the unification table.
pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
let mut inner = self.inner.borrow_mut();
if let Some(value) = inner.float_unification_table().probe_value(vid) {
value.to_type(self.tcx)
} else {
Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
}
}
/// Where possible, replaces type/const variables in
/// `value` with their final value. Note that region variables
/// are unaffected. If a type/const variable has not been unified, it
/// is left as is. This is an idempotent operation that does
/// not affect inference state in any way and so you can do it
/// at will.
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
if !value.has_non_region_infer() {
return value;
}
let mut r = resolve::OpportunisticVarResolver::new(self);
value.fold_with(&mut r)
}
pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
if !value.has_infer() {
return value; // Avoid duplicated subst-folding.
}
let mut r = InferenceLiteralEraser { tcx: self.tcx };
value.fold_with(&mut r)
}
pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
ConstVariableValue::Known { value } => Ok(value),
ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
}
}
pub fn probe_effect_var(&self, vid: EffectVid) -> Option<ty::Const<'tcx>> {
self.inner.borrow_mut().effect_unification_table().probe_value(vid).known()
}
/// Attempts to resolve all type/region/const variables in
/// `value`. Region inference must have been run already (e.g.,
/// by calling `resolve_regions_and_report_errors`). If some
/// variable was never unified, an `Err` results.
///
/// This method is idempotent, but it not typically not invoked
/// except during the writeback phase.
pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
match resolve::fully_resolve(self, value) {
Ok(value) => {
if value.has_non_region_infer() {
bug!("`{value:?}` is not fully resolved");
}
if value.has_infer_regions() {
let guar =
self.tcx.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
Ok(self.tcx.fold_regions(value, |re, _| {
if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
}))
} else {
Ok(value)
}
}
Err(e) => Err(e),
}
}
// Instantiates the bound variables in a given binder with fresh inference
// variables in the current universe.
//
// Use this method if you'd like to find some substitution of the binder's
// variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
// that corresponds to your use case, consider whether or not you should
// use [`InferCtxt::instantiate_binder_with_placeholders`] instead.
pub fn instantiate_binder_with_fresh_vars<T>(
&self,
span: Span,
lbrct: BoundRegionConversionTime,
value: ty::Binder<'tcx, T>,
) -> T
where
T: TypeFoldable<TyCtxt<'tcx>> + Copy,
{
if let Some(inner) = value.no_bound_vars() {
return inner;
}
struct ToFreshVars<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
span: Span,
lbrct: BoundRegionConversionTime,
map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
}
impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
self.map
.entry(br.var)
.or_insert_with(|| {
self.infcx
.next_region_var(BoundRegion(self.span, br.kind, self.lbrct))
.into()
})
.expect_region()
}
fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
self.map
.entry(bt.var)
.or_insert_with(|| {
self.infcx
.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: self.span,
})
.into()
})
.expect_ty()
}
fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
self.map
.entry(bv)
.or_insert_with(|| {
self.infcx
.next_const_var(
ty,
ConstVariableOrigin {
kind: ConstVariableOriginKind::MiscVariable,
span: self.span,
},
)
.into()
})
.expect_const()
}
}
let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
self.tcx.replace_bound_vars_uncached(value, delegate)
}
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
pub fn verify_generic_bound(
&self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
a: ty::Region<'tcx>,
bound: VerifyBound<'tcx>,
) {
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
self.inner
.borrow_mut()
.unwrap_region_constraints()
.verify_generic_bound(origin, kind, a, bound);
}
/// Obtains the latest type of the given closure; this may be a
/// closure in the current function, in which case its
/// `ClosureKind` may not yet be known.
pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> {
let unresolved_kind_ty = match *closure_ty.kind() {
ty::Closure(_, args) => args.as_closure().kind_ty(),
ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(),
_ => bug!("unexpected type {closure_ty}"),
};
let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
/// Clears the selection, evaluation, and projection caches. This is useful when
/// repeatedly attempting to select an `Obligation` while changing only
/// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
pub fn clear_caches(&self) {
self.selection_cache.clear();
self.evaluation_cache.clear();
self.inner.borrow_mut().projection_cache().clear();
}
pub fn universe(&self) -> ty::UniverseIndex {
self.universe.get()
}
/// Creates and return a fresh universe that extends all previous
/// universes. Updates `self.universe` to that new universe.
pub fn create_next_universe(&self) -> ty::UniverseIndex {
let u = self.universe.get().next_universe();
debug!("create_next_universe {u:?}");
self.universe.set(u);
u
}
pub fn try_const_eval_resolve(
&self,
param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
ty: Ty<'tcx>,
span: Option<Span>,
) -> Result<ty::Const<'tcx>, ErrorHandled> {
match self.const_eval_resolve(param_env, unevaluated, span) {
Ok(Some(val)) => Ok(ty::Const::new_value(self.tcx, val, ty)),
Ok(None) => {
let tcx = self.tcx;
let def_id = unevaluated.def;
span_bug!(
tcx.def_span(def_id),
"unable to construct a constant value for the unevaluated constant {:?}",
unevaluated
);
}
Err(err) => Err(err),
}
}
/// Resolves and evaluates a constant.
///
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
/// substitutions and environment are used to resolve the constant. Alternatively if the
/// constant has generic parameters in scope the substitutions are used to evaluate the value of
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
/// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
/// returned.
///
/// This handles inferences variables within both `param_env` and `args` by
/// performing the operation on their respective canonical forms.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_resolve(
&self,
mut param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
span: Option<Span>,
) -> EvalToValTreeResult<'tcx> {
let mut args = self.resolve_vars_if_possible(unevaluated.args);
debug!(?args);
// Postpone the evaluation of constants whose args depend on inference
// variables
let tcx = self.tcx;
if args.has_non_region_infer() {
if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, args));
if let Err(e) = ct.error_reported() {
return Err(ErrorHandled::Reported(
e.into(),
span.unwrap_or(rustc_span::DUMMY_SP),
));
} else if ct.has_non_region_infer() || ct.has_non_region_param() {
return Err(ErrorHandled::TooGeneric(span.unwrap_or(rustc_span::DUMMY_SP)));
} else {
args = replace_param_and_infer_args_with_placeholder(tcx, args);
}
} else {
args = GenericArgs::identity_for_item(tcx, unevaluated.def);
param_env = tcx.param_env(unevaluated.def);
}
}
let param_env_erased = tcx.erase_regions(param_env);
let args_erased = tcx.erase_regions(args);
debug!(?param_env_erased);
debug!(?args_erased);
let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, args: args_erased };
// The return value is the evaluated value which doesn't contain any reference to inference
// variables, thus we don't need to substitute back the original values.
tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
}
/// The returned function is used in a fast path. If it returns `true` the variable is
/// unchanged, `false` indicates that the status is unknown.
#[inline]
pub fn is_ty_infer_var_definitely_unchanged<'a>(
&'a self,
) -> (impl Fn(TyOrConstInferVar) -> bool + Captures<'tcx> + 'a) {
// This hoists the borrow/release out of the loop body.
let inner = self.inner.try_borrow();
return move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
(TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
use self::type_variable::TypeVariableValue;
matches!(
inner.try_type_variables_probe_ref(ty_var),
Some(TypeVariableValue::Unknown { .. })
)
}
_ => false,
};
}
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
///
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
/// inlined, despite being large, because it has only two call sites that
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
/// inference variables), and it handles both `Ty` and `ty::Const` without
/// having to resort to storing full `GenericArg`s in `stalled_on`.
#[inline(always)]
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
match infer_var {
TyOrConstInferVar::Ty(v) => {
use self::type_variable::TypeVariableValue;
// If `inlined_probe` returns a `Known` value, it never equals
// `ty::Infer(ty::TyVar(v))`.
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
TypeVariableValue::Unknown { .. } => false,
TypeVariableValue::Known { .. } => true,
}
}
TyOrConstInferVar::TyInt(v) => {
// If `inlined_probe_value` returns a value it's always a
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
// `ty::Infer(_)`.
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
}
TyOrConstInferVar::TyFloat(v) => {
// If `probe_value` returns a value it's always a
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
}
TyOrConstInferVar::Const(v) => {
// If `probe_value` returns a `Known` value, it never equals
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
match self.inner.borrow_mut().const_unification_table().probe_value(v) {
ConstVariableValue::Unknown { .. } => false,
ConstVariableValue::Known { .. } => true,
}
}
TyOrConstInferVar::Effect(v) => {
// If `probe_value` returns `Some`, it never equals
// `ty::ConstKind::Infer(ty::InferConst::Effect(v))`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
self.probe_effect_var(v).is_some()
}
}
}
/// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
debug_assert!(
self.obligation_inspector.get().is_none(),
"shouldn't override a set obligation inspector"
);
self.obligation_inspector.set(Some(inspector));
}
}
impl<'tcx> TypeErrCtxt<'_, 'tcx> {
// [Note-Type-error-reporting]
// An invariant is that anytime the expected or actual type is Error (the special
// error type, meaning that an error occurred when typechecking this expression),
// this is a derived error. The error cascaded from another error (that was already
// reported), so it's not useful to display it to the user.
// The following methods implement this logic.
// They check if either the actual or expected type is Error, and don't print the error
// in this case. The typechecker should only ever report type errors involving mismatched
// types using one of these methods, and should not call span_err directly for such
// errors.
pub fn type_error_struct_with_diag<M>(
&self,
sp: Span,
mk_diag: M,
actual_ty: Ty<'tcx>,
) -> DiagnosticBuilder<'tcx>
where
M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
{
let actual_ty = self.resolve_vars_if_possible(actual_ty);
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
let mut err = mk_diag(self.ty_to_string(actual_ty));
// Don't report an error if actual type is `Error`.
if actual_ty.references_error() {
err.downgrade_to_delayed_bug();
}
err
}
pub fn report_mismatched_types(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
err: TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx> {
self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
}
pub fn report_mismatched_consts(
&self,
cause: &ObligationCause<'tcx>,
expected: ty::Const<'tcx>,
actual: ty::Const<'tcx>,
err: TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx> {
self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
}
}
/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
#[derive(Copy, Clone, Debug)]
pub enum TyOrConstInferVar {
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
Ty(TyVid),
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
TyInt(IntVid),
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
TyFloat(FloatVid),
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
Const(ConstVid),
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::EffectVar(_))`.
Effect(EffectVid),
}
impl<'tcx> TyOrConstInferVar {
/// Tries to extract an inference variable from a type or a constant, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
match arg.unpack() {
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
GenericArgKind::Lifetime(_) => None,
}
}
/// Tries to extract an inference variable from a type, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
match *ty.kind() {
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
_ => None,
}
}
/// Tries to extract an inference variable from a constant, returns `None`
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
match ct.kind() {
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
ty::ConstKind::Infer(InferConst::EffectVar(v)) => Some(TyOrConstInferVar::Effect(v)),
_ => None,
}
}
}
/// Replace `{integer}` with `i32` and `{float}` with `f64`.
/// Used only for diagnostics.
struct InferenceLiteralEraser<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
_ => ty.super_fold_with(self),
}
}
}
struct ShallowResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
/// If `ty` is a type variable of some kind, resolve it one level
/// (but do not resolve types found in the result). If `typ` is
/// not a type variable, just return it unmodified.
#[inline]
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty }
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
match ct.kind() {
ty::ConstKind::Infer(InferConst::Var(vid)) => self
.infcx
.inner
.borrow_mut()
.const_unification_table()
.probe_value(vid)
.known()
.unwrap_or(ct),
ty::ConstKind::Infer(InferConst::EffectVar(vid)) => self
.infcx
.inner
.borrow_mut()
.effect_unification_table()
.probe_value(vid)
.known()
.unwrap_or(ct),
_ => ct,
}
}
}
impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
// This is separate from `fold_ty` to keep that method small and inlinable.
#[inline(never)]
fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> {
match v {
ty::TyVar(v) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifying to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
//
// Note: if these two lines are combined into one we get
// dynamic borrow errors on `self.inner`.
let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
known.map(|t| self.fold_ty(t))
}
ty::IntVar(v) => self
.infcx
.inner
.borrow_mut()
.int_unification_table()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx)),
ty::FloatVar(v) => self
.infcx
.inner
.borrow_mut()
.float_unification_table()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx)),
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None,
}
}
}
impl<'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span
}
pub fn types(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
pub fn poly_trait_refs(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::PolyTraitRef<'tcx>,
b: ty::PolyTraitRef<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
}
}
pub fn consts(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
}
impl<'tcx> SubregionOrigin<'tcx> {
pub fn span(&self) -> Span {
match *self {
Subtype(ref a) => a.span(),
RelateObjectBound(a) => a,
RelateParamBound(a, ..) => a,
RelateRegionParamBound(a) => a,
Reborrow(a) => a,
ReferenceOutlivesReferent(_, a) => a,
CompareImplItemObligation { span, .. } => span,
AscribeUserTypeProvePredicate(span) => span,
CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
}
}
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
where
F: FnOnce() -> Self,
{
match *cause.code() {
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
}
traits::ObligationCauseCode::CompareImplItemObligation {
impl_item_def_id,
trait_item_def_id,
kind: _,
} => SubregionOrigin::CompareImplItemObligation {
span: cause.span,
impl_item_def_id,
trait_item_def_id,
},
traits::ObligationCauseCode::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
} => SubregionOrigin::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
parent: Box::new(default()),
},
traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
SubregionOrigin::AscribeUserTypeProvePredicate(span)
}
_ => default(),
}
}
}
impl RegionVariableOrigin {
pub fn span(&self) -> Span {
match *self {
MiscVariable(a)
| PatternRegion(a)
| AddrOfRegion(a)
| Autoref(a)
| Coercion(a)
| RegionParameterDefinition(a, ..)
| BoundRegion(a, ..)
| UpvarRegion(_, a) => a,
Nll(..) => bug!("NLL variable used with `span`"),
}
}
}
/// Replaces args that reference param or infer variables with suitable
/// placeholders. This function is meant to remove these param and infer
/// args when they're not actually needed to evaluate a constant.
fn replace_param_and_infer_args_with_placeholder<'tcx>(
tcx: TyCtxt<'tcx>,
args: GenericArgsRef<'tcx>,
) -> GenericArgsRef<'tcx> {
struct ReplaceParamAndInferWithPlaceholder<'tcx> {
tcx: TyCtxt<'tcx>,
idx: u32,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Infer(_) = t.kind() {
let idx = {
let idx = self.idx;
self.idx += 1;
idx
};
Ty::new_placeholder(
self.tcx,
ty::PlaceholderType {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundTy {
var: ty::BoundVar::from_u32(idx),
kind: ty::BoundTyKind::Anon,
},
},
)
} else {
t.super_fold_with(self)
}
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Infer(_) = c.kind() {
let ty = c.ty();
// If the type references param or infer then ICE ICE ICE
if ty.has_non_region_param() || ty.has_non_region_infer() {
bug!("const `{c}`'s type should not reference params or types");
}
ty::Const::new_placeholder(
self.tcx,
ty::PlaceholderConst {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundVar::from_u32({
let idx = self.idx;
self.idx += 1;
idx
}),
},
ty,
)
} else {
c.super_fold_with(self)
}
}
}
args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
}