rust/library/std/tests/sync/rwlock.rs
Paul Menage 9e5c942286 Mark some std tests as requiring panic = "unwind"
This allows these test modules to pass on builds/targets without
unwinding support, where `panic = "abort"` - the ignored tests are for
functionality that's not supported on those targets.
2025-03-10 08:31:06 -07:00

745 lines
22 KiB
Rust

use std::fmt::Debug;
use std::ops::FnMut;
use std::panic::{self, AssertUnwindSafe};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::{
Arc, MappedRwLockReadGuard, MappedRwLockWriteGuard, RwLock, RwLockReadGuard, RwLockWriteGuard,
TryLockError,
};
use std::{hint, mem, thread};
use rand::Rng;
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[derive(Eq, PartialEq, Debug)]
struct NonCopyNeedsDrop(i32);
impl Drop for NonCopyNeedsDrop {
fn drop(&mut self) {
hint::black_box(());
}
}
#[test]
fn test_needs_drop() {
assert!(!mem::needs_drop::<NonCopy>());
assert!(mem::needs_drop::<NonCopyNeedsDrop>());
}
#[derive(Clone, Eq, PartialEq, Debug)]
struct Cloneable(i32);
#[test]
fn smoke() {
let l = RwLock::new(());
drop(l.read().unwrap());
drop(l.write().unwrap());
drop((l.read().unwrap(), l.read().unwrap()));
drop(l.write().unwrap());
}
#[test]
// FIXME: On macOS we use a provenance-incorrect implementation and Miri
// catches that issue with a chance of around 1/1000.
// See <https://github.com/rust-lang/rust/issues/121950> for details.
#[cfg_attr(all(miri, target_os = "macos"), ignore)]
fn frob() {
const N: u32 = 10;
const M: usize = if cfg!(miri) { 100 } else { 1000 };
let r = Arc::new(RwLock::new(()));
let (tx, rx) = channel::<()>();
for _ in 0..N {
let tx = tx.clone();
let r = r.clone();
thread::spawn(move || {
let mut rng = crate::common::test_rng();
for _ in 0..M {
if rng.random_bool(1.0 / (N as f64)) {
drop(r.write().unwrap());
} else {
drop(r.read().unwrap());
}
}
drop(tx);
});
}
drop(tx);
let _ = rx.recv();
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_poison_wr() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.write().unwrap();
panic!();
})
.join();
assert!(arc.read().is_err());
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_poison_mapped_w_r() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let lock = arc2.write().unwrap();
let _lock = RwLockWriteGuard::map(lock, |val| val);
panic!();
})
.join();
assert!(arc.read().is_err());
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_poison_ww() {
let arc = Arc::new(RwLock::new(1));
assert!(!arc.is_poisoned());
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.write().unwrap();
panic!();
})
.join();
assert!(arc.write().is_err());
assert!(arc.is_poisoned());
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_poison_mapped_w_w() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let lock = arc2.write().unwrap();
let _lock = RwLockWriteGuard::map(lock, |val| val);
panic!();
})
.join();
assert!(arc.write().is_err());
assert!(arc.is_poisoned());
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_no_poison_rr() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.read().unwrap();
panic!();
})
.join();
let lock = arc.read().unwrap();
assert_eq!(*lock, 1);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_no_poison_mapped_r_r() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let lock = arc2.read().unwrap();
let _lock = RwLockReadGuard::map(lock, |val| val);
panic!();
})
.join();
let lock = arc.read().unwrap();
assert_eq!(*lock, 1);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_no_poison_rw() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.read().unwrap();
panic!()
})
.join();
let lock = arc.write().unwrap();
assert_eq!(*lock, 1);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_no_poison_mapped_r_w() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let lock = arc2.read().unwrap();
let _lock = RwLockReadGuard::map(lock, |val| val);
panic!();
})
.join();
let lock = arc.write().unwrap();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc() {
let arc = Arc::new(RwLock::new(0));
let arc2 = arc.clone();
let (tx, rx) = channel();
thread::spawn(move || {
let mut lock = arc2.write().unwrap();
for _ in 0..10 {
let tmp = *lock;
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}
tx.send(()).unwrap();
});
// Readers try to catch the writer in the act
let mut children = Vec::new();
for _ in 0..5 {
let arc3 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc3.read().unwrap();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children {
assert!(r.join().is_ok());
}
// Wait for writer to finish
rx.recv().unwrap();
let lock = arc.read().unwrap();
assert_eq!(*lock, 10);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_rw_arc_access_in_unwind() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || -> () {
struct Unwinder {
i: Arc<RwLock<isize>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
let mut lock = self.i.write().unwrap();
*lock += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.read().unwrap();
assert_eq!(*lock, 2);
}
#[test]
fn test_rwlock_unsized() {
let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
{
let b = &mut *rw.write().unwrap();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*rw.read().unwrap(), comp);
}
#[test]
fn test_rwlock_try_write() {
let lock = RwLock::new(0isize);
let read_guard = lock.read().unwrap();
let write_result = lock.try_write();
match write_result {
Err(TryLockError::WouldBlock) => (),
Ok(_) => assert!(false, "try_write should not succeed while read_guard is in scope"),
Err(_) => assert!(false, "unexpected error"),
}
drop(read_guard);
let mapped_read_guard = RwLockReadGuard::map(lock.read().unwrap(), |_| &());
let write_result = lock.try_write();
match write_result {
Err(TryLockError::WouldBlock) => (),
Ok(_) => assert!(false, "try_write should not succeed while mapped_read_guard is in scope"),
Err(_) => assert!(false, "unexpected error"),
}
drop(mapped_read_guard);
}
fn new_poisoned_rwlock<T>(value: T) -> RwLock<T> {
let lock = RwLock::new(value);
let catch_unwind_result = panic::catch_unwind(AssertUnwindSafe(|| {
let _guard = lock.write().unwrap();
panic!("test panic to poison RwLock");
}));
assert!(catch_unwind_result.is_err());
assert!(lock.is_poisoned());
lock
}
#[test]
fn test_into_inner() {
let m = RwLock::new(NonCopy(10));
assert_eq!(m.into_inner().unwrap(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = RwLock::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner().unwrap();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_into_inner_poison() {
let m = new_poisoned_rwlock(NonCopy(10));
match m.into_inner() {
Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
Ok(x) => panic!("into_inner of poisoned RwLock is Ok: {x:?}"),
}
}
#[test]
fn test_get_cloned() {
let m = RwLock::new(Cloneable(10));
assert_eq!(m.get_cloned().unwrap(), Cloneable(10));
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_get_cloned_poison() {
let m = new_poisoned_rwlock(Cloneable(10));
match m.get_cloned() {
Err(e) => assert_eq!(e.into_inner(), ()),
Ok(x) => panic!("get of poisoned RwLock is Ok: {x:?}"),
}
}
#[test]
fn test_get_mut() {
let mut m = RwLock::new(NonCopy(10));
*m.get_mut().unwrap() = NonCopy(20);
assert_eq!(m.into_inner().unwrap(), NonCopy(20));
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_get_mut_poison() {
let mut m = new_poisoned_rwlock(NonCopy(10));
match m.get_mut() {
Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
Ok(x) => panic!("get_mut of poisoned RwLock is Ok: {x:?}"),
}
}
#[test]
fn test_set() {
fn inner<T>(mut init: impl FnMut() -> T, mut value: impl FnMut() -> T)
where
T: Debug + Eq,
{
let m = RwLock::new(init());
assert_eq!(*m.read().unwrap(), init());
m.set(value()).unwrap();
assert_eq!(*m.read().unwrap(), value());
}
inner(|| NonCopy(10), || NonCopy(20));
inner(|| NonCopyNeedsDrop(10), || NonCopyNeedsDrop(20));
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_set_poison() {
fn inner<T>(mut init: impl FnMut() -> T, mut value: impl FnMut() -> T)
where
T: Debug + Eq,
{
let m = new_poisoned_rwlock(init());
match m.set(value()) {
Err(e) => {
assert_eq!(e.into_inner(), value());
assert_eq!(m.into_inner().unwrap_err().into_inner(), init());
}
Ok(x) => panic!("set of poisoned RwLock is Ok: {x:?}"),
}
}
inner(|| NonCopy(10), || NonCopy(20));
inner(|| NonCopyNeedsDrop(10), || NonCopyNeedsDrop(20));
}
#[test]
fn test_replace() {
fn inner<T>(mut init: impl FnMut() -> T, mut value: impl FnMut() -> T)
where
T: Debug + Eq,
{
let m = RwLock::new(init());
assert_eq!(*m.read().unwrap(), init());
assert_eq!(m.replace(value()).unwrap(), init());
assert_eq!(*m.read().unwrap(), value());
}
inner(|| NonCopy(10), || NonCopy(20));
inner(|| NonCopyNeedsDrop(10), || NonCopyNeedsDrop(20));
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_replace_poison() {
fn inner<T>(mut init: impl FnMut() -> T, mut value: impl FnMut() -> T)
where
T: Debug + Eq,
{
let m = new_poisoned_rwlock(init());
match m.replace(value()) {
Err(e) => {
assert_eq!(e.into_inner(), value());
assert_eq!(m.into_inner().unwrap_err().into_inner(), init());
}
Ok(x) => panic!("replace of poisoned RwLock is Ok: {x:?}"),
}
}
inner(|| NonCopy(10), || NonCopy(20));
inner(|| NonCopyNeedsDrop(10), || NonCopyNeedsDrop(20));
}
#[test]
fn test_read_guard_covariance() {
fn do_stuff<'a>(_: RwLockReadGuard<'_, &'a i32>, _: &'a i32) {}
let j: i32 = 5;
let lock = RwLock::new(&j);
{
let i = 6;
do_stuff(lock.read().unwrap(), &i);
}
drop(lock);
}
#[test]
fn test_mapped_read_guard_covariance() {
fn do_stuff<'a>(_: MappedRwLockReadGuard<'_, &'a i32>, _: &'a i32) {}
let j: i32 = 5;
let lock = RwLock::new((&j, &j));
{
let i = 6;
let guard = lock.read().unwrap();
let guard = RwLockReadGuard::map(guard, |(val, _val)| val);
do_stuff(guard, &i);
}
drop(lock);
}
#[test]
fn test_mapping_mapped_guard() {
let arr = [0; 4];
let mut lock = RwLock::new(arr);
let guard = lock.write().unwrap();
let guard = RwLockWriteGuard::map(guard, |arr| &mut arr[..2]);
let mut guard = MappedRwLockWriteGuard::map(guard, |slice| &mut slice[1..]);
assert_eq!(guard.len(), 1);
guard[0] = 42;
drop(guard);
assert_eq!(*lock.get_mut().unwrap(), [0, 42, 0, 0]);
let guard = lock.read().unwrap();
let guard = RwLockReadGuard::map(guard, |arr| &arr[..2]);
let guard = MappedRwLockReadGuard::map(guard, |slice| &slice[1..]);
assert_eq!(*guard, [42]);
drop(guard);
assert_eq!(*lock.get_mut().unwrap(), [0, 42, 0, 0]);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn panic_while_mapping_read_unlocked_no_poison() {
let lock = RwLock::new(());
let _ = panic::catch_unwind(|| {
let guard = lock.read().unwrap();
let _guard = RwLockReadGuard::map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {}
Err(TryLockError::WouldBlock) => {
panic!("panicking in a RwLockReadGuard::map closure should release the read lock")
}
Err(TryLockError::Poisoned(_)) => {
panic!("panicking in a RwLockReadGuard::map closure should not poison the RwLock")
}
}
let _ = panic::catch_unwind(|| {
let guard = lock.read().unwrap();
let _guard = RwLockReadGuard::try_map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {}
Err(TryLockError::WouldBlock) => {
panic!("panicking in a RwLockReadGuard::try_map closure should release the read lock")
}
Err(TryLockError::Poisoned(_)) => {
panic!("panicking in a RwLockReadGuard::try_map closure should not poison the RwLock")
}
}
let _ = panic::catch_unwind(|| {
let guard = lock.read().unwrap();
let guard = RwLockReadGuard::map::<(), _>(guard, |val| val);
let _guard = MappedRwLockReadGuard::map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {}
Err(TryLockError::WouldBlock) => {
panic!("panicking in a MappedRwLockReadGuard::map closure should release the read lock")
}
Err(TryLockError::Poisoned(_)) => {
panic!("panicking in a MappedRwLockReadGuard::map closure should not poison the RwLock")
}
}
let _ = panic::catch_unwind(|| {
let guard = lock.read().unwrap();
let guard = RwLockReadGuard::map::<(), _>(guard, |val| val);
let _guard = MappedRwLockReadGuard::try_map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {}
Err(TryLockError::WouldBlock) => panic!(
"panicking in a MappedRwLockReadGuard::try_map closure should release the read lock"
),
Err(TryLockError::Poisoned(_)) => panic!(
"panicking in a MappedRwLockReadGuard::try_map closure should not poison the RwLock"
),
}
drop(lock);
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn panic_while_mapping_write_unlocked_poison() {
let lock = RwLock::new(());
let _ = panic::catch_unwind(|| {
let guard = lock.write().unwrap();
let _guard = RwLockWriteGuard::map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => panic!("panicking in a RwLockWriteGuard::map closure should poison the RwLock"),
Err(TryLockError::WouldBlock) => {
panic!("panicking in a RwLockWriteGuard::map closure should release the write lock")
}
Err(TryLockError::Poisoned(_)) => {}
}
let _ = panic::catch_unwind(|| {
let guard = lock.write().unwrap();
let _guard = RwLockWriteGuard::try_map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {
panic!("panicking in a RwLockWriteGuard::try_map closure should poison the RwLock")
}
Err(TryLockError::WouldBlock) => {
panic!("panicking in a RwLockWriteGuard::try_map closure should release the write lock")
}
Err(TryLockError::Poisoned(_)) => {}
}
let _ = panic::catch_unwind(|| {
let guard = lock.write().unwrap();
let guard = RwLockWriteGuard::map::<(), _>(guard, |val| val);
let _guard = MappedRwLockWriteGuard::map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => {
panic!("panicking in a MappedRwLockWriteGuard::map closure should poison the RwLock")
}
Err(TryLockError::WouldBlock) => panic!(
"panicking in a MappedRwLockWriteGuard::map closure should release the write lock"
),
Err(TryLockError::Poisoned(_)) => {}
}
let _ = panic::catch_unwind(|| {
let guard = lock.write().unwrap();
let guard = RwLockWriteGuard::map::<(), _>(guard, |val| val);
let _guard = MappedRwLockWriteGuard::try_map::<(), _>(guard, |_| panic!());
});
match lock.try_write() {
Ok(_) => panic!(
"panicking in a MappedRwLockWriteGuard::try_map closure should poison the RwLock"
),
Err(TryLockError::WouldBlock) => panic!(
"panicking in a MappedRwLockWriteGuard::try_map closure should release the write lock"
),
Err(TryLockError::Poisoned(_)) => {}
}
drop(lock);
}
#[test]
fn test_downgrade_basic() {
let r = RwLock::new(());
let write_guard = r.write().unwrap();
let _read_guard = RwLockWriteGuard::downgrade(write_guard);
}
#[test]
// FIXME: On macOS we use a provenance-incorrect implementation and Miri catches that issue.
// See <https://github.com/rust-lang/rust/issues/121950> for details.
#[cfg_attr(all(miri, target_os = "macos"), ignore)]
fn test_downgrade_observe() {
// Taken from the test `test_rwlock_downgrade` from:
// https://github.com/Amanieu/parking_lot/blob/master/src/rwlock.rs
const W: usize = 20;
const N: usize = if cfg!(miri) { 40 } else { 100 };
// This test spawns `W` writer threads, where each will increment a counter `N` times, ensuring
// that the value they wrote has not changed after downgrading.
let rw = Arc::new(RwLock::new(0));
// Spawn the writers that will do `W * N` operations and checks.
let handles: Vec<_> = (0..W)
.map(|_| {
let rw = rw.clone();
thread::spawn(move || {
for _ in 0..N {
// Increment the counter.
let mut write_guard = rw.write().unwrap();
*write_guard += 1;
let cur_val = *write_guard;
// Downgrade the lock to read mode, where the value protected cannot be modified.
let read_guard = RwLockWriteGuard::downgrade(write_guard);
assert_eq!(cur_val, *read_guard);
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
assert_eq!(*rw.read().unwrap(), W * N);
}
#[test]
// FIXME: On macOS we use a provenance-incorrect implementation and Miri catches that issue.
// See <https://github.com/rust-lang/rust/issues/121950> for details.
#[cfg_attr(all(miri, target_os = "macos"), ignore)]
fn test_downgrade_atomic() {
const NEW_VALUE: i32 = -1;
// This test checks that `downgrade` is atomic, meaning as soon as a write lock has been
// downgraded, the lock must be in read mode and no other threads can take the write lock to
// modify the protected value.
// `W` is the number of evil writer threads.
const W: usize = 20;
let rwlock = Arc::new(RwLock::new(0));
// Spawns many evil writer threads that will try and write to the locked value before the
// initial writer (who has the exclusive lock) can read after it downgrades.
// If the `RwLock` behaves correctly, then the initial writer should read the value it wrote
// itself as no other thread should be able to mutate the protected value.
// Put the lock in write mode, causing all future threads trying to access this go to sleep.
let mut main_write_guard = rwlock.write().unwrap();
// Spawn all of the evil writer threads. They will each increment the protected value by 1.
let handles: Vec<_> = (0..W)
.map(|_| {
let rwlock = rwlock.clone();
thread::spawn(move || {
// Will go to sleep since the main thread initially has the write lock.
let mut evil_guard = rwlock.write().unwrap();
*evil_guard += 1;
})
})
.collect();
// Wait for a good amount of time so that evil threads go to sleep.
// Note: this is not strictly necessary...
let eternity = std::time::Duration::from_millis(42);
thread::sleep(eternity);
// Once everyone is asleep, set the value to `NEW_VALUE`.
*main_write_guard = NEW_VALUE;
// Atomically downgrade the write guard into a read guard.
let main_read_guard = RwLockWriteGuard::downgrade(main_write_guard);
// If the above is not atomic, then it would be possible for an evil thread to get in front of
// this read and change the value to be non-negative.
assert_eq!(*main_read_guard, NEW_VALUE, "`downgrade` was not atomic");
// Drop the main read guard and allow the evil writer threads to start incrementing.
drop(main_read_guard);
for handle in handles {
handle.join().unwrap();
}
let final_check = rwlock.read().unwrap();
assert_eq!(*final_check, W as i32 + NEW_VALUE);
}