
Coerce const FnDefs to implement const Fn traits You can now pass a FnDef to a function expecting `F` where `F: ~const FnTrait`. r? ``@oli-obk`` ``@rustbot`` label T-compiler F-const_trait_impl
2625 lines
106 KiB
Rust
2625 lines
106 KiB
Rust
//! Candidate selection. See the [rustc dev guide] for more information on how this works.
|
|
//!
|
|
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
|
|
|
|
use self::EvaluationResult::*;
|
|
use self::SelectionCandidate::*;
|
|
|
|
use super::coherence::{self, Conflict};
|
|
use super::const_evaluatable;
|
|
use super::project;
|
|
use super::project::normalize_with_depth_to;
|
|
use super::project::ProjectionTyObligation;
|
|
use super::util;
|
|
use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
|
|
use super::wf;
|
|
use super::DerivedObligationCause;
|
|
use super::Normalized;
|
|
use super::Obligation;
|
|
use super::ObligationCauseCode;
|
|
use super::Selection;
|
|
use super::SelectionResult;
|
|
use super::TraitQueryMode;
|
|
use super::{ObligationCause, PredicateObligation, TraitObligation};
|
|
use super::{Overflow, SelectionError, Unimplemented};
|
|
|
|
use crate::infer::{InferCtxt, InferOk, TypeFreshener};
|
|
use crate::traits::error_reporting::InferCtxtExt;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::stack::ensure_sufficient_stack;
|
|
use rustc_data_structures::sync::Lrc;
|
|
use rustc_errors::ErrorReported;
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_infer::infer::LateBoundRegionConversionTime;
|
|
use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
|
|
use rustc_middle::mir::interpret::ErrorHandled;
|
|
use rustc_middle::thir::abstract_const::NotConstEvaluatable;
|
|
use rustc_middle::ty::fast_reject;
|
|
use rustc_middle::ty::print::with_no_trimmed_paths;
|
|
use rustc_middle::ty::relate::TypeRelation;
|
|
use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
|
|
use rustc_middle::ty::WithConstness;
|
|
use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
|
|
use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
|
|
use rustc_span::symbol::sym;
|
|
|
|
use std::cell::{Cell, RefCell};
|
|
use std::cmp;
|
|
use std::fmt::{self, Display};
|
|
use std::iter;
|
|
|
|
pub use rustc_middle::traits::select::*;
|
|
|
|
mod candidate_assembly;
|
|
mod confirmation;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub enum IntercrateAmbiguityCause {
|
|
DownstreamCrate { trait_desc: String, self_desc: Option<String> },
|
|
UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
|
|
ReservationImpl { message: String },
|
|
}
|
|
|
|
impl IntercrateAmbiguityCause {
|
|
/// Emits notes when the overlap is caused by complex intercrate ambiguities.
|
|
/// See #23980 for details.
|
|
pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
|
|
err.note(&self.intercrate_ambiguity_hint());
|
|
}
|
|
|
|
pub fn intercrate_ambiguity_hint(&self) -> String {
|
|
match self {
|
|
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } => {
|
|
let self_desc = if let Some(ty) = self_desc {
|
|
format!(" for type `{}`", ty)
|
|
} else {
|
|
String::new()
|
|
};
|
|
format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
|
|
}
|
|
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } => {
|
|
let self_desc = if let Some(ty) = self_desc {
|
|
format!(" for type `{}`", ty)
|
|
} else {
|
|
String::new()
|
|
};
|
|
format!(
|
|
"upstream crates may add a new impl of trait `{}`{} \
|
|
in future versions",
|
|
trait_desc, self_desc
|
|
)
|
|
}
|
|
IntercrateAmbiguityCause::ReservationImpl { message } => message.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct SelectionContext<'cx, 'tcx> {
|
|
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
|
|
|
/// Freshener used specifically for entries on the obligation
|
|
/// stack. This ensures that all entries on the stack at one time
|
|
/// will have the same set of placeholder entries, which is
|
|
/// important for checking for trait bounds that recursively
|
|
/// require themselves.
|
|
freshener: TypeFreshener<'cx, 'tcx>,
|
|
|
|
/// If `true`, indicates that the evaluation should be conservative
|
|
/// and consider the possibility of types outside this crate.
|
|
/// This comes up primarily when resolving ambiguity. Imagine
|
|
/// there is some trait reference `$0: Bar` where `$0` is an
|
|
/// inference variable. If `intercrate` is true, then we can never
|
|
/// say for sure that this reference is not implemented, even if
|
|
/// there are *no impls at all for `Bar`*, because `$0` could be
|
|
/// bound to some type that in a downstream crate that implements
|
|
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
|
|
/// though, we set this to false, because we are only interested
|
|
/// in types that the user could actually have written --- in
|
|
/// other words, we consider `$0: Bar` to be unimplemented if
|
|
/// there is no type that the user could *actually name* that
|
|
/// would satisfy it. This avoids crippling inference, basically.
|
|
intercrate: bool,
|
|
|
|
intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
|
|
|
|
/// Controls whether or not to filter out negative impls when selecting.
|
|
/// This is used in librustdoc to distinguish between the lack of an impl
|
|
/// and a negative impl
|
|
allow_negative_impls: bool,
|
|
|
|
/// Are we in a const context that needs `~const` bounds to be const?
|
|
is_in_const_context: bool,
|
|
|
|
/// The mode that trait queries run in, which informs our error handling
|
|
/// policy. In essence, canonicalized queries need their errors propagated
|
|
/// rather than immediately reported because we do not have accurate spans.
|
|
query_mode: TraitQueryMode,
|
|
}
|
|
|
|
// A stack that walks back up the stack frame.
|
|
struct TraitObligationStack<'prev, 'tcx> {
|
|
obligation: &'prev TraitObligation<'tcx>,
|
|
|
|
/// The trait ref from `obligation` but "freshened" with the
|
|
/// selection-context's freshener. Used to check for recursion.
|
|
fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
|
|
/// Starts out equal to `depth` -- if, during evaluation, we
|
|
/// encounter a cycle, then we will set this flag to the minimum
|
|
/// depth of that cycle for all participants in the cycle. These
|
|
/// participants will then forego caching their results. This is
|
|
/// not the most efficient solution, but it addresses #60010. The
|
|
/// problem we are trying to prevent:
|
|
///
|
|
/// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
|
|
/// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
|
|
/// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
|
|
///
|
|
/// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
|
|
/// is `EvaluatedToOk`; this is because they were only considered
|
|
/// ok on the premise that if `A: AutoTrait` held, but we indeed
|
|
/// encountered a problem (later on) with `A: AutoTrait. So we
|
|
/// currently set a flag on the stack node for `B: AutoTrait` (as
|
|
/// well as the second instance of `A: AutoTrait`) to suppress
|
|
/// caching.
|
|
///
|
|
/// This is a simple, targeted fix. A more-performant fix requires
|
|
/// deeper changes, but would permit more caching: we could
|
|
/// basically defer caching until we have fully evaluated the
|
|
/// tree, and then cache the entire tree at once. In any case, the
|
|
/// performance impact here shouldn't be so horrible: every time
|
|
/// this is hit, we do cache at least one trait, so we only
|
|
/// evaluate each member of a cycle up to N times, where N is the
|
|
/// length of the cycle. This means the performance impact is
|
|
/// bounded and we shouldn't have any terrible worst-cases.
|
|
reached_depth: Cell<usize>,
|
|
|
|
previous: TraitObligationStackList<'prev, 'tcx>,
|
|
|
|
/// The number of parent frames plus one (thus, the topmost frame has depth 1).
|
|
depth: usize,
|
|
|
|
/// The depth-first number of this node in the search graph -- a
|
|
/// pre-order index. Basically, a freshly incremented counter.
|
|
dfn: usize,
|
|
}
|
|
|
|
struct SelectionCandidateSet<'tcx> {
|
|
// A list of candidates that definitely apply to the current
|
|
// obligation (meaning: types unify).
|
|
vec: Vec<SelectionCandidate<'tcx>>,
|
|
|
|
// If `true`, then there were candidates that might or might
|
|
// not have applied, but we couldn't tell. This occurs when some
|
|
// of the input types are type variables, in which case there are
|
|
// various "builtin" rules that might or might not trigger.
|
|
ambiguous: bool,
|
|
}
|
|
|
|
#[derive(PartialEq, Eq, Debug, Clone)]
|
|
struct EvaluatedCandidate<'tcx> {
|
|
candidate: SelectionCandidate<'tcx>,
|
|
evaluation: EvaluationResult,
|
|
}
|
|
|
|
/// When does the builtin impl for `T: Trait` apply?
|
|
enum BuiltinImplConditions<'tcx> {
|
|
/// The impl is conditional on `T1, T2, ...: Trait`.
|
|
Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
|
|
/// There is no built-in impl. There may be some other
|
|
/// candidate (a where-clause or user-defined impl).
|
|
None,
|
|
/// It is unknown whether there is an impl.
|
|
Ambiguous,
|
|
}
|
|
|
|
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
|
pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
|
|
SelectionContext {
|
|
infcx,
|
|
freshener: infcx.freshener_keep_static(),
|
|
intercrate: false,
|
|
intercrate_ambiguity_causes: None,
|
|
allow_negative_impls: false,
|
|
is_in_const_context: false,
|
|
query_mode: TraitQueryMode::Standard,
|
|
}
|
|
}
|
|
|
|
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
|
|
SelectionContext {
|
|
infcx,
|
|
freshener: infcx.freshener_keep_static(),
|
|
intercrate: true,
|
|
intercrate_ambiguity_causes: None,
|
|
allow_negative_impls: false,
|
|
is_in_const_context: false,
|
|
query_mode: TraitQueryMode::Standard,
|
|
}
|
|
}
|
|
|
|
pub fn with_negative(
|
|
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
|
allow_negative_impls: bool,
|
|
) -> SelectionContext<'cx, 'tcx> {
|
|
debug!(?allow_negative_impls, "with_negative");
|
|
SelectionContext {
|
|
infcx,
|
|
freshener: infcx.freshener_keep_static(),
|
|
intercrate: false,
|
|
intercrate_ambiguity_causes: None,
|
|
allow_negative_impls,
|
|
is_in_const_context: false,
|
|
query_mode: TraitQueryMode::Standard,
|
|
}
|
|
}
|
|
|
|
pub fn with_query_mode(
|
|
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
|
query_mode: TraitQueryMode,
|
|
) -> SelectionContext<'cx, 'tcx> {
|
|
debug!(?query_mode, "with_query_mode");
|
|
SelectionContext {
|
|
infcx,
|
|
freshener: infcx.freshener_keep_static(),
|
|
intercrate: false,
|
|
intercrate_ambiguity_causes: None,
|
|
allow_negative_impls: false,
|
|
is_in_const_context: false,
|
|
query_mode,
|
|
}
|
|
}
|
|
|
|
pub fn with_constness(
|
|
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
|
constness: hir::Constness,
|
|
) -> SelectionContext<'cx, 'tcx> {
|
|
SelectionContext {
|
|
infcx,
|
|
freshener: infcx.freshener_keep_static(),
|
|
intercrate: false,
|
|
intercrate_ambiguity_causes: None,
|
|
allow_negative_impls: false,
|
|
is_in_const_context: matches!(constness, hir::Constness::Const),
|
|
query_mode: TraitQueryMode::Standard,
|
|
}
|
|
}
|
|
|
|
/// Enables tracking of intercrate ambiguity causes. These are
|
|
/// used in coherence to give improved diagnostics. We don't do
|
|
/// this until we detect a coherence error because it can lead to
|
|
/// false overflow results (#47139) and because it costs
|
|
/// computation time.
|
|
pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
|
|
assert!(self.intercrate);
|
|
assert!(self.intercrate_ambiguity_causes.is_none());
|
|
self.intercrate_ambiguity_causes = Some(vec![]);
|
|
debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
|
|
}
|
|
|
|
/// Gets the intercrate ambiguity causes collected since tracking
|
|
/// was enabled and disables tracking at the same time. If
|
|
/// tracking is not enabled, just returns an empty vector.
|
|
pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
|
|
assert!(self.intercrate);
|
|
self.intercrate_ambiguity_causes.take().unwrap_or_default()
|
|
}
|
|
|
|
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
|
|
self.infcx
|
|
}
|
|
|
|
pub fn tcx(&self) -> TyCtxt<'tcx> {
|
|
self.infcx.tcx
|
|
}
|
|
|
|
pub fn is_intercrate(&self) -> bool {
|
|
self.intercrate
|
|
}
|
|
|
|
/// Returns `true` if the trait predicate is considerd `const` to this selection context.
|
|
pub fn is_trait_predicate_const(&self, pred: ty::TraitPredicate<'_>) -> bool {
|
|
match pred.constness {
|
|
ty::BoundConstness::ConstIfConst if self.is_in_const_context => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the predicate is considered `const` to
|
|
/// this selection context.
|
|
pub fn is_predicate_const(&self, pred: ty::Predicate<'_>) -> bool {
|
|
match pred.kind().skip_binder() {
|
|
ty::PredicateKind::Trait(pred) => self.is_trait_predicate_const(pred),
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Selection
|
|
//
|
|
// The selection phase tries to identify *how* an obligation will
|
|
// be resolved. For example, it will identify which impl or
|
|
// parameter bound is to be used. The process can be inconclusive
|
|
// if the self type in the obligation is not fully inferred. Selection
|
|
// can result in an error in one of two ways:
|
|
//
|
|
// 1. If no applicable impl or parameter bound can be found.
|
|
// 2. If the output type parameters in the obligation do not match
|
|
// those specified by the impl/bound. For example, if the obligation
|
|
// is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
|
|
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
|
|
|
|
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
|
|
/// type environment by performing unification.
|
|
#[instrument(level = "debug", skip(self))]
|
|
pub fn select(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> SelectionResult<'tcx, Selection<'tcx>> {
|
|
debug_assert!(!obligation.predicate.has_escaping_bound_vars());
|
|
|
|
let pec = &ProvisionalEvaluationCache::default();
|
|
let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
|
|
|
|
let candidate = match self.candidate_from_obligation(&stack) {
|
|
Err(SelectionError::Overflow) => {
|
|
// In standard mode, overflow must have been caught and reported
|
|
// earlier.
|
|
assert!(self.query_mode == TraitQueryMode::Canonical);
|
|
return Err(SelectionError::Overflow);
|
|
}
|
|
Err(e) => {
|
|
return Err(e);
|
|
}
|
|
Ok(None) => {
|
|
return Ok(None);
|
|
}
|
|
Ok(Some(candidate)) => candidate,
|
|
};
|
|
|
|
match self.confirm_candidate(obligation, candidate) {
|
|
Err(SelectionError::Overflow) => {
|
|
assert!(self.query_mode == TraitQueryMode::Canonical);
|
|
Err(SelectionError::Overflow)
|
|
}
|
|
Err(e) => Err(e),
|
|
Ok(candidate) => {
|
|
debug!(?candidate);
|
|
Ok(Some(candidate))
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// EVALUATION
|
|
//
|
|
// Tests whether an obligation can be selected or whether an impl
|
|
// can be applied to particular types. It skips the "confirmation"
|
|
// step and hence completely ignores output type parameters.
|
|
//
|
|
// The result is "true" if the obligation *may* hold and "false" if
|
|
// we can be sure it does not.
|
|
|
|
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
|
|
pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
|
|
debug!(?obligation, "predicate_may_hold_fatal");
|
|
|
|
// This fatal query is a stopgap that should only be used in standard mode,
|
|
// where we do not expect overflow to be propagated.
|
|
assert!(self.query_mode == TraitQueryMode::Standard);
|
|
|
|
self.evaluate_root_obligation(obligation)
|
|
.expect("Overflow should be caught earlier in standard query mode")
|
|
.may_apply()
|
|
}
|
|
|
|
/// Evaluates whether the obligation `obligation` can be satisfied
|
|
/// and returns an `EvaluationResult`. This is meant for the
|
|
/// *initial* call.
|
|
pub fn evaluate_root_obligation(
|
|
&mut self,
|
|
obligation: &PredicateObligation<'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
self.evaluation_probe(|this| {
|
|
this.evaluate_predicate_recursively(
|
|
TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
|
|
obligation.clone(),
|
|
)
|
|
})
|
|
}
|
|
|
|
fn evaluation_probe(
|
|
&mut self,
|
|
op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
|
|
let result = op(self)?;
|
|
|
|
match self.infcx.leak_check(true, snapshot) {
|
|
Ok(()) => {}
|
|
Err(_) => return Ok(EvaluatedToErr),
|
|
}
|
|
|
|
match self.infcx.region_constraints_added_in_snapshot(snapshot) {
|
|
None => Ok(result),
|
|
Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Evaluates the predicates in `predicates` recursively. Note that
|
|
/// this applies projections in the predicates, and therefore
|
|
/// is run within an inference probe.
|
|
#[instrument(skip(self, stack), level = "debug")]
|
|
fn evaluate_predicates_recursively<'o, I>(
|
|
&mut self,
|
|
stack: TraitObligationStackList<'o, 'tcx>,
|
|
predicates: I,
|
|
) -> Result<EvaluationResult, OverflowError>
|
|
where
|
|
I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
|
|
{
|
|
let mut result = EvaluatedToOk;
|
|
for obligation in predicates {
|
|
let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
|
|
if let EvaluatedToErr = eval {
|
|
// fast-path - EvaluatedToErr is the top of the lattice,
|
|
// so we don't need to look on the other predicates.
|
|
return Ok(EvaluatedToErr);
|
|
} else {
|
|
result = cmp::max(result, eval);
|
|
}
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
#[instrument(
|
|
level = "debug",
|
|
skip(self, previous_stack),
|
|
fields(previous_stack = ?previous_stack.head())
|
|
)]
|
|
fn evaluate_predicate_recursively<'o>(
|
|
&mut self,
|
|
previous_stack: TraitObligationStackList<'o, 'tcx>,
|
|
obligation: PredicateObligation<'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
// `previous_stack` stores a `TraitObligation`, while `obligation` is
|
|
// a `PredicateObligation`. These are distinct types, so we can't
|
|
// use any `Option` combinator method that would force them to be
|
|
// the same.
|
|
match previous_stack.head() {
|
|
Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
|
|
None => self.check_recursion_limit(&obligation, &obligation)?,
|
|
}
|
|
|
|
let result = ensure_sufficient_stack(|| {
|
|
let bound_predicate = obligation.predicate.kind();
|
|
match bound_predicate.skip_binder() {
|
|
ty::PredicateKind::Trait(t) => {
|
|
let t = bound_predicate.rebind(t);
|
|
debug_assert!(!t.has_escaping_bound_vars());
|
|
let obligation = obligation.with(t);
|
|
self.evaluate_trait_predicate_recursively(previous_stack, obligation)
|
|
}
|
|
|
|
ty::PredicateKind::Subtype(p) => {
|
|
let p = bound_predicate.rebind(p);
|
|
// Does this code ever run?
|
|
match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
|
|
Some(Ok(InferOk { mut obligations, .. })) => {
|
|
self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
|
|
self.evaluate_predicates_recursively(
|
|
previous_stack,
|
|
obligations.into_iter(),
|
|
)
|
|
}
|
|
Some(Err(_)) => Ok(EvaluatedToErr),
|
|
None => Ok(EvaluatedToAmbig),
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::Coerce(p) => {
|
|
let p = bound_predicate.rebind(p);
|
|
// Does this code ever run?
|
|
match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
|
|
Some(Ok(InferOk { mut obligations, .. })) => {
|
|
self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
|
|
self.evaluate_predicates_recursively(
|
|
previous_stack,
|
|
obligations.into_iter(),
|
|
)
|
|
}
|
|
Some(Err(_)) => Ok(EvaluatedToErr),
|
|
None => Ok(EvaluatedToAmbig),
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::WellFormed(arg) => match wf::obligations(
|
|
self.infcx,
|
|
obligation.param_env,
|
|
obligation.cause.body_id,
|
|
obligation.recursion_depth + 1,
|
|
arg,
|
|
obligation.cause.span,
|
|
) {
|
|
Some(mut obligations) => {
|
|
self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
|
|
self.evaluate_predicates_recursively(previous_stack, obligations)
|
|
}
|
|
None => Ok(EvaluatedToAmbig),
|
|
},
|
|
|
|
ty::PredicateKind::TypeOutlives(pred) => {
|
|
if pred.0.is_known_global() {
|
|
Ok(EvaluatedToOk)
|
|
} else {
|
|
Ok(EvaluatedToOkModuloRegions)
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::RegionOutlives(..) => {
|
|
// We do not consider region relationships when evaluating trait matches.
|
|
Ok(EvaluatedToOkModuloRegions)
|
|
}
|
|
|
|
ty::PredicateKind::ObjectSafe(trait_def_id) => {
|
|
if self.tcx().is_object_safe(trait_def_id) {
|
|
Ok(EvaluatedToOk)
|
|
} else {
|
|
Ok(EvaluatedToErr)
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::Projection(data) => {
|
|
let data = bound_predicate.rebind(data);
|
|
let project_obligation = obligation.with(data);
|
|
match project::poly_project_and_unify_type(self, &project_obligation) {
|
|
Ok(Ok(Some(mut subobligations))) => {
|
|
self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
|
|
self.evaluate_predicates_recursively(previous_stack, subobligations)
|
|
}
|
|
Ok(Ok(None)) => Ok(EvaluatedToAmbig),
|
|
Ok(Err(project::InProgress)) => Ok(EvaluatedToRecur),
|
|
Err(_) => Ok(EvaluatedToErr),
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
|
|
match self.infcx.closure_kind(closure_substs) {
|
|
Some(closure_kind) => {
|
|
if closure_kind.extends(kind) {
|
|
Ok(EvaluatedToOk)
|
|
} else {
|
|
Ok(EvaluatedToErr)
|
|
}
|
|
}
|
|
None => Ok(EvaluatedToAmbig),
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::ConstEvaluatable(uv) => {
|
|
match const_evaluatable::is_const_evaluatable(
|
|
self.infcx,
|
|
uv,
|
|
obligation.param_env,
|
|
obligation.cause.span,
|
|
) {
|
|
Ok(()) => Ok(EvaluatedToOk),
|
|
Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
|
|
Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
|
|
Err(_) => Ok(EvaluatedToErr),
|
|
}
|
|
}
|
|
|
|
ty::PredicateKind::ConstEquate(c1, c2) => {
|
|
debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
|
|
|
|
if self.tcx().features().generic_const_exprs {
|
|
// FIXME: we probably should only try to unify abstract constants
|
|
// if the constants depend on generic parameters.
|
|
//
|
|
// Let's just see where this breaks :shrug:
|
|
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
|
|
(c1.val, c2.val)
|
|
{
|
|
if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
|
|
return Ok(EvaluatedToOk);
|
|
}
|
|
}
|
|
}
|
|
|
|
let evaluate = |c: &'tcx ty::Const<'tcx>| {
|
|
if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
|
|
self.infcx
|
|
.const_eval_resolve(
|
|
obligation.param_env,
|
|
unevaluated,
|
|
Some(obligation.cause.span),
|
|
)
|
|
.map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
|
|
} else {
|
|
Ok(c)
|
|
}
|
|
};
|
|
|
|
match (evaluate(c1), evaluate(c2)) {
|
|
(Ok(c1), Ok(c2)) => {
|
|
match self
|
|
.infcx()
|
|
.at(&obligation.cause, obligation.param_env)
|
|
.eq(c1, c2)
|
|
{
|
|
Ok(_) => Ok(EvaluatedToOk),
|
|
Err(_) => Ok(EvaluatedToErr),
|
|
}
|
|
}
|
|
(Err(ErrorHandled::Reported(ErrorReported)), _)
|
|
| (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
|
|
(Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
|
|
span_bug!(
|
|
obligation.cause.span(self.tcx()),
|
|
"ConstEquate: const_eval_resolve returned an unexpected error"
|
|
)
|
|
}
|
|
(Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
|
|
if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
|
|
Ok(EvaluatedToAmbig)
|
|
} else {
|
|
// Two different constants using generic parameters ~> error.
|
|
Ok(EvaluatedToErr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ty::PredicateKind::TypeWellFormedFromEnv(..) => {
|
|
bug!("TypeWellFormedFromEnv is only used for chalk")
|
|
}
|
|
}
|
|
});
|
|
|
|
debug!("finished: {:?} from {:?}", result, obligation);
|
|
|
|
result
|
|
}
|
|
|
|
#[instrument(skip(self, previous_stack), level = "debug")]
|
|
fn evaluate_trait_predicate_recursively<'o>(
|
|
&mut self,
|
|
previous_stack: TraitObligationStackList<'o, 'tcx>,
|
|
mut obligation: TraitObligation<'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
if !self.intercrate
|
|
&& obligation.is_global(self.tcx())
|
|
&& obligation
|
|
.param_env
|
|
.caller_bounds()
|
|
.iter()
|
|
.all(|bound| bound.definitely_needs_subst(self.tcx()))
|
|
{
|
|
// If a param env has no global bounds, global obligations do not
|
|
// depend on its particular value in order to work, so we can clear
|
|
// out the param env and get better caching.
|
|
debug!("in global");
|
|
obligation.param_env = obligation.param_env.without_caller_bounds();
|
|
}
|
|
|
|
let stack = self.push_stack(previous_stack, &obligation);
|
|
let fresh_trait_ref = stack.fresh_trait_ref;
|
|
|
|
debug!(?fresh_trait_ref);
|
|
|
|
if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
|
|
debug!(?result, "CACHE HIT");
|
|
return Ok(result);
|
|
}
|
|
|
|
if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
|
|
debug!(?result, "PROVISIONAL CACHE HIT");
|
|
stack.update_reached_depth(result.reached_depth);
|
|
return Ok(result.result);
|
|
}
|
|
|
|
// Check if this is a match for something already on the
|
|
// stack. If so, we don't want to insert the result into the
|
|
// main cache (it is cycle dependent) nor the provisional
|
|
// cache (which is meant for things that have completed but
|
|
// for a "backedge" -- this result *is* the backedge).
|
|
if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
|
|
return Ok(cycle_result);
|
|
}
|
|
|
|
let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
|
|
let result = result?;
|
|
|
|
if !result.must_apply_modulo_regions() {
|
|
stack.cache().on_failure(stack.dfn);
|
|
}
|
|
|
|
let reached_depth = stack.reached_depth.get();
|
|
if reached_depth >= stack.depth {
|
|
debug!(?result, "CACHE MISS");
|
|
self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
|
|
|
|
stack.cache().on_completion(stack.dfn, |fresh_trait_ref, provisional_result| {
|
|
self.insert_evaluation_cache(
|
|
obligation.param_env,
|
|
fresh_trait_ref,
|
|
dep_node,
|
|
provisional_result.max(result),
|
|
);
|
|
});
|
|
} else {
|
|
debug!(?result, "PROVISIONAL");
|
|
debug!(
|
|
"caching provisionally because {:?} \
|
|
is a cycle participant (at depth {}, reached depth {})",
|
|
fresh_trait_ref, stack.depth, reached_depth,
|
|
);
|
|
|
|
stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
|
|
}
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// If there is any previous entry on the stack that precisely
|
|
/// matches this obligation, then we can assume that the
|
|
/// obligation is satisfied for now (still all other conditions
|
|
/// must be met of course). One obvious case this comes up is
|
|
/// marker traits like `Send`. Think of a linked list:
|
|
///
|
|
/// struct List<T> { data: T, next: Option<Box<List<T>>> }
|
|
///
|
|
/// `Box<List<T>>` will be `Send` if `T` is `Send` and
|
|
/// `Option<Box<List<T>>>` is `Send`, and in turn
|
|
/// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
|
|
/// `Send`.
|
|
///
|
|
/// Note that we do this comparison using the `fresh_trait_ref`
|
|
/// fields. Because these have all been freshened using
|
|
/// `self.freshener`, we can be sure that (a) this will not
|
|
/// affect the inferencer state and (b) that if we see two
|
|
/// fresh regions with the same index, they refer to the same
|
|
/// unbound type variable.
|
|
fn check_evaluation_cycle(
|
|
&mut self,
|
|
stack: &TraitObligationStack<'_, 'tcx>,
|
|
) -> Option<EvaluationResult> {
|
|
if let Some(cycle_depth) = stack
|
|
.iter()
|
|
.skip(1) // Skip top-most frame.
|
|
.find(|prev| {
|
|
stack.obligation.param_env == prev.obligation.param_env
|
|
&& stack.fresh_trait_ref == prev.fresh_trait_ref
|
|
})
|
|
.map(|stack| stack.depth)
|
|
{
|
|
debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
|
|
|
|
// If we have a stack like `A B C D E A`, where the top of
|
|
// the stack is the final `A`, then this will iterate over
|
|
// `A, E, D, C, B` -- i.e., all the participants apart
|
|
// from the cycle head. We mark them as participating in a
|
|
// cycle. This suppresses caching for those nodes. See
|
|
// `in_cycle` field for more details.
|
|
stack.update_reached_depth(cycle_depth);
|
|
|
|
// Subtle: when checking for a coinductive cycle, we do
|
|
// not compare using the "freshened trait refs" (which
|
|
// have erased regions) but rather the fully explicit
|
|
// trait refs. This is important because it's only a cycle
|
|
// if the regions match exactly.
|
|
let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
|
|
let tcx = self.tcx();
|
|
let cycle = cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
|
|
if self.coinductive_match(cycle) {
|
|
debug!("evaluate_stack --> recursive, coinductive");
|
|
Some(EvaluatedToOk)
|
|
} else {
|
|
debug!("evaluate_stack --> recursive, inductive");
|
|
Some(EvaluatedToRecur)
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn evaluate_stack<'o>(
|
|
&mut self,
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
// In intercrate mode, whenever any of the generics are unbound,
|
|
// there can always be an impl. Even if there are no impls in
|
|
// this crate, perhaps the type would be unified with
|
|
// something from another crate that does provide an impl.
|
|
//
|
|
// In intra mode, we must still be conservative. The reason is
|
|
// that we want to avoid cycles. Imagine an impl like:
|
|
//
|
|
// impl<T:Eq> Eq for Vec<T>
|
|
//
|
|
// and a trait reference like `$0 : Eq` where `$0` is an
|
|
// unbound variable. When we evaluate this trait-reference, we
|
|
// will unify `$0` with `Vec<$1>` (for some fresh variable
|
|
// `$1`), on the condition that `$1 : Eq`. We will then wind
|
|
// up with many candidates (since that are other `Eq` impls
|
|
// that apply) and try to winnow things down. This results in
|
|
// a recursive evaluation that `$1 : Eq` -- as you can
|
|
// imagine, this is just where we started. To avoid that, we
|
|
// check for unbound variables and return an ambiguous (hence possible)
|
|
// match if we've seen this trait before.
|
|
//
|
|
// This suffices to allow chains like `FnMut` implemented in
|
|
// terms of `Fn` etc, but we could probably make this more
|
|
// precise still.
|
|
let unbound_input_types =
|
|
stack.fresh_trait_ref.value.skip_binder().substs.types().any(|ty| ty.is_fresh());
|
|
// This check was an imperfect workaround for a bug in the old
|
|
// intercrate mode; it should be removed when that goes away.
|
|
if unbound_input_types && self.intercrate {
|
|
debug!("evaluate_stack --> unbound argument, intercrate --> ambiguous",);
|
|
// Heuristics: show the diagnostics when there are no candidates in crate.
|
|
if self.intercrate_ambiguity_causes.is_some() {
|
|
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
|
|
if let Ok(candidate_set) = self.assemble_candidates(stack) {
|
|
if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
|
|
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
|
|
let self_ty = trait_ref.self_ty();
|
|
let cause =
|
|
with_no_trimmed_paths(|| IntercrateAmbiguityCause::DownstreamCrate {
|
|
trait_desc: trait_ref.print_only_trait_path().to_string(),
|
|
self_desc: if self_ty.has_concrete_skeleton() {
|
|
Some(self_ty.to_string())
|
|
} else {
|
|
None
|
|
},
|
|
});
|
|
|
|
debug!(?cause, "evaluate_stack: pushing cause");
|
|
self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
|
|
}
|
|
}
|
|
}
|
|
return Ok(EvaluatedToAmbig);
|
|
}
|
|
if unbound_input_types
|
|
&& stack.iter().skip(1).any(|prev| {
|
|
stack.obligation.param_env == prev.obligation.param_env
|
|
&& self.match_fresh_trait_refs(
|
|
stack.fresh_trait_ref,
|
|
prev.fresh_trait_ref,
|
|
prev.obligation.param_env,
|
|
)
|
|
})
|
|
{
|
|
debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
|
|
return Ok(EvaluatedToUnknown);
|
|
}
|
|
|
|
match self.candidate_from_obligation(stack) {
|
|
Ok(Some(c)) => self.evaluate_candidate(stack, &c),
|
|
Ok(None) => Ok(EvaluatedToAmbig),
|
|
Err(Overflow) => Err(OverflowError),
|
|
Err(..) => Ok(EvaluatedToErr),
|
|
}
|
|
}
|
|
|
|
/// For defaulted traits, we use a co-inductive strategy to solve, so
|
|
/// that recursion is ok. This routine returns `true` if the top of the
|
|
/// stack (`cycle[0]`):
|
|
///
|
|
/// - is a defaulted trait,
|
|
/// - it also appears in the backtrace at some position `X`,
|
|
/// - all the predicates at positions `X..` between `X` and the top are
|
|
/// also defaulted traits.
|
|
pub fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
|
|
where
|
|
I: Iterator<Item = ty::Predicate<'tcx>>,
|
|
{
|
|
cycle.all(|predicate| self.coinductive_predicate(predicate))
|
|
}
|
|
|
|
fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
|
|
let result = match predicate.kind().skip_binder() {
|
|
ty::PredicateKind::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
|
|
_ => false,
|
|
};
|
|
debug!(?predicate, ?result, "coinductive_predicate");
|
|
result
|
|
}
|
|
|
|
/// Further evaluates `candidate` to decide whether all type parameters match and whether nested
|
|
/// obligations are met. Returns whether `candidate` remains viable after this further
|
|
/// scrutiny.
|
|
#[instrument(
|
|
level = "debug",
|
|
skip(self, stack),
|
|
fields(depth = stack.obligation.recursion_depth)
|
|
)]
|
|
fn evaluate_candidate<'o>(
|
|
&mut self,
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
|
candidate: &SelectionCandidate<'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
let mut result = self.evaluation_probe(|this| {
|
|
let candidate = (*candidate).clone();
|
|
match this.confirm_candidate(stack.obligation, candidate) {
|
|
Ok(selection) => {
|
|
debug!(?selection);
|
|
this.evaluate_predicates_recursively(
|
|
stack.list(),
|
|
selection.nested_obligations().into_iter(),
|
|
)
|
|
}
|
|
Err(..) => Ok(EvaluatedToErr),
|
|
}
|
|
})?;
|
|
|
|
// If we erased any lifetimes, then we want to use
|
|
// `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
|
|
// as your final result. The result will be cached using
|
|
// the freshened trait predicate as a key, so we need
|
|
// our result to be correct by *any* choice of original lifetimes,
|
|
// not just the lifetime choice for this particular (non-erased)
|
|
// predicate.
|
|
// See issue #80691
|
|
if stack.fresh_trait_ref.has_erased_regions() {
|
|
result = result.max(EvaluatedToOkModuloRegions);
|
|
}
|
|
|
|
debug!(?result);
|
|
Ok(result)
|
|
}
|
|
|
|
fn check_evaluation_cache(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
) -> Option<EvaluationResult> {
|
|
// Neither the global nor local cache is aware of intercrate
|
|
// mode, so don't do any caching. In particular, we might
|
|
// re-use the same `InferCtxt` with both an intercrate
|
|
// and non-intercrate `SelectionContext`
|
|
if self.intercrate {
|
|
return None;
|
|
}
|
|
|
|
let tcx = self.tcx();
|
|
if self.can_use_global_caches(param_env) {
|
|
if let Some(res) = tcx.evaluation_cache.get(¶m_env.and(trait_ref), tcx) {
|
|
return Some(res);
|
|
}
|
|
}
|
|
self.infcx.evaluation_cache.get(¶m_env.and(trait_ref), tcx)
|
|
}
|
|
|
|
fn insert_evaluation_cache(
|
|
&mut self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
dep_node: DepNodeIndex,
|
|
result: EvaluationResult,
|
|
) {
|
|
// Avoid caching results that depend on more than just the trait-ref
|
|
// - the stack can create recursion.
|
|
if result.is_stack_dependent() {
|
|
return;
|
|
}
|
|
|
|
// Neither the global nor local cache is aware of intercrate
|
|
// mode, so don't do any caching. In particular, we might
|
|
// re-use the same `InferCtxt` with both an intercrate
|
|
// and non-intercrate `SelectionContext`
|
|
if self.intercrate {
|
|
return;
|
|
}
|
|
|
|
if self.can_use_global_caches(param_env) {
|
|
if !trait_ref.needs_infer() {
|
|
debug!(?trait_ref, ?result, "insert_evaluation_cache global");
|
|
// This may overwrite the cache with the same value
|
|
// FIXME: Due to #50507 this overwrites the different values
|
|
// This should be changed to use HashMapExt::insert_same
|
|
// when that is fixed
|
|
self.tcx().evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
|
|
return;
|
|
}
|
|
}
|
|
|
|
debug!(?trait_ref, ?result, "insert_evaluation_cache");
|
|
self.infcx.evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
|
|
}
|
|
|
|
/// For various reasons, it's possible for a subobligation
|
|
/// to have a *lower* recursion_depth than the obligation used to create it.
|
|
/// Projection sub-obligations may be returned from the projection cache,
|
|
/// which results in obligations with an 'old' `recursion_depth`.
|
|
/// Additionally, methods like `InferCtxt.subtype_predicate` produce
|
|
/// subobligations without taking in a 'parent' depth, causing the
|
|
/// generated subobligations to have a `recursion_depth` of `0`.
|
|
///
|
|
/// To ensure that obligation_depth never decreases, we force all subobligations
|
|
/// to have at least the depth of the original obligation.
|
|
fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
|
|
&self,
|
|
it: I,
|
|
min_depth: usize,
|
|
) {
|
|
it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
|
|
}
|
|
|
|
fn check_recursion_depth<T: Display + TypeFoldable<'tcx>>(
|
|
&self,
|
|
depth: usize,
|
|
error_obligation: &Obligation<'tcx, T>,
|
|
) -> Result<(), OverflowError> {
|
|
if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
|
|
match self.query_mode {
|
|
TraitQueryMode::Standard => {
|
|
self.infcx.report_overflow_error(error_obligation, true);
|
|
}
|
|
TraitQueryMode::Canonical => {
|
|
return Err(OverflowError);
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Checks that the recursion limit has not been exceeded.
|
|
///
|
|
/// The weird return type of this function allows it to be used with the `try` (`?`)
|
|
/// operator within certain functions.
|
|
#[inline(always)]
|
|
fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
|
|
&self,
|
|
obligation: &Obligation<'tcx, T>,
|
|
error_obligation: &Obligation<'tcx, V>,
|
|
) -> Result<(), OverflowError> {
|
|
self.check_recursion_depth(obligation.recursion_depth, error_obligation)
|
|
}
|
|
|
|
fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
|
|
where
|
|
OP: FnOnce(&mut Self) -> R,
|
|
{
|
|
let (result, dep_node) =
|
|
self.tcx().dep_graph.with_anon_task(self.tcx(), DepKind::TraitSelect, || op(self));
|
|
self.tcx().dep_graph.read_index(dep_node);
|
|
(result, dep_node)
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
fn filter_impls(
|
|
&mut self,
|
|
candidate: SelectionCandidate<'tcx>,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
|
|
let tcx = self.tcx();
|
|
// Respect const trait obligations
|
|
if self.is_trait_predicate_const(obligation.predicate.skip_binder()) {
|
|
match candidate {
|
|
// const impl
|
|
ImplCandidate(def_id) if tcx.impl_constness(def_id) == hir::Constness::Const => {}
|
|
// const param
|
|
ParamCandidate(ty::ConstnessAnd {
|
|
constness: ty::BoundConstness::ConstIfConst,
|
|
..
|
|
}) => {}
|
|
// auto trait impl
|
|
AutoImplCandidate(..) => {}
|
|
// generator, this will raise error in other places
|
|
// or ignore error with const_async_blocks feature
|
|
GeneratorCandidate => {}
|
|
// FnDef where the function is const
|
|
FnPointerCandidate { is_const: true } => {}
|
|
ConstDropCandidate => {}
|
|
_ => {
|
|
// reject all other types of candidates
|
|
return Err(Unimplemented);
|
|
}
|
|
}
|
|
}
|
|
// Treat negative impls as unimplemented, and reservation impls as ambiguity.
|
|
if let ImplCandidate(def_id) = candidate {
|
|
match tcx.impl_polarity(def_id) {
|
|
ty::ImplPolarity::Negative if !self.allow_negative_impls => {
|
|
return Err(Unimplemented);
|
|
}
|
|
ty::ImplPolarity::Reservation => {
|
|
if let Some(intercrate_ambiguity_clauses) =
|
|
&mut self.intercrate_ambiguity_causes
|
|
{
|
|
let attrs = tcx.get_attrs(def_id);
|
|
let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
|
|
let value = attr.and_then(|a| a.value_str());
|
|
if let Some(value) = value {
|
|
debug!(
|
|
"filter_impls: \
|
|
reservation impl ambiguity on {:?}",
|
|
def_id
|
|
);
|
|
intercrate_ambiguity_clauses.push(
|
|
IntercrateAmbiguityCause::ReservationImpl {
|
|
message: value.to_string(),
|
|
},
|
|
);
|
|
}
|
|
}
|
|
return Ok(None);
|
|
}
|
|
_ => {}
|
|
};
|
|
}
|
|
Ok(Some(candidate))
|
|
}
|
|
|
|
fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
|
|
debug!("is_knowable(intercrate={:?})", self.intercrate);
|
|
|
|
if !self.intercrate {
|
|
return None;
|
|
}
|
|
|
|
let obligation = &stack.obligation;
|
|
let predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
|
|
|
|
// Okay to skip binder because of the nature of the
|
|
// trait-ref-is-knowable check, which does not care about
|
|
// bound regions.
|
|
let trait_ref = predicate.skip_binder().trait_ref;
|
|
|
|
coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
|
|
}
|
|
|
|
/// Returns `true` if the global caches can be used.
|
|
fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
|
|
// If there are any inference variables in the `ParamEnv`, then we
|
|
// always use a cache local to this particular scope. Otherwise, we
|
|
// switch to a global cache.
|
|
if param_env.needs_infer() {
|
|
return false;
|
|
}
|
|
|
|
// Avoid using the master cache during coherence and just rely
|
|
// on the local cache. This effectively disables caching
|
|
// during coherence. It is really just a simplification to
|
|
// avoid us having to fear that coherence results "pollute"
|
|
// the master cache. Since coherence executes pretty quickly,
|
|
// it's not worth going to more trouble to increase the
|
|
// hit-rate, I don't think.
|
|
if self.intercrate {
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we can use the global cache.
|
|
true
|
|
}
|
|
|
|
fn check_candidate_cache(
|
|
&mut self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
|
|
) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
|
|
// Neither the global nor local cache is aware of intercrate
|
|
// mode, so don't do any caching. In particular, we might
|
|
// re-use the same `InferCtxt` with both an intercrate
|
|
// and non-intercrate `SelectionContext`
|
|
if self.intercrate {
|
|
return None;
|
|
}
|
|
let tcx = self.tcx();
|
|
let pred = &cache_fresh_trait_pred.skip_binder();
|
|
let trait_ref = pred.trait_ref;
|
|
if self.can_use_global_caches(param_env) {
|
|
if let Some(res) = tcx
|
|
.selection_cache
|
|
.get(¶m_env.and(trait_ref).with_constness(pred.constness), tcx)
|
|
{
|
|
return Some(res);
|
|
}
|
|
}
|
|
self.infcx
|
|
.selection_cache
|
|
.get(¶m_env.and(trait_ref).with_constness(pred.constness), tcx)
|
|
}
|
|
|
|
/// Determines whether can we safely cache the result
|
|
/// of selecting an obligation. This is almost always `true`,
|
|
/// except when dealing with certain `ParamCandidate`s.
|
|
///
|
|
/// Ordinarily, a `ParamCandidate` will contain no inference variables,
|
|
/// since it was usually produced directly from a `DefId`. However,
|
|
/// certain cases (currently only librustdoc's blanket impl finder),
|
|
/// a `ParamEnv` may be explicitly constructed with inference types.
|
|
/// When this is the case, we do *not* want to cache the resulting selection
|
|
/// candidate. This is due to the fact that it might not always be possible
|
|
/// to equate the obligation's trait ref and the candidate's trait ref,
|
|
/// if more constraints end up getting added to an inference variable.
|
|
///
|
|
/// Because of this, we always want to re-run the full selection
|
|
/// process for our obligation the next time we see it, since
|
|
/// we might end up picking a different `SelectionCandidate` (or none at all).
|
|
fn can_cache_candidate(
|
|
&self,
|
|
result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
|
|
) -> bool {
|
|
// Neither the global nor local cache is aware of intercrate
|
|
// mode, so don't do any caching. In particular, we might
|
|
// re-use the same `InferCtxt` with both an intercrate
|
|
// and non-intercrate `SelectionContext`
|
|
if self.intercrate {
|
|
return false;
|
|
}
|
|
match result {
|
|
Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
|
|
_ => true,
|
|
}
|
|
}
|
|
|
|
fn insert_candidate_cache(
|
|
&mut self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
|
|
dep_node: DepNodeIndex,
|
|
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
|
|
) {
|
|
let tcx = self.tcx();
|
|
let pred = cache_fresh_trait_pred.skip_binder();
|
|
let trait_ref = pred.trait_ref;
|
|
|
|
if !self.can_cache_candidate(&candidate) {
|
|
debug!(?trait_ref, ?candidate, "insert_candidate_cache - candidate is not cacheable");
|
|
return;
|
|
}
|
|
|
|
if self.can_use_global_caches(param_env) {
|
|
if let Err(Overflow) = candidate {
|
|
// Don't cache overflow globally; we only produce this in certain modes.
|
|
} else if !trait_ref.needs_infer() {
|
|
if !candidate.needs_infer() {
|
|
debug!(?trait_ref, ?candidate, "insert_candidate_cache global");
|
|
// This may overwrite the cache with the same value.
|
|
tcx.selection_cache.insert(
|
|
param_env.and(trait_ref).with_constness(pred.constness),
|
|
dep_node,
|
|
candidate,
|
|
);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!(?trait_ref, ?candidate, "insert_candidate_cache local");
|
|
self.infcx.selection_cache.insert(
|
|
param_env.and(trait_ref).with_constness(pred.constness),
|
|
dep_node,
|
|
candidate,
|
|
);
|
|
}
|
|
|
|
/// Matches a predicate against the bounds of its self type.
|
|
///
|
|
/// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
|
|
/// a projection, look at the bounds of `T::Bar`, see if we can find a
|
|
/// `Baz` bound. We return indexes into the list returned by
|
|
/// `tcx.item_bounds` for any applicable bounds.
|
|
fn match_projection_obligation_against_definition_bounds(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> smallvec::SmallVec<[usize; 2]> {
|
|
let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
|
|
let placeholder_trait_predicate =
|
|
self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
|
|
debug!(
|
|
?placeholder_trait_predicate,
|
|
"match_projection_obligation_against_definition_bounds"
|
|
);
|
|
|
|
let tcx = self.infcx.tcx;
|
|
let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
|
|
ty::Projection(ref data) => (data.item_def_id, data.substs),
|
|
ty::Opaque(def_id, substs) => (def_id, substs),
|
|
_ => {
|
|
span_bug!(
|
|
obligation.cause.span,
|
|
"match_projection_obligation_against_definition_bounds() called \
|
|
but self-ty is not a projection: {:?}",
|
|
placeholder_trait_predicate.trait_ref.self_ty()
|
|
);
|
|
}
|
|
};
|
|
let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
|
|
|
|
// The bounds returned by `item_bounds` may contain duplicates after
|
|
// normalization, so try to deduplicate when possible to avoid
|
|
// unnecessary ambiguity.
|
|
let mut distinct_normalized_bounds = FxHashSet::default();
|
|
|
|
let matching_bounds = bounds
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(idx, bound)| {
|
|
let bound_predicate = bound.kind();
|
|
if let ty::PredicateKind::Trait(pred) = bound_predicate.skip_binder() {
|
|
let bound = bound_predicate.rebind(pred.trait_ref);
|
|
if self.infcx.probe(|_| {
|
|
match self.match_normalize_trait_ref(
|
|
obligation,
|
|
bound,
|
|
placeholder_trait_predicate.trait_ref,
|
|
) {
|
|
Ok(None) => true,
|
|
Ok(Some(normalized_trait))
|
|
if distinct_normalized_bounds.insert(normalized_trait) =>
|
|
{
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}) {
|
|
return Some(idx);
|
|
}
|
|
}
|
|
None
|
|
})
|
|
.collect();
|
|
|
|
debug!(?matching_bounds, "match_projection_obligation_against_definition_bounds");
|
|
matching_bounds
|
|
}
|
|
|
|
/// Equates the trait in `obligation` with trait bound. If the two traits
|
|
/// can be equated and the normalized trait bound doesn't contain inference
|
|
/// variables or placeholders, the normalized bound is returned.
|
|
fn match_normalize_trait_ref(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
trait_bound: ty::PolyTraitRef<'tcx>,
|
|
placeholder_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> Result<Option<ty::PolyTraitRef<'tcx>>, ()> {
|
|
debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
|
|
if placeholder_trait_ref.def_id != trait_bound.def_id() {
|
|
// Avoid unnecessary normalization
|
|
return Err(());
|
|
}
|
|
|
|
let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
|
|
project::normalize_with_depth(
|
|
self,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
trait_bound,
|
|
)
|
|
});
|
|
self.infcx
|
|
.at(&obligation.cause, obligation.param_env)
|
|
.sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
|
|
.map(|InferOk { obligations: _, value: () }| {
|
|
// This method is called within a probe, so we can't have
|
|
// inference variables and placeholders escape.
|
|
if !trait_bound.needs_infer() && !trait_bound.has_placeholders() {
|
|
Some(trait_bound)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.map_err(|_| ())
|
|
}
|
|
|
|
fn evaluate_where_clause<'o>(
|
|
&mut self,
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
|
where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
) -> Result<EvaluationResult, OverflowError> {
|
|
self.evaluation_probe(|this| {
|
|
match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
|
|
Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
|
|
Err(()) => Ok(EvaluatedToErr),
|
|
}
|
|
})
|
|
}
|
|
|
|
pub(super) fn match_projection_projections(
|
|
&mut self,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
env_predicate: PolyProjectionPredicate<'tcx>,
|
|
potentially_unnormalized_candidates: bool,
|
|
) -> bool {
|
|
let mut nested_obligations = Vec::new();
|
|
let (infer_predicate, _) = self.infcx.replace_bound_vars_with_fresh_vars(
|
|
obligation.cause.span,
|
|
LateBoundRegionConversionTime::HigherRankedType,
|
|
env_predicate,
|
|
);
|
|
let infer_projection = if potentially_unnormalized_candidates {
|
|
ensure_sufficient_stack(|| {
|
|
project::normalize_with_depth_to(
|
|
self,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
infer_predicate.projection_ty,
|
|
&mut nested_obligations,
|
|
)
|
|
})
|
|
} else {
|
|
infer_predicate.projection_ty
|
|
};
|
|
|
|
self.infcx
|
|
.at(&obligation.cause, obligation.param_env)
|
|
.sup(obligation.predicate, infer_projection)
|
|
.map_or(false, |InferOk { obligations, value: () }| {
|
|
self.evaluate_predicates_recursively(
|
|
TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
|
|
nested_obligations.into_iter().chain(obligations),
|
|
)
|
|
.map_or(false, |res| res.may_apply())
|
|
})
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// WINNOW
|
|
//
|
|
// Winnowing is the process of attempting to resolve ambiguity by
|
|
// probing further. During the winnowing process, we unify all
|
|
// type variables and then we also attempt to evaluate recursive
|
|
// bounds to see if they are satisfied.
|
|
|
|
/// Returns `true` if `victim` should be dropped in favor of
|
|
/// `other`. Generally speaking we will drop duplicate
|
|
/// candidates and prefer where-clause candidates.
|
|
///
|
|
/// See the comment for "SelectionCandidate" for more details.
|
|
fn candidate_should_be_dropped_in_favor_of(
|
|
&mut self,
|
|
victim: &EvaluatedCandidate<'tcx>,
|
|
other: &EvaluatedCandidate<'tcx>,
|
|
needs_infer: bool,
|
|
) -> bool {
|
|
if victim.candidate == other.candidate {
|
|
return true;
|
|
}
|
|
|
|
// Check if a bound would previously have been removed when normalizing
|
|
// the param_env so that it can be given the lowest priority. See
|
|
// #50825 for the motivation for this.
|
|
let is_global =
|
|
|cand: &ty::PolyTraitRef<'_>| cand.is_known_global() && !cand.has_late_bound_regions();
|
|
|
|
// (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
|
|
// and `DiscriminantKindCandidate` to anything else.
|
|
//
|
|
// This is a fix for #53123 and prevents winnowing from accidentally extending the
|
|
// lifetime of a variable.
|
|
match (&other.candidate, &victim.candidate) {
|
|
(_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
|
|
bug!(
|
|
"default implementations shouldn't be recorded \
|
|
when there are other valid candidates"
|
|
);
|
|
}
|
|
|
|
// (*)
|
|
(
|
|
BuiltinCandidate { has_nested: false }
|
|
| DiscriminantKindCandidate
|
|
| PointeeCandidate
|
|
| ConstDropCandidate,
|
|
_,
|
|
) => true,
|
|
(
|
|
_,
|
|
BuiltinCandidate { has_nested: false }
|
|
| DiscriminantKindCandidate
|
|
| PointeeCandidate
|
|
| ConstDropCandidate,
|
|
) => false,
|
|
|
|
(ParamCandidate(other), ParamCandidate(victim)) => {
|
|
let same_except_bound_vars = other.value.skip_binder()
|
|
== victim.value.skip_binder()
|
|
&& other.constness == victim.constness
|
|
&& !other.value.skip_binder().has_escaping_bound_vars();
|
|
if same_except_bound_vars {
|
|
// See issue #84398. In short, we can generate multiple ParamCandidates which are
|
|
// the same except for unused bound vars. Just pick the one with the fewest bound vars
|
|
// or the current one if tied (they should both evaluate to the same answer). This is
|
|
// probably best characterized as a "hack", since we might prefer to just do our
|
|
// best to *not* create essentially duplicate candidates in the first place.
|
|
other.value.bound_vars().len() <= victim.value.bound_vars().len()
|
|
} else if other.value == victim.value
|
|
&& victim.constness == ty::BoundConstness::NotConst
|
|
{
|
|
// Drop otherwise equivalent non-const candidates in favor of const candidates.
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
// Drop otherwise equivalent non-const fn pointer candidates
|
|
(FnPointerCandidate { .. }, FnPointerCandidate { is_const: false }) => true,
|
|
|
|
// Global bounds from the where clause should be ignored
|
|
// here (see issue #50825). Otherwise, we have a where
|
|
// clause so don't go around looking for impls.
|
|
// Arbitrarily give param candidates priority
|
|
// over projection and object candidates.
|
|
(
|
|
ParamCandidate(ref cand),
|
|
ImplCandidate(..)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { .. }
|
|
| TraitAliasCandidate(..)
|
|
| ObjectCandidate(_)
|
|
| ProjectionCandidate(_),
|
|
) => !is_global(&cand.value),
|
|
(ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
|
|
// Prefer these to a global where-clause bound
|
|
// (see issue #50825).
|
|
is_global(&cand.value)
|
|
}
|
|
(
|
|
ImplCandidate(_)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { has_nested: true }
|
|
| TraitAliasCandidate(..),
|
|
ParamCandidate(ref cand),
|
|
) => {
|
|
// Prefer these to a global where-clause bound
|
|
// (see issue #50825).
|
|
is_global(&cand.value) && other.evaluation.must_apply_modulo_regions()
|
|
}
|
|
|
|
(ProjectionCandidate(i), ProjectionCandidate(j))
|
|
| (ObjectCandidate(i), ObjectCandidate(j)) => {
|
|
// Arbitrarily pick the lower numbered candidate for backwards
|
|
// compatibility reasons. Don't let this affect inference.
|
|
i < j && !needs_infer
|
|
}
|
|
(ObjectCandidate(_), ProjectionCandidate(_))
|
|
| (ProjectionCandidate(_), ObjectCandidate(_)) => {
|
|
bug!("Have both object and projection candidate")
|
|
}
|
|
|
|
// Arbitrarily give projection and object candidates priority.
|
|
(
|
|
ObjectCandidate(_) | ProjectionCandidate(_),
|
|
ImplCandidate(..)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { .. }
|
|
| TraitAliasCandidate(..),
|
|
) => true,
|
|
|
|
(
|
|
ImplCandidate(..)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { .. }
|
|
| TraitAliasCandidate(..),
|
|
ObjectCandidate(_) | ProjectionCandidate(_),
|
|
) => false,
|
|
|
|
(&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
|
|
// See if we can toss out `victim` based on specialization.
|
|
// This requires us to know *for sure* that the `other` impl applies
|
|
// i.e., `EvaluatedToOk`.
|
|
//
|
|
// FIXME(@lcnr): Using `modulo_regions` here seems kind of scary
|
|
// to me but is required for `std` to compile, so I didn't change it
|
|
// for now.
|
|
let tcx = self.tcx();
|
|
if other.evaluation.must_apply_modulo_regions() {
|
|
if tcx.specializes((other_def, victim_def)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if other.evaluation.must_apply_considering_regions() {
|
|
match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
|
|
Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
|
|
// Subtle: If the predicate we are evaluating has inference
|
|
// variables, do *not* allow discarding candidates due to
|
|
// marker trait impls.
|
|
//
|
|
// Without this restriction, we could end up accidentally
|
|
// constrainting inference variables based on an arbitrarily
|
|
// chosen trait impl.
|
|
//
|
|
// Imagine we have the following code:
|
|
//
|
|
// ```rust
|
|
// #[marker] trait MyTrait {}
|
|
// impl MyTrait for u8 {}
|
|
// impl MyTrait for bool {}
|
|
// ```
|
|
//
|
|
// And we are evaluating the predicate `<_#0t as MyTrait>`.
|
|
//
|
|
// During selection, we will end up with one candidate for each
|
|
// impl of `MyTrait`. If we were to discard one impl in favor
|
|
// of the other, we would be left with one candidate, causing
|
|
// us to "successfully" select the predicate, unifying
|
|
// _#0t with (for example) `u8`.
|
|
//
|
|
// However, we have no reason to believe that this unification
|
|
// is correct - we've essentially just picked an arbitrary
|
|
// *possibility* for _#0t, and required that this be the *only*
|
|
// possibility.
|
|
//
|
|
// Eventually, we will either:
|
|
// 1) Unify all inference variables in the predicate through
|
|
// some other means (e.g. type-checking of a function). We will
|
|
// then be in a position to drop marker trait candidates
|
|
// without constraining inference variables (since there are
|
|
// none left to constrin)
|
|
// 2) Be left with some unconstrained inference variables. We
|
|
// will then correctly report an inference error, since the
|
|
// existence of multiple marker trait impls tells us nothing
|
|
// about which one should actually apply.
|
|
!needs_infer
|
|
}
|
|
Some(_) => true,
|
|
None => false,
|
|
}
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
// Everything else is ambiguous
|
|
(
|
|
ImplCandidate(_)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { has_nested: true }
|
|
| TraitAliasCandidate(..),
|
|
ImplCandidate(_)
|
|
| ClosureCandidate
|
|
| GeneratorCandidate
|
|
| FnPointerCandidate { .. }
|
|
| BuiltinObjectCandidate
|
|
| BuiltinUnsizeCandidate
|
|
| TraitUpcastingUnsizeCandidate(_)
|
|
| BuiltinCandidate { has_nested: true }
|
|
| TraitAliasCandidate(..),
|
|
) => false,
|
|
}
|
|
}
|
|
|
|
fn sized_conditions(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> BuiltinImplConditions<'tcx> {
|
|
use self::BuiltinImplConditions::{Ambiguous, None, Where};
|
|
|
|
// NOTE: binder moved to (*)
|
|
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
|
|
|
|
match self_ty.kind() {
|
|
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
|
|
| ty::Uint(_)
|
|
| ty::Int(_)
|
|
| ty::Bool
|
|
| ty::Float(_)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Char
|
|
| ty::Ref(..)
|
|
| ty::Generator(..)
|
|
| ty::GeneratorWitness(..)
|
|
| ty::Array(..)
|
|
| ty::Closure(..)
|
|
| ty::Never
|
|
| ty::Error(_) => {
|
|
// safe for everything
|
|
Where(ty::Binder::dummy(Vec::new()))
|
|
}
|
|
|
|
ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
|
|
|
|
ty::Tuple(tys) => Where(
|
|
obligation
|
|
.predicate
|
|
.rebind(tys.last().into_iter().map(|k| k.expect_ty()).collect()),
|
|
),
|
|
|
|
ty::Adt(def, substs) => {
|
|
let sized_crit = def.sized_constraint(self.tcx());
|
|
// (*) binder moved here
|
|
Where(
|
|
obligation.predicate.rebind({
|
|
sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
|
|
}),
|
|
)
|
|
}
|
|
|
|
ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
|
|
ty::Infer(ty::TyVar(_)) => Ambiguous,
|
|
|
|
ty::Placeholder(..)
|
|
| ty::Bound(..)
|
|
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
|
|
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn copy_clone_conditions(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> BuiltinImplConditions<'tcx> {
|
|
// NOTE: binder moved to (*)
|
|
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
|
|
|
|
use self::BuiltinImplConditions::{Ambiguous, None, Where};
|
|
|
|
match *self_ty.kind() {
|
|
ty::Infer(ty::IntVar(_))
|
|
| ty::Infer(ty::FloatVar(_))
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(_)
|
|
| ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
|
|
|
|
ty::Uint(_)
|
|
| ty::Int(_)
|
|
| ty::Bool
|
|
| ty::Float(_)
|
|
| ty::Char
|
|
| ty::RawPtr(..)
|
|
| ty::Never
|
|
| ty::Ref(_, _, hir::Mutability::Not) => {
|
|
// Implementations provided in libcore
|
|
None
|
|
}
|
|
|
|
ty::Dynamic(..)
|
|
| ty::Str
|
|
| ty::Slice(..)
|
|
| ty::Generator(..)
|
|
| ty::GeneratorWitness(..)
|
|
| ty::Foreign(..)
|
|
| ty::Ref(_, _, hir::Mutability::Mut) => None,
|
|
|
|
ty::Array(element_ty, _) => {
|
|
// (*) binder moved here
|
|
Where(obligation.predicate.rebind(vec![element_ty]))
|
|
}
|
|
|
|
ty::Tuple(tys) => {
|
|
// (*) binder moved here
|
|
Where(obligation.predicate.rebind(tys.iter().map(|k| k.expect_ty()).collect()))
|
|
}
|
|
|
|
ty::Closure(_, substs) => {
|
|
// (*) binder moved here
|
|
let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
|
|
if let ty::Infer(ty::TyVar(_)) = ty.kind() {
|
|
// Not yet resolved.
|
|
Ambiguous
|
|
} else {
|
|
Where(obligation.predicate.rebind(substs.as_closure().upvar_tys().collect()))
|
|
}
|
|
}
|
|
|
|
ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
|
|
// Fallback to whatever user-defined impls exist in this case.
|
|
None
|
|
}
|
|
|
|
ty::Infer(ty::TyVar(_)) => {
|
|
// Unbound type variable. Might or might not have
|
|
// applicable impls and so forth, depending on what
|
|
// those type variables wind up being bound to.
|
|
Ambiguous
|
|
}
|
|
|
|
ty::Placeholder(..)
|
|
| ty::Bound(..)
|
|
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
|
|
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For default impls, we need to break apart a type into its
|
|
/// "constituent types" -- meaning, the types that it contains.
|
|
///
|
|
/// Here are some (simple) examples:
|
|
///
|
|
/// ```
|
|
/// (i32, u32) -> [i32, u32]
|
|
/// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
|
|
/// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
|
|
/// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
|
|
/// ```
|
|
fn constituent_types_for_ty(
|
|
&self,
|
|
t: ty::Binder<'tcx, Ty<'tcx>>,
|
|
) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
|
|
match *t.skip_binder().kind() {
|
|
ty::Uint(_)
|
|
| ty::Int(_)
|
|
| ty::Bool
|
|
| ty::Float(_)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(_)
|
|
| ty::Str
|
|
| ty::Error(_)
|
|
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
|
|
| ty::Never
|
|
| ty::Char => ty::Binder::dummy(Vec::new()),
|
|
|
|
ty::Placeholder(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Param(..)
|
|
| ty::Foreign(..)
|
|
| ty::Projection(..)
|
|
| ty::Bound(..)
|
|
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
|
|
bug!("asked to assemble constituent types of unexpected type: {:?}", t);
|
|
}
|
|
|
|
ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
|
|
t.rebind(vec![element_ty])
|
|
}
|
|
|
|
ty::Array(element_ty, _) | ty::Slice(element_ty) => t.rebind(vec![element_ty]),
|
|
|
|
ty::Tuple(ref tys) => {
|
|
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
|
|
t.rebind(tys.iter().map(|k| k.expect_ty()).collect())
|
|
}
|
|
|
|
ty::Closure(_, ref substs) => {
|
|
let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
|
|
t.rebind(vec![ty])
|
|
}
|
|
|
|
ty::Generator(_, ref substs, _) => {
|
|
let ty = self.infcx.shallow_resolve(substs.as_generator().tupled_upvars_ty());
|
|
let witness = substs.as_generator().witness();
|
|
t.rebind(vec![ty].into_iter().chain(iter::once(witness)).collect())
|
|
}
|
|
|
|
ty::GeneratorWitness(types) => {
|
|
debug_assert!(!types.has_escaping_bound_vars());
|
|
types.map_bound(|types| types.to_vec())
|
|
}
|
|
|
|
// For `PhantomData<T>`, we pass `T`.
|
|
ty::Adt(def, substs) if def.is_phantom_data() => t.rebind(substs.types().collect()),
|
|
|
|
ty::Adt(def, substs) => {
|
|
t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect())
|
|
}
|
|
|
|
ty::Opaque(def_id, substs) => {
|
|
// We can resolve the `impl Trait` to its concrete type,
|
|
// which enforces a DAG between the functions requiring
|
|
// the auto trait bounds in question.
|
|
t.rebind(vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)])
|
|
}
|
|
}
|
|
}
|
|
|
|
fn collect_predicates_for_types(
|
|
&mut self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
recursion_depth: usize,
|
|
trait_def_id: DefId,
|
|
types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
|
|
) -> Vec<PredicateObligation<'tcx>> {
|
|
// Because the types were potentially derived from
|
|
// higher-ranked obligations they may reference late-bound
|
|
// regions. For example, `for<'a> Foo<&'a i32> : Copy` would
|
|
// yield a type like `for<'a> &'a i32`. In general, we
|
|
// maintain the invariant that we never manipulate bound
|
|
// regions, so we have to process these bound regions somehow.
|
|
//
|
|
// The strategy is to:
|
|
//
|
|
// 1. Instantiate those regions to placeholder regions (e.g.,
|
|
// `for<'a> &'a i32` becomes `&0 i32`.
|
|
// 2. Produce something like `&'0 i32 : Copy`
|
|
// 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
|
|
|
|
types
|
|
.as_ref()
|
|
.skip_binder() // binder moved -\
|
|
.iter()
|
|
.flat_map(|ty| {
|
|
let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(ty); // <----/
|
|
|
|
self.infcx.commit_unconditionally(|_| {
|
|
let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(ty);
|
|
let Normalized { value: normalized_ty, mut obligations } =
|
|
ensure_sufficient_stack(|| {
|
|
project::normalize_with_depth(
|
|
self,
|
|
param_env,
|
|
cause.clone(),
|
|
recursion_depth,
|
|
placeholder_ty,
|
|
)
|
|
});
|
|
let placeholder_obligation = predicate_for_trait_def(
|
|
self.tcx(),
|
|
param_env,
|
|
cause.clone(),
|
|
trait_def_id,
|
|
recursion_depth,
|
|
normalized_ty,
|
|
&[],
|
|
);
|
|
obligations.push(placeholder_obligation);
|
|
obligations
|
|
})
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Matching
|
|
//
|
|
// Matching is a common path used for both evaluation and
|
|
// confirmation. It basically unifies types that appear in impls
|
|
// and traits. This does affect the surrounding environment;
|
|
// therefore, when used during evaluation, match routines must be
|
|
// run inside of a `probe()` so that their side-effects are
|
|
// contained.
|
|
|
|
fn rematch_impl(
|
|
&mut self,
|
|
impl_def_id: DefId,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> Normalized<'tcx, SubstsRef<'tcx>> {
|
|
match self.match_impl(impl_def_id, obligation) {
|
|
Ok(substs) => substs,
|
|
Err(()) => {
|
|
bug!(
|
|
"Impl {:?} was matchable against {:?} but now is not",
|
|
impl_def_id,
|
|
obligation
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[tracing::instrument(level = "debug", skip(self))]
|
|
fn match_impl(
|
|
&mut self,
|
|
impl_def_id: DefId,
|
|
obligation: &TraitObligation<'tcx>,
|
|
) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
|
|
let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
|
|
|
|
// Before we create the substitutions and everything, first
|
|
// consider a "quick reject". This avoids creating more types
|
|
// and so forth that we need to.
|
|
if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
|
|
return Err(());
|
|
}
|
|
|
|
let placeholder_obligation =
|
|
self.infcx().replace_bound_vars_with_placeholders(obligation.predicate);
|
|
let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
|
|
|
|
let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
|
|
|
|
let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
|
|
|
|
debug!(?impl_trait_ref);
|
|
|
|
let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
|
|
ensure_sufficient_stack(|| {
|
|
project::normalize_with_depth(
|
|
self,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
impl_trait_ref,
|
|
)
|
|
});
|
|
|
|
debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
|
|
|
|
let cause = ObligationCause::new(
|
|
obligation.cause.span,
|
|
obligation.cause.body_id,
|
|
ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
|
|
);
|
|
|
|
let InferOk { obligations, .. } = self
|
|
.infcx
|
|
.at(&cause, obligation.param_env)
|
|
.eq(placeholder_obligation_trait_ref, impl_trait_ref)
|
|
.map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
|
|
nested_obligations.extend(obligations);
|
|
|
|
if !self.intercrate
|
|
&& self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
|
|
{
|
|
debug!("match_impl: reservation impls only apply in intercrate mode");
|
|
return Err(());
|
|
}
|
|
|
|
debug!(?impl_substs, ?nested_obligations, "match_impl: success");
|
|
Ok(Normalized { value: impl_substs, obligations: nested_obligations })
|
|
}
|
|
|
|
fn fast_reject_trait_refs(
|
|
&mut self,
|
|
obligation: &TraitObligation<'_>,
|
|
impl_trait_ref: &ty::TraitRef<'_>,
|
|
) -> bool {
|
|
// We can avoid creating type variables and doing the full
|
|
// substitution if we find that any of the input types, when
|
|
// simplified, do not match.
|
|
|
|
iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
|
|
|(obligation_arg, impl_arg)| {
|
|
match (obligation_arg.unpack(), impl_arg.unpack()) {
|
|
(GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
|
|
let simplified_obligation_ty =
|
|
fast_reject::simplify_type(self.tcx(), obligation_ty, true);
|
|
let simplified_impl_ty =
|
|
fast_reject::simplify_type(self.tcx(), impl_ty, false);
|
|
|
|
simplified_obligation_ty.is_some()
|
|
&& simplified_impl_ty.is_some()
|
|
&& simplified_obligation_ty != simplified_impl_ty
|
|
}
|
|
(GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
|
|
// Lifetimes can never cause a rejection.
|
|
false
|
|
}
|
|
(GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
|
|
// Conservatively ignore consts (i.e. assume they might
|
|
// unify later) until we have `fast_reject` support for
|
|
// them (if we'll ever need it, even).
|
|
false
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Normalize `where_clause_trait_ref` and try to match it against
|
|
/// `obligation`. If successful, return any predicates that
|
|
/// result from the normalization.
|
|
fn match_where_clause_trait_ref(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
|
|
self.match_poly_trait_ref(obligation, where_clause_trait_ref)
|
|
}
|
|
|
|
/// Returns `Ok` if `poly_trait_ref` being true implies that the
|
|
/// obligation is satisfied.
|
|
#[instrument(skip(self), level = "debug")]
|
|
fn match_poly_trait_ref(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
poly_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
|
|
self.infcx
|
|
.at(&obligation.cause, obligation.param_env)
|
|
.sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
|
|
.map(|InferOk { obligations, .. }| obligations)
|
|
.map_err(|_| ())
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Miscellany
|
|
|
|
fn match_fresh_trait_refs(
|
|
&self,
|
|
previous: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
current: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> bool {
|
|
let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
|
|
matcher.relate(previous, current).is_ok()
|
|
}
|
|
|
|
fn push_stack<'o>(
|
|
&mut self,
|
|
previous_stack: TraitObligationStackList<'o, 'tcx>,
|
|
obligation: &'o TraitObligation<'tcx>,
|
|
) -> TraitObligationStack<'o, 'tcx> {
|
|
let fresh_trait_ref = obligation
|
|
.predicate
|
|
.to_poly_trait_ref()
|
|
.fold_with(&mut self.freshener)
|
|
.with_constness(obligation.predicate.skip_binder().constness);
|
|
|
|
let dfn = previous_stack.cache.next_dfn();
|
|
let depth = previous_stack.depth() + 1;
|
|
TraitObligationStack {
|
|
obligation,
|
|
fresh_trait_ref,
|
|
reached_depth: Cell::new(depth),
|
|
previous: previous_stack,
|
|
dfn,
|
|
depth,
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(self), level = "debug")]
|
|
fn closure_trait_ref_unnormalized(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> ty::PolyTraitRef<'tcx> {
|
|
let closure_sig = substs.as_closure().sig();
|
|
|
|
debug!(?closure_sig);
|
|
|
|
// (1) Feels icky to skip the binder here, but OTOH we know
|
|
// that the self-type is an unboxed closure type and hence is
|
|
// in fact unparameterized (or at least does not reference any
|
|
// regions bound in the obligation). Still probably some
|
|
// refactoring could make this nicer.
|
|
closure_trait_ref_and_return_type(
|
|
self.tcx(),
|
|
obligation.predicate.def_id(),
|
|
obligation.predicate.skip_binder().self_ty(), // (1)
|
|
closure_sig,
|
|
util::TupleArgumentsFlag::No,
|
|
)
|
|
.map_bound(|(trait_ref, _)| trait_ref)
|
|
}
|
|
|
|
fn generator_trait_ref_unnormalized(
|
|
&mut self,
|
|
obligation: &TraitObligation<'tcx>,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> ty::PolyTraitRef<'tcx> {
|
|
let gen_sig = substs.as_generator().poly_sig();
|
|
|
|
// (1) Feels icky to skip the binder here, but OTOH we know
|
|
// that the self-type is an generator type and hence is
|
|
// in fact unparameterized (or at least does not reference any
|
|
// regions bound in the obligation). Still probably some
|
|
// refactoring could make this nicer.
|
|
|
|
super::util::generator_trait_ref_and_outputs(
|
|
self.tcx(),
|
|
obligation.predicate.def_id(),
|
|
obligation.predicate.skip_binder().self_ty(), // (1)
|
|
gen_sig,
|
|
)
|
|
.map_bound(|(trait_ref, ..)| trait_ref)
|
|
}
|
|
|
|
/// Returns the obligations that are implied by instantiating an
|
|
/// impl or trait. The obligations are substituted and fully
|
|
/// normalized. This is used when confirming an impl or default
|
|
/// impl.
|
|
#[tracing::instrument(level = "debug", skip(self, cause, param_env))]
|
|
fn impl_or_trait_obligations(
|
|
&mut self,
|
|
cause: ObligationCause<'tcx>,
|
|
recursion_depth: usize,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def_id: DefId, // of impl or trait
|
|
substs: SubstsRef<'tcx>, // for impl or trait
|
|
) -> Vec<PredicateObligation<'tcx>> {
|
|
let tcx = self.tcx();
|
|
|
|
// To allow for one-pass evaluation of the nested obligation,
|
|
// each predicate must be preceded by the obligations required
|
|
// to normalize it.
|
|
// for example, if we have:
|
|
// impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
|
|
// the impl will have the following predicates:
|
|
// <V as Iterator>::Item = U,
|
|
// U: Iterator, U: Sized,
|
|
// V: Iterator, V: Sized,
|
|
// <U as Iterator>::Item: Copy
|
|
// When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
|
|
// obligation will normalize to `<$0 as Iterator>::Item = $1` and
|
|
// `$1: Copy`, so we must ensure the obligations are emitted in
|
|
// that order.
|
|
let predicates = tcx.predicates_of(def_id);
|
|
debug!(?predicates);
|
|
assert_eq!(predicates.parent, None);
|
|
let mut obligations = Vec::with_capacity(predicates.predicates.len());
|
|
for (predicate, _) in predicates.predicates {
|
|
debug!(?predicate);
|
|
let predicate = normalize_with_depth_to(
|
|
self,
|
|
param_env,
|
|
cause.clone(),
|
|
recursion_depth,
|
|
predicate.subst(tcx, substs),
|
|
&mut obligations,
|
|
);
|
|
obligations.push(Obligation {
|
|
cause: cause.clone(),
|
|
recursion_depth,
|
|
param_env,
|
|
predicate,
|
|
});
|
|
}
|
|
|
|
// We are performing deduplication here to avoid exponential blowups
|
|
// (#38528) from happening, but the real cause of the duplication is
|
|
// unknown. What we know is that the deduplication avoids exponential
|
|
// amount of predicates being propagated when processing deeply nested
|
|
// types.
|
|
//
|
|
// This code is hot enough that it's worth avoiding the allocation
|
|
// required for the FxHashSet when possible. Special-casing lengths 0,
|
|
// 1 and 2 covers roughly 75-80% of the cases.
|
|
if obligations.len() <= 1 {
|
|
// No possibility of duplicates.
|
|
} else if obligations.len() == 2 {
|
|
// Only two elements. Drop the second if they are equal.
|
|
if obligations[0] == obligations[1] {
|
|
obligations.truncate(1);
|
|
}
|
|
} else {
|
|
// Three or more elements. Use a general deduplication process.
|
|
let mut seen = FxHashSet::default();
|
|
obligations.retain(|i| seen.insert(i.clone()));
|
|
}
|
|
|
|
obligations
|
|
}
|
|
}
|
|
|
|
trait TraitObligationExt<'tcx> {
|
|
fn derived_cause(
|
|
&self,
|
|
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
|
|
) -> ObligationCause<'tcx>;
|
|
}
|
|
|
|
impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
|
|
fn derived_cause(
|
|
&self,
|
|
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
|
|
) -> ObligationCause<'tcx> {
|
|
/*!
|
|
* Creates a cause for obligations that are derived from
|
|
* `obligation` by a recursive search (e.g., for a builtin
|
|
* bound, or eventually a `auto trait Foo`). If `obligation`
|
|
* is itself a derived obligation, this is just a clone, but
|
|
* otherwise we create a "derived obligation" cause so as to
|
|
* keep track of the original root obligation for error
|
|
* reporting.
|
|
*/
|
|
|
|
let obligation = self;
|
|
|
|
// NOTE(flaper87): As of now, it keeps track of the whole error
|
|
// chain. Ideally, we should have a way to configure this either
|
|
// by using -Z verbose or just a CLI argument.
|
|
let derived_cause = DerivedObligationCause {
|
|
parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
|
|
parent_code: Lrc::new(obligation.cause.code.clone()),
|
|
};
|
|
let derived_code = variant(derived_cause);
|
|
ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
|
|
}
|
|
}
|
|
|
|
impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
|
|
fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
|
|
TraitObligationStackList::with(self)
|
|
}
|
|
|
|
fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
|
|
self.previous.cache
|
|
}
|
|
|
|
fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
|
|
self.list()
|
|
}
|
|
|
|
/// Indicates that attempting to evaluate this stack entry
|
|
/// required accessing something from the stack at depth `reached_depth`.
|
|
fn update_reached_depth(&self, reached_depth: usize) {
|
|
assert!(
|
|
self.depth >= reached_depth,
|
|
"invoked `update_reached_depth` with something under this stack: \
|
|
self.depth={} reached_depth={}",
|
|
self.depth,
|
|
reached_depth,
|
|
);
|
|
debug!(reached_depth, "update_reached_depth");
|
|
let mut p = self;
|
|
while reached_depth < p.depth {
|
|
debug!(?p.fresh_trait_ref, "update_reached_depth: marking as cycle participant");
|
|
p.reached_depth.set(p.reached_depth.get().min(reached_depth));
|
|
p = p.previous.head.unwrap();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The "provisional evaluation cache" is used to store intermediate cache results
|
|
/// when solving auto traits. Auto traits are unusual in that they can support
|
|
/// cycles. So, for example, a "proof tree" like this would be ok:
|
|
///
|
|
/// - `Foo<T>: Send` :-
|
|
/// - `Bar<T>: Send` :-
|
|
/// - `Foo<T>: Send` -- cycle, but ok
|
|
/// - `Baz<T>: Send`
|
|
///
|
|
/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
|
|
/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
|
|
/// For non-auto traits, this cycle would be an error, but for auto traits (because
|
|
/// they are coinductive) it is considered ok.
|
|
///
|
|
/// However, there is a complication: at the point where we have
|
|
/// "proven" `Bar<T>: Send`, we have in fact only proven it
|
|
/// *provisionally*. In particular, we proved that `Bar<T>: Send`
|
|
/// *under the assumption* that `Foo<T>: Send`. But what if we later
|
|
/// find out this assumption is wrong? Specifically, we could
|
|
/// encounter some kind of error proving `Baz<T>: Send`. In that case,
|
|
/// `Bar<T>: Send` didn't turn out to be true.
|
|
///
|
|
/// In Issue #60010, we found a bug in rustc where it would cache
|
|
/// these intermediate results. This was fixed in #60444 by disabling
|
|
/// *all* caching for things involved in a cycle -- in our example,
|
|
/// that would mean we don't cache that `Bar<T>: Send`. But this led
|
|
/// to large slowdowns.
|
|
///
|
|
/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
|
|
/// first requires proving `Bar<T>: Send` (which is true:
|
|
///
|
|
/// - `Foo<T>: Send` :-
|
|
/// - `Bar<T>: Send` :-
|
|
/// - `Foo<T>: Send` -- cycle, but ok
|
|
/// - `Baz<T>: Send`
|
|
/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
|
|
/// - `*const T: Send` -- but what if we later encounter an error?
|
|
///
|
|
/// The *provisional evaluation cache* resolves this issue. It stores
|
|
/// cache results that we've proven but which were involved in a cycle
|
|
/// in some way. We track the minimal stack depth (i.e., the
|
|
/// farthest from the top of the stack) that we are dependent on.
|
|
/// The idea is that the cache results within are all valid -- so long as
|
|
/// none of the nodes in between the current node and the node at that minimum
|
|
/// depth result in an error (in which case the cached results are just thrown away).
|
|
///
|
|
/// During evaluation, we consult this provisional cache and rely on
|
|
/// it. Accessing a cached value is considered equivalent to accessing
|
|
/// a result at `reached_depth`, so it marks the *current* solution as
|
|
/// provisional as well. If an error is encountered, we toss out any
|
|
/// provisional results added from the subtree that encountered the
|
|
/// error. When we pop the node at `reached_depth` from the stack, we
|
|
/// can commit all the things that remain in the provisional cache.
|
|
struct ProvisionalEvaluationCache<'tcx> {
|
|
/// next "depth first number" to issue -- just a counter
|
|
dfn: Cell<usize>,
|
|
|
|
/// Map from cache key to the provisionally evaluated thing.
|
|
/// The cache entries contain the result but also the DFN in which they
|
|
/// were added. The DFN is used to clear out values on failure.
|
|
///
|
|
/// Imagine we have a stack like:
|
|
///
|
|
/// - `A B C` and we add a cache for the result of C (DFN 2)
|
|
/// - Then we have a stack `A B D` where `D` has DFN 3
|
|
/// - We try to solve D by evaluating E: `A B D E` (DFN 4)
|
|
/// - `E` generates various cache entries which have cyclic dependices on `B`
|
|
/// - `A B D E F` and so forth
|
|
/// - the DFN of `F` for example would be 5
|
|
/// - then we determine that `E` is in error -- we will then clear
|
|
/// all cache values whose DFN is >= 4 -- in this case, that
|
|
/// means the cached value for `F`.
|
|
map: RefCell<FxHashMap<ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, ProvisionalEvaluation>>,
|
|
}
|
|
|
|
/// A cache value for the provisional cache: contains the depth-first
|
|
/// number (DFN) and result.
|
|
#[derive(Copy, Clone, Debug)]
|
|
struct ProvisionalEvaluation {
|
|
from_dfn: usize,
|
|
reached_depth: usize,
|
|
result: EvaluationResult,
|
|
}
|
|
|
|
impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
|
|
fn default() -> Self {
|
|
Self { dfn: Cell::new(0), map: Default::default() }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ProvisionalEvaluationCache<'tcx> {
|
|
/// Get the next DFN in sequence (basically a counter).
|
|
fn next_dfn(&self) -> usize {
|
|
let result = self.dfn.get();
|
|
self.dfn.set(result + 1);
|
|
result
|
|
}
|
|
|
|
/// Check the provisional cache for any result for
|
|
/// `fresh_trait_ref`. If there is a hit, then you must consider
|
|
/// it an access to the stack slots at depth
|
|
/// `reached_depth` (from the returned value).
|
|
fn get_provisional(
|
|
&self,
|
|
fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
) -> Option<ProvisionalEvaluation> {
|
|
debug!(
|
|
?fresh_trait_ref,
|
|
"get_provisional = {:#?}",
|
|
self.map.borrow().get(&fresh_trait_ref),
|
|
);
|
|
Some(*self.map.borrow().get(&fresh_trait_ref)?)
|
|
}
|
|
|
|
/// Insert a provisional result into the cache. The result came
|
|
/// from the node with the given DFN. It accessed a minimum depth
|
|
/// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
|
|
/// and resulted in `result`.
|
|
fn insert_provisional(
|
|
&self,
|
|
from_dfn: usize,
|
|
reached_depth: usize,
|
|
fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
|
|
result: EvaluationResult,
|
|
) {
|
|
debug!(?from_dfn, ?fresh_trait_ref, ?result, "insert_provisional");
|
|
|
|
let mut map = self.map.borrow_mut();
|
|
|
|
// Subtle: when we complete working on the DFN `from_dfn`, anything
|
|
// that remains in the provisional cache must be dependent on some older
|
|
// stack entry than `from_dfn`. We have to update their depth with our transitive
|
|
// depth in that case or else it would be referring to some popped note.
|
|
//
|
|
// Example:
|
|
// A (reached depth 0)
|
|
// ...
|
|
// B // depth 1 -- reached depth = 0
|
|
// C // depth 2 -- reached depth = 1 (should be 0)
|
|
// B
|
|
// A // depth 0
|
|
// D (reached depth 1)
|
|
// C (cache -- reached depth = 2)
|
|
for (_k, v) in &mut *map {
|
|
if v.from_dfn >= from_dfn {
|
|
v.reached_depth = reached_depth.min(v.reached_depth);
|
|
}
|
|
}
|
|
|
|
map.insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, reached_depth, result });
|
|
}
|
|
|
|
/// Invoked when the node with dfn `dfn` does not get a successful
|
|
/// result. This will clear out any provisional cache entries
|
|
/// that were added since `dfn` was created. This is because the
|
|
/// provisional entries are things which must assume that the
|
|
/// things on the stack at the time of their creation succeeded --
|
|
/// since the failing node is presently at the top of the stack,
|
|
/// these provisional entries must either depend on it or some
|
|
/// ancestor of it.
|
|
fn on_failure(&self, dfn: usize) {
|
|
debug!(?dfn, "on_failure");
|
|
self.map.borrow_mut().retain(|key, eval| {
|
|
if !eval.from_dfn >= dfn {
|
|
debug!("on_failure: removing {:?}", key);
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Invoked when the node at depth `depth` completed without
|
|
/// depending on anything higher in the stack (if that completion
|
|
/// was a failure, then `on_failure` should have been invoked
|
|
/// already). The callback `op` will be invoked for each
|
|
/// provisional entry that we can now confirm.
|
|
///
|
|
/// Note that we may still have provisional cache items remaining
|
|
/// in the cache when this is done. For example, if there is a
|
|
/// cycle:
|
|
///
|
|
/// * A depends on...
|
|
/// * B depends on A
|
|
/// * C depends on...
|
|
/// * D depends on C
|
|
/// * ...
|
|
///
|
|
/// Then as we complete the C node we will have a provisional cache
|
|
/// with results for A, B, C, and D. This method would clear out
|
|
/// the C and D results, but leave A and B provisional.
|
|
///
|
|
/// This is determined based on the DFN: we remove any provisional
|
|
/// results created since `dfn` started (e.g., in our example, dfn
|
|
/// would be 2, representing the C node, and hence we would
|
|
/// remove the result for D, which has DFN 3, but not the results for
|
|
/// A and B, which have DFNs 0 and 1 respectively).
|
|
fn on_completion(
|
|
&self,
|
|
dfn: usize,
|
|
mut op: impl FnMut(ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, EvaluationResult),
|
|
) {
|
|
debug!(?dfn, "on_completion");
|
|
|
|
for (fresh_trait_ref, eval) in
|
|
self.map.borrow_mut().drain_filter(|_k, eval| eval.from_dfn >= dfn)
|
|
{
|
|
debug!(?fresh_trait_ref, ?eval, "on_completion");
|
|
|
|
op(fresh_trait_ref, eval.result);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct TraitObligationStackList<'o, 'tcx> {
|
|
cache: &'o ProvisionalEvaluationCache<'tcx>,
|
|
head: Option<&'o TraitObligationStack<'o, 'tcx>>,
|
|
}
|
|
|
|
impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
|
|
fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
|
|
TraitObligationStackList { cache, head: None }
|
|
}
|
|
|
|
fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
|
|
TraitObligationStackList { cache: r.cache(), head: Some(r) }
|
|
}
|
|
|
|
fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
|
|
self.head
|
|
}
|
|
|
|
fn depth(&self) -> usize {
|
|
if let Some(head) = self.head { head.depth } else { 0 }
|
|
}
|
|
}
|
|
|
|
impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
|
|
type Item = &'o TraitObligationStack<'o, 'tcx>;
|
|
|
|
fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
|
|
let o = self.head?;
|
|
*self = o.previous;
|
|
Some(o)
|
|
}
|
|
}
|
|
|
|
impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "TraitObligationStack({:?})", self.obligation)
|
|
}
|
|
}
|