1182 lines
47 KiB
Rust
1182 lines
47 KiB
Rust
//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.
|
|
|
|
use rustc_ast_ir::Movability;
|
|
use rustc_type_ir::data_structures::IndexSet;
|
|
use rustc_type_ir::fast_reject::DeepRejectCtxt;
|
|
use rustc_type_ir::inherent::*;
|
|
use rustc_type_ir::lang_items::TraitSolverLangItem;
|
|
use rustc_type_ir::visit::TypeVisitableExt as _;
|
|
use rustc_type_ir::{self as ty, Interner, TraitPredicate, TypingMode, Upcast as _, elaborate};
|
|
use tracing::{instrument, trace};
|
|
|
|
use crate::delegate::SolverDelegate;
|
|
use crate::solve::assembly::structural_traits::{self, AsyncCallableRelevantTypes};
|
|
use crate::solve::assembly::{self, Candidate};
|
|
use crate::solve::inspect::ProbeKind;
|
|
use crate::solve::{
|
|
BuiltinImplSource, CandidateSource, Certainty, EvalCtxt, Goal, GoalSource, MaybeCause,
|
|
NoSolution, QueryResult,
|
|
};
|
|
|
|
impl<D, I> assembly::GoalKind<D> for TraitPredicate<I>
|
|
where
|
|
D: SolverDelegate<Interner = I>,
|
|
I: Interner,
|
|
{
|
|
fn self_ty(self) -> I::Ty {
|
|
self.self_ty()
|
|
}
|
|
|
|
fn trait_ref(self, _: I) -> ty::TraitRef<I> {
|
|
self.trait_ref
|
|
}
|
|
|
|
fn with_self_ty(self, cx: I, self_ty: I::Ty) -> Self {
|
|
self.with_self_ty(cx, self_ty)
|
|
}
|
|
|
|
fn trait_def_id(self, _: I) -> I::DefId {
|
|
self.def_id()
|
|
}
|
|
|
|
fn consider_additional_alias_assumptions(
|
|
_ecx: &mut EvalCtxt<'_, D>,
|
|
_goal: Goal<I, Self>,
|
|
_alias_ty: ty::AliasTy<I>,
|
|
) -> Vec<Candidate<I>> {
|
|
vec![]
|
|
}
|
|
|
|
fn consider_impl_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, TraitPredicate<I>>,
|
|
impl_def_id: I::DefId,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let cx = ecx.cx();
|
|
|
|
let impl_trait_ref = cx.impl_trait_ref(impl_def_id);
|
|
if !DeepRejectCtxt::relate_rigid_infer(ecx.cx())
|
|
.args_may_unify(goal.predicate.trait_ref.args, impl_trait_ref.skip_binder().args)
|
|
{
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// An upper bound of the certainty of this goal, used to lower the certainty
|
|
// of reservation impl to ambiguous during coherence.
|
|
let impl_polarity = cx.impl_polarity(impl_def_id);
|
|
let maximal_certainty = match (impl_polarity, goal.predicate.polarity) {
|
|
// In intercrate mode, this is ambiguous. But outside of intercrate,
|
|
// it's not a real impl.
|
|
(ty::ImplPolarity::Reservation, _) => match ecx.typing_mode(goal.param_env) {
|
|
TypingMode::Coherence => Certainty::AMBIGUOUS,
|
|
TypingMode::Analysis { .. } | TypingMode::PostAnalysis => return Err(NoSolution),
|
|
},
|
|
|
|
// Impl matches polarity
|
|
(ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
|
|
| (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => Certainty::Yes,
|
|
|
|
// Impl doesn't match polarity
|
|
(ty::ImplPolarity::Positive, ty::PredicatePolarity::Negative)
|
|
| (ty::ImplPolarity::Negative, ty::PredicatePolarity::Positive) => {
|
|
return Err(NoSolution);
|
|
}
|
|
};
|
|
|
|
ecx.probe_trait_candidate(CandidateSource::Impl(impl_def_id)).enter(|ecx| {
|
|
let impl_args = ecx.fresh_args_for_item(impl_def_id);
|
|
ecx.record_impl_args(impl_args);
|
|
let impl_trait_ref = impl_trait_ref.instantiate(cx, impl_args);
|
|
|
|
ecx.eq(goal.param_env, goal.predicate.trait_ref, impl_trait_ref)?;
|
|
let where_clause_bounds = cx
|
|
.predicates_of(impl_def_id)
|
|
.iter_instantiated(cx, impl_args)
|
|
.map(|pred| goal.with(cx, pred));
|
|
ecx.add_goals(GoalSource::ImplWhereBound, where_clause_bounds);
|
|
|
|
// We currently elaborate all supertrait outlives obligations from impls.
|
|
// This can be removed when we actually do coinduction correctly, and prove
|
|
// all supertrait obligations unconditionally.
|
|
let goal_clause: I::Clause = goal.predicate.upcast(cx);
|
|
for clause in elaborate::elaborate(cx, [goal_clause]) {
|
|
if matches!(
|
|
clause.kind().skip_binder(),
|
|
ty::ClauseKind::TypeOutlives(..) | ty::ClauseKind::RegionOutlives(..)
|
|
) {
|
|
ecx.add_goal(GoalSource::Misc, goal.with(cx, clause));
|
|
}
|
|
}
|
|
|
|
ecx.evaluate_added_goals_and_make_canonical_response(maximal_certainty)
|
|
})
|
|
}
|
|
|
|
fn consider_error_guaranteed_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
_guar: I::ErrorGuaranteed,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn probe_and_match_goal_against_assumption(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
source: CandidateSource<I>,
|
|
goal: Goal<I, Self>,
|
|
assumption: I::Clause,
|
|
then: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult<I>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if let Some(trait_clause) = assumption.as_trait_clause() {
|
|
if trait_clause.def_id() == goal.predicate.def_id()
|
|
&& trait_clause.polarity() == goal.predicate.polarity
|
|
{
|
|
if !DeepRejectCtxt::relate_rigid_rigid(ecx.cx()).args_may_unify(
|
|
goal.predicate.trait_ref.args,
|
|
trait_clause.skip_binder().trait_ref.args,
|
|
) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
ecx.probe_trait_candidate(source).enter(|ecx| {
|
|
let assumption_trait_pred = ecx.instantiate_binder_with_infer(trait_clause);
|
|
ecx.eq(
|
|
goal.param_env,
|
|
goal.predicate.trait_ref,
|
|
assumption_trait_pred.trait_ref,
|
|
)?;
|
|
then(ecx)
|
|
})
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
|
|
fn consider_auto_trait_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
if let Some(result) = ecx.disqualify_auto_trait_candidate_due_to_possible_impl(goal) {
|
|
return result;
|
|
}
|
|
|
|
// We only look into opaque types during analysis for opaque types
|
|
// outside of their defining scope. Doing so for opaques in the
|
|
// defining scope may require calling `typeck` on the same item we're
|
|
// currently type checking, which will result in a fatal cycle that
|
|
// ideally we want to avoid, since we can make progress on this goal
|
|
// via an alias bound or a locally-inferred hidden type instead.
|
|
if let ty::Alias(ty::Opaque, opaque_ty) = goal.predicate.self_ty().kind() {
|
|
match ecx.typing_mode(goal.param_env) {
|
|
TypingMode::Coherence | TypingMode::PostAnalysis => {
|
|
unreachable!("rigid opaque outside of analysis: {goal:?}");
|
|
}
|
|
TypingMode::Analysis { defining_opaque_types } => {
|
|
if opaque_ty
|
|
.def_id
|
|
.as_local()
|
|
.is_some_and(|def_id| defining_opaque_types.contains(&def_id))
|
|
{
|
|
return Err(NoSolution);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ecx.probe_and_evaluate_goal_for_constituent_tys(
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
structural_traits::instantiate_constituent_tys_for_auto_trait,
|
|
)
|
|
}
|
|
|
|
fn consider_trait_alias_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let cx = ecx.cx();
|
|
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
let nested_obligations = cx
|
|
.predicates_of(goal.predicate.def_id())
|
|
.iter_instantiated(cx, goal.predicate.trait_ref.args)
|
|
.map(|p| goal.with(cx, p));
|
|
// FIXME(-Znext-solver=coinductive): Should this be `GoalSource::ImplWhereBound`?
|
|
ecx.add_goals(GoalSource::Misc, nested_obligations);
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
}
|
|
|
|
fn consider_builtin_sized_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
ecx.probe_and_evaluate_goal_for_constituent_tys(
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
structural_traits::instantiate_constituent_tys_for_sized_trait,
|
|
)
|
|
}
|
|
|
|
fn consider_builtin_copy_clone_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
ecx.probe_and_evaluate_goal_for_constituent_tys(
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
structural_traits::instantiate_constituent_tys_for_copy_clone_trait,
|
|
)
|
|
}
|
|
|
|
fn consider_builtin_pointer_like_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let cx = ecx.cx();
|
|
// But if there are inference variables, we have to wait until it's resolved.
|
|
if (goal.param_env, goal.predicate.self_ty()).has_non_region_infer() {
|
|
return ecx.forced_ambiguity(MaybeCause::Ambiguity);
|
|
}
|
|
|
|
if cx.layout_is_pointer_like(goal.param_env, goal.predicate.self_ty()) {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
|
|
fn consider_builtin_fn_ptr_trait_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let self_ty = goal.predicate.self_ty();
|
|
match goal.predicate.polarity {
|
|
// impl FnPtr for FnPtr {}
|
|
ty::PredicatePolarity::Positive => {
|
|
if self_ty.is_fn_ptr() {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
// impl !FnPtr for T where T != FnPtr && T is rigid {}
|
|
ty::PredicatePolarity::Negative => {
|
|
// If a type is rigid and not a fn ptr, then we know for certain
|
|
// that it does *not* implement `FnPtr`.
|
|
if !self_ty.is_fn_ptr() && self_ty.is_known_rigid() {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn consider_builtin_fn_trait_candidates(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
goal_kind: ty::ClosureKind,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let cx = ecx.cx();
|
|
let tupled_inputs_and_output =
|
|
match structural_traits::extract_tupled_inputs_and_output_from_callable(
|
|
cx,
|
|
goal.predicate.self_ty(),
|
|
goal_kind,
|
|
)? {
|
|
Some(a) => a,
|
|
None => {
|
|
return ecx.forced_ambiguity(MaybeCause::Ambiguity);
|
|
}
|
|
};
|
|
let output_is_sized_pred = tupled_inputs_and_output.map_bound(|(_, output)| {
|
|
ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [output])
|
|
});
|
|
|
|
let pred = tupled_inputs_and_output
|
|
.map_bound(|(inputs, _)| {
|
|
ty::TraitRef::new(cx, goal.predicate.def_id(), [goal.predicate.self_ty(), inputs])
|
|
})
|
|
.upcast(cx);
|
|
// A built-in `Fn` impl only holds if the output is sized.
|
|
// (FIXME: technically we only need to check this if the type is a fn ptr...)
|
|
Self::probe_and_consider_implied_clause(
|
|
ecx,
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
pred,
|
|
[(GoalSource::ImplWhereBound, goal.with(cx, output_is_sized_pred))],
|
|
)
|
|
}
|
|
|
|
fn consider_builtin_async_fn_trait_candidates(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
goal_kind: ty::ClosureKind,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let cx = ecx.cx();
|
|
let (tupled_inputs_and_output_and_coroutine, nested_preds) =
|
|
structural_traits::extract_tupled_inputs_and_output_from_async_callable(
|
|
cx,
|
|
goal.predicate.self_ty(),
|
|
goal_kind,
|
|
// This region doesn't matter because we're throwing away the coroutine type
|
|
Region::new_static(cx),
|
|
)?;
|
|
let output_is_sized_pred = tupled_inputs_and_output_and_coroutine.map_bound(
|
|
|AsyncCallableRelevantTypes { output_coroutine_ty, .. }| {
|
|
ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [
|
|
output_coroutine_ty,
|
|
])
|
|
},
|
|
);
|
|
|
|
let pred = tupled_inputs_and_output_and_coroutine
|
|
.map_bound(|AsyncCallableRelevantTypes { tupled_inputs_ty, .. }| {
|
|
ty::TraitRef::new(cx, goal.predicate.def_id(), [
|
|
goal.predicate.self_ty(),
|
|
tupled_inputs_ty,
|
|
])
|
|
})
|
|
.upcast(cx);
|
|
// A built-in `AsyncFn` impl only holds if the output is sized.
|
|
// (FIXME: technically we only need to check this if the type is a fn ptr...)
|
|
Self::probe_and_consider_implied_clause(
|
|
ecx,
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
pred,
|
|
[goal.with(cx, output_is_sized_pred)]
|
|
.into_iter()
|
|
.chain(nested_preds.into_iter().map(|pred| goal.with(cx, pred)))
|
|
.map(|goal| (GoalSource::ImplWhereBound, goal)),
|
|
)
|
|
}
|
|
|
|
fn consider_builtin_async_fn_kind_helper_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let [closure_fn_kind_ty, goal_kind_ty] = *goal.predicate.trait_ref.args.as_slice() else {
|
|
panic!();
|
|
};
|
|
|
|
let Some(closure_kind) = closure_fn_kind_ty.expect_ty().to_opt_closure_kind() else {
|
|
// We don't need to worry about the self type being an infer var.
|
|
return Err(NoSolution);
|
|
};
|
|
let goal_kind = goal_kind_ty.expect_ty().to_opt_closure_kind().unwrap();
|
|
if closure_kind.extends(goal_kind) {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
|
|
/// ```rust, ignore (not valid rust syntax)
|
|
/// impl Tuple for () {}
|
|
/// impl Tuple for (T1,) {}
|
|
/// impl Tuple for (T1, T2) {}
|
|
/// impl Tuple for (T1, .., Tn) {}
|
|
/// ```
|
|
fn consider_builtin_tuple_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
if let ty::Tuple(..) = goal.predicate.self_ty().kind() {
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
} else {
|
|
Err(NoSolution)
|
|
}
|
|
}
|
|
|
|
fn consider_builtin_pointee_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_future_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let ty::Coroutine(def_id, _) = goal.predicate.self_ty().kind() else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// Coroutines are not futures unless they come from `async` desugaring
|
|
let cx = ecx.cx();
|
|
if !cx.coroutine_is_async(def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// Async coroutine unconditionally implement `Future`
|
|
// Technically, we need to check that the future output type is Sized,
|
|
// but that's already proven by the coroutine being WF.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_iterator_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let ty::Coroutine(def_id, _) = goal.predicate.self_ty().kind() else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// Coroutines are not iterators unless they come from `gen` desugaring
|
|
let cx = ecx.cx();
|
|
if !cx.coroutine_is_gen(def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// Gen coroutines unconditionally implement `Iterator`
|
|
// Technically, we need to check that the iterator output type is Sized,
|
|
// but that's already proven by the coroutines being WF.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_fused_iterator_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let ty::Coroutine(def_id, _) = goal.predicate.self_ty().kind() else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// Coroutines are not iterators unless they come from `gen` desugaring
|
|
let cx = ecx.cx();
|
|
if !cx.coroutine_is_gen(def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// Gen coroutines unconditionally implement `FusedIterator`.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_async_iterator_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let ty::Coroutine(def_id, _) = goal.predicate.self_ty().kind() else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// Coroutines are not iterators unless they come from `gen` desugaring
|
|
let cx = ecx.cx();
|
|
if !cx.coroutine_is_async_gen(def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// Gen coroutines unconditionally implement `Iterator`
|
|
// Technically, we need to check that the iterator output type is Sized,
|
|
// but that's already proven by the coroutines being WF.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_coroutine_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let self_ty = goal.predicate.self_ty();
|
|
let ty::Coroutine(def_id, args) = self_ty.kind() else {
|
|
return Err(NoSolution);
|
|
};
|
|
|
|
// `async`-desugared coroutines do not implement the coroutine trait
|
|
let cx = ecx.cx();
|
|
if !cx.is_general_coroutine(def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let coroutine = args.as_coroutine();
|
|
Self::probe_and_consider_implied_clause(
|
|
ecx,
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
goal,
|
|
ty::TraitRef::new(cx, goal.predicate.def_id(), [self_ty, coroutine.resume_ty()])
|
|
.upcast(cx),
|
|
// Technically, we need to check that the coroutine types are Sized,
|
|
// but that's already proven by the coroutine being WF.
|
|
[],
|
|
)
|
|
}
|
|
|
|
fn consider_builtin_discriminant_kind_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// `DiscriminantKind` is automatically implemented for every type.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_async_destruct_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// `AsyncDestruct` is automatically implemented for every type.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_destruct_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// `Destruct` is automatically implemented for every type in
|
|
// non-const environments.
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
fn consider_builtin_transmute_candidate(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
// `rustc_transmute` does not have support for type or const params
|
|
if goal.has_non_region_placeholders() {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
let assume = ecx.structurally_normalize_const(
|
|
goal.param_env,
|
|
goal.predicate.trait_ref.args.const_at(2),
|
|
)?;
|
|
|
|
let certainty = ecx.is_transmutable(
|
|
goal.param_env,
|
|
goal.predicate.trait_ref.args.type_at(0),
|
|
goal.predicate.trait_ref.args.type_at(1),
|
|
assume,
|
|
)?;
|
|
ecx.evaluate_added_goals_and_make_canonical_response(certainty)
|
|
})
|
|
}
|
|
|
|
/// ```ignore (builtin impl example)
|
|
/// trait Trait {
|
|
/// fn foo(&self);
|
|
/// }
|
|
/// // results in the following builtin impl
|
|
/// impl<'a, T: Trait + 'a> Unsize<dyn Trait + 'a> for T {}
|
|
/// ```
|
|
fn consider_structural_builtin_unsize_candidates(
|
|
ecx: &mut EvalCtxt<'_, D>,
|
|
goal: Goal<I, Self>,
|
|
) -> Vec<Candidate<I>> {
|
|
if goal.predicate.polarity != ty::PredicatePolarity::Positive {
|
|
return vec![];
|
|
}
|
|
|
|
let result_to_single = |result| match result {
|
|
Ok(resp) => vec![resp],
|
|
Err(NoSolution) => vec![],
|
|
};
|
|
|
|
ecx.probe(|_| ProbeKind::UnsizeAssembly).enter(|ecx| {
|
|
let a_ty = goal.predicate.self_ty();
|
|
// We need to normalize the b_ty since it's matched structurally
|
|
// in the other functions below.
|
|
let Ok(b_ty) = ecx.structurally_normalize_ty(
|
|
goal.param_env,
|
|
goal.predicate.trait_ref.args.type_at(1),
|
|
) else {
|
|
return vec![];
|
|
};
|
|
|
|
let goal = goal.with(ecx.cx(), (a_ty, b_ty));
|
|
match (a_ty.kind(), b_ty.kind()) {
|
|
(ty::Infer(ty::TyVar(..)), ..) => panic!("unexpected infer {a_ty:?} {b_ty:?}"),
|
|
|
|
(_, ty::Infer(ty::TyVar(..))) => {
|
|
result_to_single(ecx.forced_ambiguity(MaybeCause::Ambiguity))
|
|
}
|
|
|
|
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`.
|
|
(
|
|
ty::Dynamic(a_data, a_region, ty::Dyn),
|
|
ty::Dynamic(b_data, b_region, ty::Dyn),
|
|
) => ecx.consider_builtin_dyn_upcast_candidates(
|
|
goal, a_data, a_region, b_data, b_region,
|
|
),
|
|
|
|
// `T` -> `dyn Trait` unsizing.
|
|
(_, ty::Dynamic(b_region, b_data, ty::Dyn)) => result_to_single(
|
|
ecx.consider_builtin_unsize_to_dyn_candidate(goal, b_region, b_data),
|
|
),
|
|
|
|
// `[T; N]` -> `[T]` unsizing
|
|
(ty::Array(a_elem_ty, ..), ty::Slice(b_elem_ty)) => {
|
|
result_to_single(ecx.consider_builtin_array_unsize(goal, a_elem_ty, b_elem_ty))
|
|
}
|
|
|
|
// `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
|
|
(ty::Adt(a_def, a_args), ty::Adt(b_def, b_args))
|
|
if a_def.is_struct() && a_def == b_def =>
|
|
{
|
|
result_to_single(
|
|
ecx.consider_builtin_struct_unsize(goal, a_def, a_args, b_args),
|
|
)
|
|
}
|
|
|
|
// `(A, B, T)` -> `(A, B, U)` where `T: Unsize<U>`
|
|
(ty::Tuple(a_tys), ty::Tuple(b_tys))
|
|
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
|
|
{
|
|
result_to_single(ecx.consider_builtin_tuple_unsize(goal, a_tys, b_tys))
|
|
}
|
|
|
|
_ => vec![],
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<D, I> EvalCtxt<'_, D>
|
|
where
|
|
D: SolverDelegate<Interner = I>,
|
|
I: Interner,
|
|
{
|
|
/// Trait upcasting allows for coercions between trait objects:
|
|
/// ```ignore (builtin impl example)
|
|
/// trait Super {}
|
|
/// trait Trait: Super {}
|
|
/// // results in builtin impls upcasting to a super trait
|
|
/// impl<'a, 'b: 'a> Unsize<dyn Super + 'a> for dyn Trait + 'b {}
|
|
/// // and impls removing auto trait bounds.
|
|
/// impl<'a, 'b: 'a> Unsize<dyn Trait + 'a> for dyn Trait + Send + 'b {}
|
|
/// ```
|
|
fn consider_builtin_dyn_upcast_candidates(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
a_data: I::BoundExistentialPredicates,
|
|
a_region: I::Region,
|
|
b_data: I::BoundExistentialPredicates,
|
|
b_region: I::Region,
|
|
) -> Vec<Candidate<I>> {
|
|
let cx = self.cx();
|
|
let Goal { predicate: (a_ty, _b_ty), .. } = goal;
|
|
|
|
let mut responses = vec![];
|
|
// If the principal def ids match (or are both none), then we're not doing
|
|
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
|
|
let b_principal_def_id = b_data.principal_def_id();
|
|
if a_data.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
|
|
responses.extend(self.consider_builtin_upcast_to_principal(
|
|
goal,
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
|
a_data,
|
|
a_region,
|
|
b_data,
|
|
b_region,
|
|
a_data.principal(),
|
|
));
|
|
} else if let Some(a_principal) = a_data.principal() {
|
|
for new_a_principal in
|
|
elaborate::supertraits(self.cx(), a_principal.with_self_ty(cx, a_ty)).skip(1)
|
|
{
|
|
responses.extend(self.consider_builtin_upcast_to_principal(
|
|
goal,
|
|
CandidateSource::BuiltinImpl(BuiltinImplSource::TraitUpcasting),
|
|
a_data,
|
|
a_region,
|
|
b_data,
|
|
b_region,
|
|
Some(new_a_principal.map_bound(|trait_ref| {
|
|
ty::ExistentialTraitRef::erase_self_ty(cx, trait_ref)
|
|
})),
|
|
));
|
|
}
|
|
}
|
|
|
|
responses
|
|
}
|
|
|
|
fn consider_builtin_unsize_to_dyn_candidate(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
b_data: I::BoundExistentialPredicates,
|
|
b_region: I::Region,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let cx = self.cx();
|
|
let Goal { predicate: (a_ty, _), .. } = goal;
|
|
|
|
// Can only unsize to an dyn-compatible trait.
|
|
if b_data.principal_def_id().is_some_and(|def_id| !cx.trait_is_dyn_compatible(def_id)) {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
self.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
// Check that the type implements all of the predicates of the trait object.
|
|
// (i.e. the principal, all of the associated types match, and any auto traits)
|
|
ecx.add_goals(
|
|
GoalSource::ImplWhereBound,
|
|
b_data.iter().map(|pred| goal.with(cx, pred.with_self_ty(cx, a_ty))),
|
|
);
|
|
|
|
// The type must be `Sized` to be unsized.
|
|
ecx.add_goal(
|
|
GoalSource::ImplWhereBound,
|
|
goal.with(
|
|
cx,
|
|
ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [a_ty]),
|
|
),
|
|
);
|
|
|
|
// The type must outlive the lifetime of the `dyn` we're unsizing into.
|
|
ecx.add_goal(GoalSource::Misc, goal.with(cx, ty::OutlivesPredicate(a_ty, b_region)));
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
}
|
|
|
|
fn consider_builtin_upcast_to_principal(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
source: CandidateSource<I>,
|
|
a_data: I::BoundExistentialPredicates,
|
|
a_region: I::Region,
|
|
b_data: I::BoundExistentialPredicates,
|
|
b_region: I::Region,
|
|
upcast_principal: Option<ty::Binder<I, ty::ExistentialTraitRef<I>>>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let param_env = goal.param_env;
|
|
|
|
// We may upcast to auto traits that are either explicitly listed in
|
|
// the object type's bounds, or implied by the principal trait ref's
|
|
// supertraits.
|
|
let a_auto_traits: IndexSet<I::DefId> = a_data
|
|
.auto_traits()
|
|
.into_iter()
|
|
.chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
|
|
elaborate::supertrait_def_ids(self.cx(), principal_def_id)
|
|
.filter(|def_id| self.cx().trait_is_auto(*def_id))
|
|
}))
|
|
.collect();
|
|
|
|
// More than one projection in a_ty's bounds may match the projection
|
|
// in b_ty's bound. Use this to first determine *which* apply without
|
|
// having any inference side-effects. We process obligations because
|
|
// unification may initially succeed due to deferred projection equality.
|
|
let projection_may_match =
|
|
|ecx: &mut EvalCtxt<'_, D>,
|
|
source_projection: ty::Binder<I, ty::ExistentialProjection<I>>,
|
|
target_projection: ty::Binder<I, ty::ExistentialProjection<I>>| {
|
|
source_projection.item_def_id() == target_projection.item_def_id()
|
|
&& ecx
|
|
.probe(|_| ProbeKind::UpcastProjectionCompatibility)
|
|
.enter(|ecx| -> Result<_, NoSolution> {
|
|
ecx.enter_forall(target_projection, |ecx, target_projection| {
|
|
let source_projection =
|
|
ecx.instantiate_binder_with_infer(source_projection);
|
|
ecx.eq(param_env, source_projection, target_projection)?;
|
|
ecx.try_evaluate_added_goals()
|
|
})
|
|
})
|
|
.is_ok()
|
|
};
|
|
|
|
self.probe_trait_candidate(source).enter(|ecx| {
|
|
for bound in b_data.iter() {
|
|
match bound.skip_binder() {
|
|
// Check that a's supertrait (upcast_principal) is compatible
|
|
// with the target (b_ty).
|
|
ty::ExistentialPredicate::Trait(target_principal) => {
|
|
let source_principal = upcast_principal.unwrap();
|
|
let target_principal = bound.rebind(target_principal);
|
|
ecx.enter_forall(target_principal, |ecx, target_principal| {
|
|
let source_principal =
|
|
ecx.instantiate_binder_with_infer(source_principal);
|
|
ecx.eq(param_env, source_principal, target_principal)?;
|
|
ecx.try_evaluate_added_goals()
|
|
})?;
|
|
}
|
|
// Check that b_ty's projection is satisfied by exactly one of
|
|
// a_ty's projections. First, we look through the list to see if
|
|
// any match. If not, error. Then, if *more* than one matches, we
|
|
// return ambiguity. Otherwise, if exactly one matches, equate
|
|
// it with b_ty's projection.
|
|
ty::ExistentialPredicate::Projection(target_projection) => {
|
|
let target_projection = bound.rebind(target_projection);
|
|
let mut matching_projections =
|
|
a_data.projection_bounds().into_iter().filter(|source_projection| {
|
|
projection_may_match(ecx, *source_projection, target_projection)
|
|
});
|
|
let Some(source_projection) = matching_projections.next() else {
|
|
return Err(NoSolution);
|
|
};
|
|
if matching_projections.next().is_some() {
|
|
return ecx.evaluate_added_goals_and_make_canonical_response(
|
|
Certainty::AMBIGUOUS,
|
|
);
|
|
}
|
|
ecx.enter_forall(target_projection, |ecx, target_projection| {
|
|
let source_projection =
|
|
ecx.instantiate_binder_with_infer(source_projection);
|
|
ecx.eq(param_env, source_projection, target_projection)?;
|
|
ecx.try_evaluate_added_goals()
|
|
})?;
|
|
}
|
|
// Check that b_ty's auto traits are present in a_ty's bounds.
|
|
ty::ExistentialPredicate::AutoTrait(def_id) => {
|
|
if !a_auto_traits.contains(&def_id) {
|
|
return Err(NoSolution);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Also require that a_ty's lifetime outlives b_ty's lifetime.
|
|
ecx.add_goal(
|
|
GoalSource::ImplWhereBound,
|
|
Goal::new(ecx.cx(), param_env, ty::OutlivesPredicate(a_region, b_region)),
|
|
);
|
|
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
}
|
|
|
|
/// We have the following builtin impls for arrays:
|
|
/// ```ignore (builtin impl example)
|
|
/// impl<T: ?Sized, const N: usize> Unsize<[T]> for [T; N] {}
|
|
/// ```
|
|
/// While the impl itself could theoretically not be builtin,
|
|
/// the actual unsizing behavior is builtin. Its also easier to
|
|
/// make all impls of `Unsize` builtin as we're able to use
|
|
/// `#[rustc_deny_explicit_impl]` in this case.
|
|
fn consider_builtin_array_unsize(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
a_elem_ty: I::Ty,
|
|
b_elem_ty: I::Ty,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
self.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
|
|
self.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
/// We generate a builtin `Unsize` impls for structs with generic parameters only
|
|
/// mentioned by the last field.
|
|
/// ```ignore (builtin impl example)
|
|
/// struct Foo<T, U: ?Sized> {
|
|
/// sized_field: Vec<T>,
|
|
/// unsizable: Box<U>,
|
|
/// }
|
|
/// // results in the following builtin impl
|
|
/// impl<T: ?Sized, U: ?Sized, V: ?Sized> Unsize<Foo<T, V>> for Foo<T, U>
|
|
/// where
|
|
/// Box<U>: Unsize<Box<V>>,
|
|
/// {}
|
|
/// ```
|
|
fn consider_builtin_struct_unsize(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
def: I::AdtDef,
|
|
a_args: I::GenericArgs,
|
|
b_args: I::GenericArgs,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let cx = self.cx();
|
|
let Goal { predicate: (_a_ty, b_ty), .. } = goal;
|
|
|
|
let unsizing_params = cx.unsizing_params_for_adt(def.def_id());
|
|
// We must be unsizing some type parameters. This also implies
|
|
// that the struct has a tail field.
|
|
if unsizing_params.is_empty() {
|
|
return Err(NoSolution);
|
|
}
|
|
|
|
let tail_field_ty = def.struct_tail_ty(cx).unwrap();
|
|
|
|
let a_tail_ty = tail_field_ty.instantiate(cx, a_args);
|
|
let b_tail_ty = tail_field_ty.instantiate(cx, b_args);
|
|
|
|
// Instantiate just the unsizing params from B into A. The type after
|
|
// this instantiation must be equal to B. This is so we don't unsize
|
|
// unrelated type parameters.
|
|
let new_a_args = cx.mk_args_from_iter(a_args.iter().enumerate().map(|(i, a)| {
|
|
if unsizing_params.contains(i as u32) { b_args.get(i).unwrap() } else { a }
|
|
}));
|
|
let unsized_a_ty = Ty::new_adt(cx, def, new_a_args);
|
|
|
|
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
|
|
// types.
|
|
self.eq(goal.param_env, unsized_a_ty, b_ty)?;
|
|
self.add_goal(
|
|
GoalSource::ImplWhereBound,
|
|
goal.with(
|
|
cx,
|
|
ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Unsize), [
|
|
a_tail_ty, b_tail_ty,
|
|
]),
|
|
),
|
|
);
|
|
self.probe_builtin_trait_candidate(BuiltinImplSource::Misc)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
/// We generate the following builtin impl for tuples of all sizes.
|
|
///
|
|
/// This impl is still unstable and we emit a feature error when it
|
|
/// when it is used by a coercion.
|
|
/// ```ignore (builtin impl example)
|
|
/// impl<T: ?Sized, U: ?Sized, V: ?Sized> Unsize<(T, V)> for (T, U)
|
|
/// where
|
|
/// U: Unsize<V>,
|
|
/// {}
|
|
/// ```
|
|
fn consider_builtin_tuple_unsize(
|
|
&mut self,
|
|
goal: Goal<I, (I::Ty, I::Ty)>,
|
|
a_tys: I::Tys,
|
|
b_tys: I::Tys,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
let cx = self.cx();
|
|
let Goal { predicate: (_a_ty, b_ty), .. } = goal;
|
|
|
|
let (&a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
|
|
let b_last_ty = b_tys.last().unwrap();
|
|
|
|
// Instantiate just the tail field of B., and require that they're equal.
|
|
let unsized_a_ty = Ty::new_tup_from_iter(cx, a_rest_tys.iter().copied().chain([b_last_ty]));
|
|
self.eq(goal.param_env, unsized_a_ty, b_ty)?;
|
|
|
|
// Similar to ADTs, require that we can unsize the tail.
|
|
self.add_goal(
|
|
GoalSource::ImplWhereBound,
|
|
goal.with(
|
|
cx,
|
|
ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Unsize), [
|
|
a_last_ty, b_last_ty,
|
|
]),
|
|
),
|
|
);
|
|
self.probe_builtin_trait_candidate(BuiltinImplSource::TupleUnsizing)
|
|
.enter(|ecx| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes))
|
|
}
|
|
|
|
// Return `Some` if there is an impl (built-in or user provided) that may
|
|
// hold for the self type of the goal, which for coherence and soundness
|
|
// purposes must disqualify the built-in auto impl assembled by considering
|
|
// the type's constituent types.
|
|
fn disqualify_auto_trait_candidate_due_to_possible_impl(
|
|
&mut self,
|
|
goal: Goal<I, TraitPredicate<I>>,
|
|
) -> Option<Result<Candidate<I>, NoSolution>> {
|
|
let self_ty = goal.predicate.self_ty();
|
|
match self_ty.kind() {
|
|
// Stall int and float vars until they are resolved to a concrete
|
|
// numerical type. That's because the check for impls below treats
|
|
// int vars as matching any impl. Even if we filtered such impls,
|
|
// we probably don't want to treat an `impl !AutoTrait for i32` as
|
|
// disqualifying the built-in auto impl for `i64: AutoTrait` either.
|
|
ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
|
|
Some(self.forced_ambiguity(MaybeCause::Ambiguity))
|
|
}
|
|
|
|
// These types cannot be structurally decomposed into constituent
|
|
// types, and therefore have no built-in auto impl.
|
|
ty::Dynamic(..)
|
|
| ty::Param(..)
|
|
| ty::Foreign(..)
|
|
| ty::Alias(ty::Projection | ty::Weak | ty::Inherent, ..)
|
|
| ty::Placeholder(..) => Some(Err(NoSolution)),
|
|
|
|
ty::Infer(_) | ty::Bound(_, _) => panic!("unexpected type `{self_ty:?}`"),
|
|
|
|
// Coroutines have one special built-in candidate, `Unpin`, which
|
|
// takes precedence over the structural auto trait candidate being
|
|
// assembled.
|
|
ty::Coroutine(def_id, _)
|
|
if self.cx().is_lang_item(goal.predicate.def_id(), TraitSolverLangItem::Unpin) =>
|
|
{
|
|
match self.cx().coroutine_movability(def_id) {
|
|
Movability::Static => Some(Err(NoSolution)),
|
|
Movability::Movable => Some(
|
|
self.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
}),
|
|
),
|
|
}
|
|
}
|
|
|
|
// If we still have an alias here, it must be rigid. For opaques, it's always
|
|
// okay to consider auto traits because that'll reveal its hidden type. For
|
|
// non-opaque aliases, we will not assemble any candidates since there's no way
|
|
// to further look into its type.
|
|
ty::Alias(..) => None,
|
|
|
|
// For rigid types, any possible implementation that could apply to
|
|
// the type (even if after unification and processing nested goals
|
|
// it does not hold) will disqualify the built-in auto impl.
|
|
//
|
|
// This differs from the current stable behavior and fixes #84857.
|
|
// Due to breakage found via crater, we currently instead lint
|
|
// patterns which can be used to exploit this unsoundness on stable,
|
|
// see #93367 for more details.
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Str
|
|
| ty::Array(_, _)
|
|
| ty::Pat(_, _)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(_, _)
|
|
| ty::Ref(_, _, _)
|
|
| ty::FnDef(_, _)
|
|
| ty::FnPtr(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(_, _)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
| ty::Tuple(_)
|
|
| ty::Adt(_, _) => {
|
|
let mut disqualifying_impl = None;
|
|
self.cx().for_each_relevant_impl(
|
|
goal.predicate.def_id(),
|
|
goal.predicate.self_ty(),
|
|
|impl_def_id| {
|
|
disqualifying_impl = Some(impl_def_id);
|
|
},
|
|
);
|
|
if let Some(def_id) = disqualifying_impl {
|
|
trace!(?def_id, ?goal, "disqualified auto-trait implementation");
|
|
// No need to actually consider the candidate here,
|
|
// since we do that in `consider_impl_candidate`.
|
|
return Some(Err(NoSolution));
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
ty::Error(_) => None,
|
|
}
|
|
}
|
|
|
|
/// Convenience function for traits that are structural, i.e. that only
|
|
/// have nested subgoals that only change the self type. Unlike other
|
|
/// evaluate-like helpers, this does a probe, so it doesn't need to be
|
|
/// wrapped in one.
|
|
fn probe_and_evaluate_goal_for_constituent_tys(
|
|
&mut self,
|
|
source: CandidateSource<I>,
|
|
goal: Goal<I, TraitPredicate<I>>,
|
|
constituent_tys: impl Fn(
|
|
&EvalCtxt<'_, D>,
|
|
I::Ty,
|
|
) -> Result<Vec<ty::Binder<I, I::Ty>>, NoSolution>,
|
|
) -> Result<Candidate<I>, NoSolution> {
|
|
self.probe_trait_candidate(source).enter(|ecx| {
|
|
let goals = constituent_tys(ecx, goal.predicate.self_ty())?
|
|
.into_iter()
|
|
.map(|ty| {
|
|
ecx.enter_forall(ty, |ecx, ty| {
|
|
goal.with(ecx.cx(), goal.predicate.with_self_ty(ecx.cx(), ty))
|
|
})
|
|
})
|
|
.collect::<Vec<_>>();
|
|
ecx.add_goals(GoalSource::ImplWhereBound, goals);
|
|
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
|
|
})
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self))]
|
|
pub(super) fn compute_trait_goal(
|
|
&mut self,
|
|
goal: Goal<I, TraitPredicate<I>>,
|
|
) -> QueryResult<I> {
|
|
let candidates = self.assemble_and_evaluate_candidates(goal);
|
|
self.merge_candidates(candidates)
|
|
}
|
|
}
|