rust/compiler/rustc_mir_transform/src/dataflow_const_prop.rs
Nicholas Nethercote c904c6aaff Remove ResultsVisitable.
Now that `Results` is the only impl of `ResultsVisitable`, the trait can
be removed. This simplifies things by removining unnecessary layers of
indirection and abstraction.

- `ResultsVisitor` is simpler.
  - Its type parameter changes from `R` (an analysis result) to the
    simpler `A` (an analysis).
  - It no longer needs the `Domain` associated type, because it can use
    `A::Domain`.
  - Occurrences of `R` become `Results<'tcx, A>`, because there is now
    only one kind of analysis results.

- `save_as_intervals` also changes type parameter from `R` to `A`.

- The `results.reconstruct_*` method calls are replaced with
  `results.analysis.apply_*` method calls, which are equivalent.

- `Direction::visit_results_in_block` is simpler, with a single generic
  param (`A`) instead of two (`D` and `R`/`F`, with a bound connecting
  them). Likewise for `visit_results`.

- The `ResultsVisitor` impls for `MirBorrowCtxt` and
  `StorageConflictVisitor` are now specific about the type of the
  analysis results they work with. They both used to have a type param
  `R` but they weren't genuinely generic. In both cases there was only a
  single results type that made sense to instantiate them with.
2024-11-05 10:18:03 +11:00

1093 lines
43 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! A constant propagation optimization pass based on dataflow analysis.
//!
//! Currently, this pass only propagates scalar values.
use std::assert_matches::assert_matches;
use std::fmt::Formatter;
use rustc_abi::{BackendRepr, FIRST_VARIANT, FieldIdx, Size, VariantIdx};
use rustc_const_eval::const_eval::{DummyMachine, throw_machine_stop_str};
use rustc_const_eval::interpret::{
ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable, interp_ok,
};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{InterpResult, Scalar};
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{HasParamEnv, LayoutOf};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_mir_dataflow::fmt::DebugWithContext;
use rustc_mir_dataflow::lattice::{FlatSet, HasBottom};
use rustc_mir_dataflow::value_analysis::{
Map, PlaceIndex, State, TrackElem, ValueOrPlace, debug_with_context,
};
use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
use rustc_span::DUMMY_SP;
use tracing::{debug, debug_span, instrument};
// These constants are somewhat random guesses and have not been optimized.
// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
const BLOCK_LIMIT: usize = 100;
const PLACE_LIMIT: usize = 100;
pub(super) struct DataflowConstProp;
impl<'tcx> crate::MirPass<'tcx> for DataflowConstProp {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 3
}
#[instrument(skip_all level = "debug")]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
debug!("aborted dataflow const prop due too many basic blocks");
return;
}
// We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
// Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
// applications, where `h` is the height of the lattice. Because the height of our lattice
// is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
// because every transfer function application could traverse the whole map, this becomes
// `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
// map nodes is strongly correlated to the number of tracked places, this becomes more or
// less `O(n)` if we place a constant limit on the number of tracked places.
let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };
// Decide which places to track during the analysis.
let map = Map::new(tcx, body, place_limit);
// Perform the actual dataflow analysis.
let analysis = ConstAnalysis::new(tcx, body, map);
let mut results =
debug_span!("analyze").in_scope(|| analysis.iterate_to_fixpoint(tcx, body, None));
// Collect results and patch the body afterwards.
let mut visitor = Collector::new(tcx, &body.local_decls);
debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
let mut patch = visitor.patch;
debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body));
}
}
// Note: Currently, places that have their reference taken cannot be tracked. Although this would
// be possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
// Because of that, we can assume that the only way to change the value behind a tracked place is
// by direct assignment.
struct ConstAnalysis<'a, 'tcx> {
map: Map<'tcx>,
tcx: TyCtxt<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
ecx: InterpCx<'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> Analysis<'tcx> for ConstAnalysis<'_, 'tcx> {
type Domain = State<FlatSet<Scalar>>;
const NAME: &'static str = "ConstAnalysis";
// The bottom state denotes uninitialized memory. Because we are only doing a sound
// approximation of the actual execution, we can also use this state for places where access
// would be UB.
fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
State::Unreachable
}
fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
// The initial state maps all tracked places of argument projections to and the rest to ⊥.
assert_matches!(state, State::Unreachable);
*state = State::new_reachable();
for arg in body.args_iter() {
state.flood(PlaceRef { local: arg, projection: &[] }, &self.map);
}
}
fn apply_statement_effect(
&mut self,
state: &mut Self::Domain,
statement: &Statement<'tcx>,
_location: Location,
) {
if state.is_reachable() {
self.handle_statement(statement, state);
}
}
fn apply_terminator_effect<'mir>(
&mut self,
state: &mut Self::Domain,
terminator: &'mir Terminator<'tcx>,
_location: Location,
) -> TerminatorEdges<'mir, 'tcx> {
if state.is_reachable() {
self.handle_terminator(terminator, state)
} else {
TerminatorEdges::None
}
}
fn apply_call_return_effect(
&mut self,
state: &mut Self::Domain,
_block: BasicBlock,
return_places: CallReturnPlaces<'_, 'tcx>,
) {
if state.is_reachable() {
self.handle_call_return(return_places, state)
}
}
}
impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self {
let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
Self {
map,
tcx,
local_decls: &body.local_decls,
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
param_env,
}
}
fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<FlatSet<Scalar>>) {
match &statement.kind {
StatementKind::Assign(box (place, rvalue)) => {
self.handle_assign(*place, rvalue, state);
}
StatementKind::SetDiscriminant { box place, variant_index } => {
self.handle_set_discriminant(*place, *variant_index, state);
}
StatementKind::Intrinsic(box intrinsic) => {
self.handle_intrinsic(intrinsic);
}
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
// StorageLive leaves the local in an uninitialized state.
// StorageDead makes it UB to access the local afterwards.
state.flood_with(
Place::from(*local).as_ref(),
&self.map,
FlatSet::<Scalar>::BOTTOM,
);
}
StatementKind::Deinit(box place) => {
// Deinit makes the place uninitialized.
state.flood_with(place.as_ref(), &self.map, FlatSet::<Scalar>::BOTTOM);
}
StatementKind::Retag(..) => {
// We don't track references.
}
StatementKind::ConstEvalCounter
| StatementKind::Nop
| StatementKind::FakeRead(..)
| StatementKind::PlaceMention(..)
| StatementKind::Coverage(..)
| StatementKind::AscribeUserType(..) => (),
}
}
fn handle_intrinsic(&self, intrinsic: &NonDivergingIntrinsic<'tcx>) {
match intrinsic {
NonDivergingIntrinsic::Assume(..) => {
// Could use this, but ignoring it is sound.
}
NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping {
dst: _,
src: _,
count: _,
}) => {
// This statement represents `*dst = *src`, `count` times.
}
}
}
fn handle_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> ValueOrPlace<FlatSet<Scalar>> {
match operand {
Operand::Constant(box constant) => {
ValueOrPlace::Value(self.handle_constant(constant, state))
}
Operand::Copy(place) | Operand::Move(place) => {
// On move, we would ideally flood the place with bottom. But with the current
// framework this is not possible (similar to `InterpCx::eval_operand`).
self.map.find(place.as_ref()).map(ValueOrPlace::Place).unwrap_or(ValueOrPlace::TOP)
}
}
}
/// The effect of a successful function call return should not be
/// applied here, see [`Analysis::apply_terminator_effect`].
fn handle_terminator<'mir>(
&self,
terminator: &'mir Terminator<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> TerminatorEdges<'mir, 'tcx> {
match &terminator.kind {
TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
// Effect is applied by `handle_call_return`.
}
TerminatorKind::Drop { place, .. } => {
state.flood_with(place.as_ref(), &self.map, FlatSet::<Scalar>::BOTTOM);
}
TerminatorKind::Yield { .. } => {
// They would have an effect, but are not allowed in this phase.
bug!("encountered disallowed terminator");
}
TerminatorKind::SwitchInt { discr, targets } => {
return self.handle_switch_int(discr, targets, state);
}
TerminatorKind::TailCall { .. } => {
// FIXME(explicit_tail_calls): determine if we need to do something here (probably
// not)
}
TerminatorKind::Goto { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Assert { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {
// These terminators have no effect on the analysis.
}
}
terminator.edges()
}
fn handle_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<FlatSet<Scalar>>,
) {
return_places.for_each(|place| {
state.flood(place.as_ref(), &self.map);
})
}
fn handle_set_discriminant(
&self,
place: Place<'tcx>,
variant_index: VariantIdx,
state: &mut State<FlatSet<Scalar>>,
) {
state.flood_discr(place.as_ref(), &self.map);
if self.map.find_discr(place.as_ref()).is_some() {
let enum_ty = place.ty(self.local_decls, self.tcx).ty;
if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
state.assign_discr(
place.as_ref(),
ValueOrPlace::Value(FlatSet::Elem(discr)),
&self.map,
);
}
}
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) {
match rvalue {
Rvalue::Use(operand) => {
state.flood(target.as_ref(), &self.map);
if let Some(target) = self.map.find(target.as_ref()) {
self.assign_operand(state, target, operand);
}
}
Rvalue::CopyForDeref(rhs) => {
state.flood(target.as_ref(), &self.map);
if let Some(target) = self.map.find(target.as_ref()) {
self.assign_operand(state, target, &Operand::Copy(*rhs));
}
}
Rvalue::Aggregate(kind, operands) => {
// If we assign `target = Enum::Variant#0(operand)`,
// we must make sure that all `target as Variant#i` are `Top`.
state.flood(target.as_ref(), &self.map);
let Some(target_idx) = self.map.find(target.as_ref()) else { return };
let (variant_target, variant_index) = match **kind {
AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None),
AggregateKind::Adt(def_id, variant_index, ..) => {
match self.tcx.def_kind(def_id) {
DefKind::Struct => (Some(target_idx), None),
DefKind::Enum => (
self.map.apply(target_idx, TrackElem::Variant(variant_index)),
Some(variant_index),
),
_ => return,
}
}
_ => return,
};
if let Some(variant_target_idx) = variant_target {
for (field_index, operand) in operands.iter_enumerated() {
if let Some(field) =
self.map.apply(variant_target_idx, TrackElem::Field(field_index))
{
self.assign_operand(state, field, operand);
}
}
}
if let Some(variant_index) = variant_index
&& let Some(discr_idx) = self.map.apply(target_idx, TrackElem::Discriminant)
{
// We are assigning the discriminant as part of an aggregate.
// This discriminant can only alias a variant field's value if the operand
// had an invalid value for that type.
// Using invalid values is UB, so we are allowed to perform the assignment
// without extra flooding.
let enum_ty = target.ty(self.local_decls, self.tcx).ty;
if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
}
}
}
Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => {
// Flood everything now, so we can use `insert_value_idx` directly later.
state.flood(target.as_ref(), &self.map);
let Some(target) = self.map.find(target.as_ref()) else { return };
let value_target = self.map.apply(target, TrackElem::Field(0_u32.into()));
let overflow_target = self.map.apply(target, TrackElem::Field(1_u32.into()));
if value_target.is_some() || overflow_target.is_some() {
let (val, overflow) = self.binary_op(state, *op, left, right);
if let Some(value_target) = value_target {
// We have flooded `target` earlier.
state.insert_value_idx(value_target, val, &self.map);
}
if let Some(overflow_target) = overflow_target {
// We have flooded `target` earlier.
state.insert_value_idx(overflow_target, overflow, &self.map);
}
}
}
Rvalue::Cast(
CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
operand,
_,
) => {
let pointer = self.handle_operand(operand, state);
state.assign(target.as_ref(), pointer, &self.map);
if let Some(target_len) = self.map.find_len(target.as_ref())
&& let operand_ty = operand.ty(self.local_decls, self.tcx)
&& let Some(operand_ty) = operand_ty.builtin_deref(true)
&& let ty::Array(_, len) = operand_ty.kind()
&& let Some(len) = Const::Ty(self.tcx.types.usize, *len)
.try_eval_scalar_int(self.tcx, self.param_env)
{
state.insert_value_idx(target_len, FlatSet::Elem(len.into()), &self.map);
}
}
_ => {
let result = self.handle_rvalue(rvalue, state);
state.assign(target.as_ref(), result, &self.map);
}
}
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> ValueOrPlace<FlatSet<Scalar>> {
let val = match rvalue {
Rvalue::Len(place) => {
let place_ty = place.ty(self.local_decls, self.tcx);
if let ty::Array(_, len) = place_ty.ty.kind() {
Const::Ty(self.tcx.types.usize, *len)
.try_eval_scalar(self.tcx, self.param_env)
.map_or(FlatSet::Top, FlatSet::Elem)
} else if let [ProjectionElem::Deref] = place.projection[..] {
state.get_len(place.local.into(), &self.map)
} else {
FlatSet::Top
}
}
Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self
.ecx
.int_to_int_or_float(&op, layout)
.discard_err()
.map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self
.ecx
.float_to_float_or_int(&op, layout)
.discard_err()
.map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::Cast(CastKind::Transmute, operand, _) => {
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self.wrap_immediate(*op),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => {
// Overflows must be ignored here.
// The overflowing operators are handled in `handle_assign`.
let (val, _overflow) = self.binary_op(state, *op, left, right);
val
}
Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
FlatSet::Elem(value) => self
.ecx
.unary_op(*op, &value)
.discard_err()
.map_or(FlatSet::Top, |val| self.wrap_immediate(*val)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
},
Rvalue::NullaryOp(null_op, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
let val = match null_op {
NullOp::SizeOf if layout.is_sized() => layout.size.bytes(),
NullOp::AlignOf if layout.is_sized() => layout.align.abi.bytes(),
NullOp::OffsetOf(fields) => self
.ecx
.tcx
.offset_of_subfield(self.ecx.param_env(), layout, fields.iter())
.bytes(),
_ => return ValueOrPlace::Value(FlatSet::Top),
};
FlatSet::Elem(Scalar::from_target_usize(val, &self.tcx))
}
Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), &self.map),
Rvalue::Use(operand) => return self.handle_operand(operand, state),
Rvalue::CopyForDeref(place) => {
return self.handle_operand(&Operand::Copy(*place), state);
}
Rvalue::Ref(..) | Rvalue::RawPtr(..) => {
// We don't track such places.
return ValueOrPlace::TOP;
}
Rvalue::Repeat(..)
| Rvalue::ThreadLocalRef(..)
| Rvalue::Cast(..)
| Rvalue::BinaryOp(..)
| Rvalue::Aggregate(..)
| Rvalue::ShallowInitBox(..) => {
// No modification is possible through these r-values.
return ValueOrPlace::TOP;
}
};
ValueOrPlace::Value(val)
}
fn handle_constant(
&self,
constant: &ConstOperand<'tcx>,
_state: &mut State<FlatSet<Scalar>>,
) -> FlatSet<Scalar> {
constant
.const_
.try_eval_scalar(self.tcx, self.param_env)
.map_or(FlatSet::Top, FlatSet::Elem)
}
fn handle_switch_int<'mir>(
&self,
discr: &'mir Operand<'tcx>,
targets: &'mir SwitchTargets,
state: &mut State<FlatSet<Scalar>>,
) -> TerminatorEdges<'mir, 'tcx> {
let value = match self.handle_operand(discr, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
};
match value {
// We are branching on uninitialized data, this is UB, treat it as unreachable.
// This allows the set of visited edges to grow monotonically with the lattice.
FlatSet::Bottom => TerminatorEdges::None,
FlatSet::Elem(scalar) => {
let choice = scalar.assert_scalar_int().to_bits_unchecked();
TerminatorEdges::Single(targets.target_for_value(choice))
}
FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets },
}
}
/// The caller must have flooded `place`.
fn assign_operand(
&self,
state: &mut State<FlatSet<Scalar>>,
place: PlaceIndex,
operand: &Operand<'tcx>,
) {
match operand {
Operand::Copy(rhs) | Operand::Move(rhs) => {
if let Some(rhs) = self.map.find(rhs.as_ref()) {
state.insert_place_idx(place, rhs, &self.map);
} else if rhs.projection.first() == Some(&PlaceElem::Deref)
&& let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map)
&& let rhs_ty = self.local_decls[rhs.local].ty
&& let Ok(rhs_layout) = self.tcx.layout_of(self.param_env.and(rhs_ty))
{
let op = ImmTy::from_scalar(pointer, rhs_layout).into();
self.assign_constant(state, place, op, rhs.projection);
}
}
Operand::Constant(box constant) => {
if let Some(constant) =
self.ecx.eval_mir_constant(&constant.const_, constant.span, None).discard_err()
{
self.assign_constant(state, place, constant, &[]);
}
}
}
}
/// The caller must have flooded `place`.
///
/// Perform: `place = operand.projection`.
#[instrument(level = "trace", skip(self, state))]
fn assign_constant(
&self,
state: &mut State<FlatSet<Scalar>>,
place: PlaceIndex,
mut operand: OpTy<'tcx>,
projection: &[PlaceElem<'tcx>],
) {
for &(mut proj_elem) in projection {
if let PlaceElem::Index(index) = proj_elem {
if let FlatSet::Elem(index) = state.get(index.into(), &self.map)
&& let Some(offset) = index.to_target_usize(&self.tcx).discard_err()
&& let Some(min_length) = offset.checked_add(1)
{
proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false };
} else {
return;
}
}
operand = if let Some(operand) = self.ecx.project(&operand, proj_elem).discard_err() {
operand
} else {
return;
}
}
self.map.for_each_projection_value(
place,
operand,
&mut |elem, op| match elem {
TrackElem::Field(idx) => self.ecx.project_field(op, idx.as_usize()).discard_err(),
TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).discard_err(),
TrackElem::Discriminant => {
let variant = self.ecx.read_discriminant(op).discard_err()?;
let discr_value =
self.ecx.discriminant_for_variant(op.layout.ty, variant).discard_err()?;
Some(discr_value.into())
}
TrackElem::DerefLen => {
let op: OpTy<'_> = self.ecx.deref_pointer(op).discard_err()?.into();
let len_usize = op.len(&self.ecx).discard_err()?;
let layout =
self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).unwrap();
Some(ImmTy::from_uint(len_usize, layout).into())
}
},
&mut |place, op| {
if let Some(imm) = self.ecx.read_immediate_raw(op).discard_err()
&& let Some(imm) = imm.right()
{
let elem = self.wrap_immediate(*imm);
state.insert_value_idx(place, elem, &self.map);
}
},
);
}
fn binary_op(
&self,
state: &mut State<FlatSet<Scalar>>,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
) -> (FlatSet<Scalar>, FlatSet<Scalar>) {
let left = self.eval_operand(left, state);
let right = self.eval_operand(right, state);
match (left, right) {
(FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
// Both sides are known, do the actual computation.
(FlatSet::Elem(left), FlatSet::Elem(right)) => {
match self.ecx.binary_op(op, &left, &right).discard_err() {
// Ideally this would return an Immediate, since it's sometimes
// a pair and sometimes not. But as a hack we always return a pair
// and just make the 2nd component `Bottom` when it does not exist.
Some(val) => {
if matches!(val.layout.backend_repr, BackendRepr::ScalarPair(..)) {
let (val, overflow) = val.to_scalar_pair();
(FlatSet::Elem(val), FlatSet::Elem(overflow))
} else {
(FlatSet::Elem(val.to_scalar()), FlatSet::Bottom)
}
}
_ => (FlatSet::Top, FlatSet::Top),
}
}
// Exactly one side is known, attempt some algebraic simplifications.
(FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => {
let layout = const_arg.layout;
if !matches!(layout.backend_repr, rustc_abi::BackendRepr::Scalar(..)) {
return (FlatSet::Top, FlatSet::Top);
}
let arg_scalar = const_arg.to_scalar();
let Some(arg_value) = arg_scalar.to_bits(layout.size).discard_err() else {
return (FlatSet::Top, FlatSet::Top);
};
match op {
BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom),
BinOp::BitOr
if arg_value == layout.size.truncate(u128::MAX)
|| (layout.ty.is_bool() && arg_value == 1) =>
{
(FlatSet::Elem(arg_scalar), FlatSet::Bottom)
}
BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => {
(FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false)))
}
_ => (FlatSet::Top, FlatSet::Top),
}
}
(FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top),
}
}
fn eval_operand(
&self,
op: &Operand<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> FlatSet<ImmTy<'tcx>> {
let value = match self.handle_operand(op, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
};
match value {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(scalar) => {
let ty = op.ty(self.local_decls, self.tcx);
self.tcx.layout_of(self.param_env.and(ty)).map_or(FlatSet::Top, |layout| {
FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
})
}
FlatSet::Bottom => FlatSet::Bottom,
}
}
fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option<Scalar> {
if !enum_ty.is_enum() {
return None;
}
let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).discard_err()?;
Some(discr_value.to_scalar())
}
fn wrap_immediate(&self, imm: Immediate) -> FlatSet<Scalar> {
match imm {
Immediate::Scalar(scalar) => FlatSet::Elem(scalar),
Immediate::Uninit => FlatSet::Bottom,
_ => FlatSet::Top,
}
}
}
/// This is used to visualize the dataflow analysis.
impl<'tcx> DebugWithContext<ConstAnalysis<'_, 'tcx>> for State<FlatSet<Scalar>> {
fn fmt_with(&self, ctxt: &ConstAnalysis<'_, 'tcx>, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
State::Reachable(values) => debug_with_context(values, None, &ctxt.map, f),
State::Unreachable => write!(f, "unreachable"),
}
}
fn fmt_diff_with(
&self,
old: &Self,
ctxt: &ConstAnalysis<'_, 'tcx>,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
match (self, old) {
(State::Reachable(this), State::Reachable(old)) => {
debug_with_context(this, Some(old), &ctxt.map, f)
}
_ => Ok(()), // Consider printing something here.
}
}
}
struct Patch<'tcx> {
tcx: TyCtxt<'tcx>,
/// For a given MIR location, this stores the values of the operands used by that location. In
/// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
/// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,
/// Stores the assigned values for assignments where the Rvalue is constant.
assignments: FxHashMap<Location, Const<'tcx>>,
}
impl<'tcx> Patch<'tcx> {
pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self {
Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
}
fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> {
Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }))
}
}
struct Collector<'a, 'tcx> {
patch: Patch<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
}
impl<'a, 'tcx> Collector<'a, 'tcx> {
pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>) -> Self {
Self { patch: Patch::new(tcx), local_decls }
}
#[instrument(level = "trace", skip(self, ecx, map), ret)]
fn try_make_constant(
&self,
ecx: &mut InterpCx<'tcx, DummyMachine>,
place: Place<'tcx>,
state: &State<FlatSet<Scalar>>,
map: &Map<'tcx>,
) -> Option<Const<'tcx>> {
let ty = place.ty(self.local_decls, self.patch.tcx).ty;
let layout = ecx.layout_of(ty).ok()?;
if layout.is_zst() {
return Some(Const::zero_sized(ty));
}
if layout.is_unsized() {
return None;
}
let place = map.find(place.as_ref())?;
if layout.backend_repr.is_scalar()
&& let Some(value) = propagatable_scalar(place, state, map)
{
return Some(Const::Val(ConstValue::Scalar(value), ty));
}
if matches!(layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
let alloc_id = ecx
.intern_with_temp_alloc(layout, |ecx, dest| {
try_write_constant(ecx, dest, place, ty, state, map)
})
.discard_err()?;
return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty));
}
None
}
}
#[instrument(level = "trace", skip(map), ret)]
fn propagatable_scalar(
place: PlaceIndex,
state: &State<FlatSet<Scalar>>,
map: &Map<'_>,
) -> Option<Scalar> {
if let FlatSet::Elem(value) = state.get_idx(place, map)
&& value.try_to_scalar_int().is_ok()
{
// Do not attempt to propagate pointers, as we may fail to preserve their identity.
Some(value)
} else {
None
}
}
#[instrument(level = "trace", skip(ecx, state, map), ret)]
fn try_write_constant<'tcx>(
ecx: &mut InterpCx<'tcx, DummyMachine>,
dest: &PlaceTy<'tcx>,
place: PlaceIndex,
ty: Ty<'tcx>,
state: &State<FlatSet<Scalar>>,
map: &Map<'tcx>,
) -> InterpResult<'tcx> {
let layout = ecx.layout_of(ty)?;
// Fast path for ZSTs.
if layout.is_zst() {
return interp_ok(());
}
// Fast path for scalars.
if layout.backend_repr.is_scalar()
&& let Some(value) = propagatable_scalar(place, state, map)
{
return ecx.write_immediate(Immediate::Scalar(value), dest);
}
match ty.kind() {
// ZSTs. Nothing to do.
ty::FnDef(..) => {}
// Those are scalars, must be handled above.
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char =>
throw_machine_stop_str!("primitive type with provenance"),
ty::Tuple(elem_tys) => {
for (i, elem) in elem_tys.iter().enumerate() {
let Some(field) = map.apply(place, TrackElem::Field(FieldIdx::from_usize(i))) else {
throw_machine_stop_str!("missing field in tuple")
};
let field_dest = ecx.project_field(dest, i)?;
try_write_constant(ecx, &field_dest, field, elem, state, map)?;
}
}
ty::Adt(def, args) => {
if def.is_union() {
throw_machine_stop_str!("cannot propagate unions")
}
let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() {
let Some(discr) = map.apply(place, TrackElem::Discriminant) else {
throw_machine_stop_str!("missing discriminant for enum")
};
let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else {
throw_machine_stop_str!("discriminant with provenance")
};
let discr_bits = discr.to_bits(discr.size());
let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else {
throw_machine_stop_str!("illegal discriminant for enum")
};
let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else {
throw_machine_stop_str!("missing variant for enum")
};
let variant_dest = ecx.project_downcast(dest, variant)?;
(variant, def.variant(variant), variant_place, variant_dest)
} else {
(FIRST_VARIANT, def.non_enum_variant(), place, dest.clone())
};
for (i, field) in variant_def.fields.iter_enumerated() {
let ty = field.ty(*ecx.tcx, args);
let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else {
throw_machine_stop_str!("missing field in ADT")
};
let field_dest = ecx.project_field(&variant_dest, i.as_usize())?;
try_write_constant(ecx, &field_dest, field, ty, state, map)?;
}
ecx.write_discriminant(variant_idx, dest)?;
}
// Unsupported for now.
ty::Array(_, _)
| ty::Pat(_, _)
// Do not attempt to support indirection in constants.
| ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_)
| ty::Never
| ty::Foreign(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Dynamic(..) => throw_machine_stop_str!("unsupported type"),
ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(),
}
interp_ok(())
}
impl<'mir, 'tcx> ResultsVisitor<'mir, 'tcx, ConstAnalysis<'_, 'tcx>> for Collector<'_, 'tcx> {
#[instrument(level = "trace", skip(self, results, statement))]
fn visit_statement_before_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &State<FlatSet<Scalar>>,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match &statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
OperandCollector {
state,
visitor: self,
ecx: &mut results.analysis.ecx,
map: &results.analysis.map,
}
.visit_rvalue(rvalue, location);
}
_ => (),
}
}
#[instrument(level = "trace", skip(self, results, statement))]
fn visit_statement_after_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &State<FlatSet<Scalar>>,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match statement.kind {
StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
// Don't overwrite the assignment if it already uses a constant (to keep the span).
}
StatementKind::Assign(box (place, _)) => {
if let Some(value) = self.try_make_constant(
&mut results.analysis.ecx,
place,
state,
&results.analysis.map,
) {
self.patch.assignments.insert(location, value);
}
}
_ => (),
}
}
fn visit_terminator_before_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &State<FlatSet<Scalar>>,
terminator: &'mir Terminator<'tcx>,
location: Location,
) {
OperandCollector {
state,
visitor: self,
ecx: &mut results.analysis.ecx,
map: &results.analysis.map,
}
.visit_terminator(terminator, location);
}
}
impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
if let Some(value) = self.assignments.get(&location) {
match &mut statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
*rvalue = Rvalue::Use(self.make_operand(*value));
}
_ => bug!("found assignment info for non-assign statement"),
}
} else {
self.super_statement(statement, location);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
if let Some(value) = self.before_effect.get(&(location, *place)) {
*operand = self.make_operand(*value);
} else if !place.projection.is_empty() {
self.super_operand(operand, location)
}
}
Operand::Constant(_) => {}
}
}
fn process_projection_elem(
&mut self,
elem: PlaceElem<'tcx>,
location: Location,
) -> Option<PlaceElem<'tcx>> {
if let PlaceElem::Index(local) = elem {
let offset = self.before_effect.get(&(location, local.into()))?;
let offset = offset.try_to_scalar()?;
let offset = offset.to_target_usize(&self.tcx).discard_err()?;
let min_length = offset.checked_add(1)?;
Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false })
} else {
None
}
}
}
struct OperandCollector<'a, 'b, 'tcx> {
state: &'a State<FlatSet<Scalar>>,
visitor: &'a mut Collector<'b, 'tcx>,
ecx: &'a mut InterpCx<'tcx, DummyMachine>,
map: &'a Map<'tcx>,
}
impl<'tcx> Visitor<'tcx> for OperandCollector<'_, '_, 'tcx> {
fn visit_projection_elem(
&mut self,
_: PlaceRef<'tcx>,
elem: PlaceElem<'tcx>,
_: PlaceContext,
location: Location,
) {
if let PlaceElem::Index(local) = elem
&& let Some(value) =
self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map)
{
self.visitor.patch.before_effect.insert((location, local.into()), value);
}
}
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
if let Some(place) = operand.place() {
if let Some(value) =
self.visitor.try_make_constant(self.ecx, place, self.state, self.map)
{
self.visitor.patch.before_effect.insert((location, place), value);
} else if !place.projection.is_empty() {
// Try to propagate into `Index` projections.
self.super_operand(operand, location)
}
}
}
}