1
Fork 0
rust/src/libstd/sync/mpsc/mod.rs
Cobrand 57f998a460 Improve and fix mpsc documentation
Closes #37915

This commit enhances documentation with several links and
fixes an error in the `sync_channel` documentation as well:
`send` doesn't panic when the senders are all disconnected
2016-12-07 18:57:01 +01:00

2633 lines
82 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Multi-producer, single-consumer FIFO queue communication primitives.
//!
//! This module provides message-based communication over channels, concretely
//! defined among three types:
//!
//! * `Sender`
//! * `SyncSender`
//! * `Receiver`
//!
//! A `Sender` or `SyncSender` is used to send data to a `Receiver`. Both
//! senders are clone-able (multi-producer) such that many threads can send
//! simultaneously to one receiver (single-consumer).
//!
//! These channels come in two flavors:
//!
//! 1. An asynchronous, infinitely buffered channel. The `channel()` function
//! will return a `(Sender, Receiver)` tuple where all sends will be
//! **asynchronous** (they never block). The channel conceptually has an
//! infinite buffer.
//!
//! 2. A synchronous, bounded channel. The `sync_channel()` function will return
//! a `(SyncSender, Receiver)` tuple where the storage for pending messages
//! is a pre-allocated buffer of a fixed size. All sends will be
//! **synchronous** by blocking until there is buffer space available. Note
//! that a bound of 0 is allowed, causing the channel to become a
//! "rendezvous" channel where each sender atomically hands off a message to
//! a receiver.
//!
//! ## Disconnection
//!
//! The send and receive operations on channels will all return a `Result`
//! indicating whether the operation succeeded or not. An unsuccessful operation
//! is normally indicative of the other half of a channel having "hung up" by
//! being dropped in its corresponding thread.
//!
//! Once half of a channel has been deallocated, most operations can no longer
//! continue to make progress, so `Err` will be returned. Many applications will
//! continue to `unwrap()` the results returned from this module, instigating a
//! propagation of failure among threads if one unexpectedly dies.
//!
//! # Examples
//!
//! Simple usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a simple streaming channel
//! let (tx, rx) = channel();
//! thread::spawn(move|| {
//! tx.send(10).unwrap();
//! });
//! assert_eq!(rx.recv().unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = channel();
//! for i in 0..10 {
//! let tx = tx.clone();
//! thread::spawn(move|| {
//! tx.send(i).unwrap();
//! });
//! }
//!
//! for _ in 0..10 {
//! let j = rx.recv().unwrap();
//! assert!(0 <= j && j < 10);
//! }
//! ```
//!
//! Propagating panics:
//!
//! ```
//! use std::sync::mpsc::channel;
//!
//! // The call to recv() will return an error because the channel has already
//! // hung up (or been deallocated)
//! let (tx, rx) = channel::<i32>();
//! drop(tx);
//! assert!(rx.recv().is_err());
//! ```
//!
//! Synchronous channels:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::sync_channel;
//!
//! let (tx, rx) = sync_channel::<i32>(0);
//! thread::spawn(move|| {
//! // This will wait for the parent thread to start receiving
//! tx.send(53).unwrap();
//! });
//! rx.recv().unwrap();
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
// A description of how Rust's channel implementation works
//
// Channels are supposed to be the basic building block for all other
// concurrent primitives that are used in Rust. As a result, the channel type
// needs to be highly optimized, flexible, and broad enough for use everywhere.
//
// The choice of implementation of all channels is to be built on lock-free data
// structures. The channels themselves are then consequently also lock-free data
// structures. As always with lock-free code, this is a very "here be dragons"
// territory, especially because I'm unaware of any academic papers that have
// gone into great length about channels of these flavors.
//
// ## Flavors of channels
//
// From the perspective of a consumer of this library, there is only one flavor
// of channel. This channel can be used as a stream and cloned to allow multiple
// senders. Under the hood, however, there are actually three flavors of
// channels in play.
//
// * Flavor::Oneshots - these channels are highly optimized for the one-send use
// case. They contain as few atomics as possible and
// involve one and exactly one allocation.
// * Streams - these channels are optimized for the non-shared use case. They
// use a different concurrent queue that is more tailored for this
// use case. The initial allocation of this flavor of channel is not
// optimized.
// * Shared - this is the most general form of channel that this module offers,
// a channel with multiple senders. This type is as optimized as it
// can be, but the previous two types mentioned are much faster for
// their use-cases.
//
// ## Concurrent queues
//
// The basic idea of Rust's Sender/Receiver types is that send() never blocks,
// but recv() obviously blocks. This means that under the hood there must be
// some shared and concurrent queue holding all of the actual data.
//
// With two flavors of channels, two flavors of queues are also used. We have
// chosen to use queues from a well-known author that are abbreviated as SPSC
// and MPSC (single producer, single consumer and multiple producer, single
// consumer). SPSC queues are used for streams while MPSC queues are used for
// shared channels.
//
// ### SPSC optimizations
//
// The SPSC queue found online is essentially a linked list of nodes where one
// half of the nodes are the "queue of data" and the other half of nodes are a
// cache of unused nodes. The unused nodes are used such that an allocation is
// not required on every push() and a free doesn't need to happen on every
// pop().
//
// As found online, however, the cache of nodes is of an infinite size. This
// means that if a channel at one point in its life had 50k items in the queue,
// then the queue will always have the capacity for 50k items. I believed that
// this was an unnecessary limitation of the implementation, so I have altered
// the queue to optionally have a bound on the cache size.
//
// By default, streams will have an unbounded SPSC queue with a small-ish cache
// size. The hope is that the cache is still large enough to have very fast
// send() operations while not too large such that millions of channels can
// coexist at once.
//
// ### MPSC optimizations
//
// Right now the MPSC queue has not been optimized. Like the SPSC queue, it uses
// a linked list under the hood to earn its unboundedness, but I have not put
// forth much effort into having a cache of nodes similar to the SPSC queue.
//
// For now, I believe that this is "ok" because shared channels are not the most
// common type, but soon we may wish to revisit this queue choice and determine
// another candidate for backend storage of shared channels.
//
// ## Overview of the Implementation
//
// Now that there's a little background on the concurrent queues used, it's
// worth going into much more detail about the channels themselves. The basic
// pseudocode for a send/recv are:
//
//
// send(t) recv()
// queue.push(t) return if queue.pop()
// if increment() == -1 deschedule {
// wakeup() if decrement() > 0
// cancel_deschedule()
// }
// queue.pop()
//
// As mentioned before, there are no locks in this implementation, only atomic
// instructions are used.
//
// ### The internal atomic counter
//
// Every channel has a shared counter with each half to keep track of the size
// of the queue. This counter is used to abort descheduling by the receiver and
// to know when to wake up on the sending side.
//
// As seen in the pseudocode, senders will increment this count and receivers
// will decrement the count. The theory behind this is that if a sender sees a
// -1 count, it will wake up the receiver, and if the receiver sees a 1+ count,
// then it doesn't need to block.
//
// The recv() method has a beginning call to pop(), and if successful, it needs
// to decrement the count. It is a crucial implementation detail that this
// decrement does *not* happen to the shared counter. If this were the case,
// then it would be possible for the counter to be very negative when there were
// no receivers waiting, in which case the senders would have to determine when
// it was actually appropriate to wake up a receiver.
//
// Instead, the "steal count" is kept track of separately (not atomically
// because it's only used by receivers), and then the decrement() call when
// descheduling will lump in all of the recent steals into one large decrement.
//
// The implication of this is that if a sender sees a -1 count, then there's
// guaranteed to be a waiter waiting!
//
// ## Native Implementation
//
// A major goal of these channels is to work seamlessly on and off the runtime.
// All of the previous race conditions have been worded in terms of
// scheduler-isms (which is obviously not available without the runtime).
//
// For now, native usage of channels (off the runtime) will fall back onto
// mutexes/cond vars for descheduling/atomic decisions. The no-contention path
// is still entirely lock-free, the "deschedule" blocks above are surrounded by
// a mutex and the "wakeup" blocks involve grabbing a mutex and signaling on a
// condition variable.
//
// ## Select
//
// Being able to support selection over channels has greatly influenced this
// design, and not only does selection need to work inside the runtime, but also
// outside the runtime.
//
// The implementation is fairly straightforward. The goal of select() is not to
// return some data, but only to return which channel can receive data without
// blocking. The implementation is essentially the entire blocking procedure
// followed by an increment as soon as its woken up. The cancellation procedure
// involves an increment and swapping out of to_wake to acquire ownership of the
// thread to unblock.
//
// Sadly this current implementation requires multiple allocations, so I have
// seen the throughput of select() be much worse than it should be. I do not
// believe that there is anything fundamental that needs to change about these
// channels, however, in order to support a more efficient select().
//
// # Conclusion
//
// And now that you've seen all the races that I found and attempted to fix,
// here's the code for you to find some more!
use sync::Arc;
use error;
use fmt;
use mem;
use cell::UnsafeCell;
use time::{Duration, Instant};
#[unstable(feature = "mpsc_select", issue = "27800")]
pub use self::select::{Select, Handle};
use self::select::StartResult;
use self::select::StartResult::*;
use self::blocking::SignalToken;
mod blocking;
mod oneshot;
mod select;
mod shared;
mod stream;
mod sync;
mod mpsc_queue;
mod spsc_queue;
/// The receiving-half of Rust's channel type. This half can only be owned by
/// one thread
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Receiver<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The receiver port can be sent from place to place, so long as it
// is not used to receive non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Receiver<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Receiver<T> { }
/// An iterator over messages on a receiver, this iterator will block
/// whenever `next` is called, waiting for a new message, and `None` will be
/// returned when the corresponding channel has hung up.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An iterator that attempts to yield all pending values for a receiver.
/// `None` will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This Iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return `None`.
#[unstable(feature = "receiver_try_iter", issue = "34931")]
pub struct TryIter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An owning iterator over messages on a receiver, this iterator will block
/// whenever `next` is called, waiting for a new message, and `None` will be
/// returned when the corresponding channel has hung up.
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
pub struct IntoIter<T> {
rx: Receiver<T>
}
/// The sending-half of Rust's asynchronous channel type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sender<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The send port can be sent from place to place, so long as it
// is not used to send non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Sender<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Sender<T> { }
/// The sending-half of Rust's synchronous channel type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SyncSender<T> {
inner: Arc<UnsafeCell<sync::Packet<T>>>,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for SyncSender<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for SyncSender<T> {}
/// An error returned from the `send` function on channels.
///
/// A `send` operation can only fail if the receiving end of a channel is
/// disconnected, implying that the data could never be received. The error
/// contains the data being sent as a payload so it can be recovered.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub struct SendError<T>(#[stable(feature = "rust1", since = "1.0.0")] pub T);
/// An error returned from the `recv` function on a `Receiver`.
///
/// The `recv` operation can only fail if the sending half of a channel is
/// disconnected, implying that no further messages will ever be received.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RecvError;
/// This enumeration is the list of the possible reasons that `try_recv` could
/// not return data when called.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum TryRecvError {
/// This channel is currently empty, but the sender(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "rust1", since = "1.0.0")]
Empty,
/// This channel's sending half has become disconnected, and there will
/// never be any more data received on this channel
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected,
}
/// This enumeration is the list of possible errors that `recv_timeout` could
/// not return data when called.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub enum RecvTimeoutError {
/// This channel is currently empty, but the sender(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Timeout,
/// This channel's sending half has become disconnected, and there will
/// never be any more data received on this channel
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Disconnected,
}
/// This enumeration is the list of the possible error outcomes for the
/// `SyncSender::try_send` method.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TrySendError<T> {
/// The data could not be sent on the channel because it would require that
/// the callee block to send the data.
///
/// If this is a buffered channel, then the buffer is full at this time. If
/// this is not a buffered channel, then there is no receiver available to
/// acquire the data.
#[stable(feature = "rust1", since = "1.0.0")]
Full(#[stable(feature = "rust1", since = "1.0.0")] T),
/// This channel's receiving half has disconnected, so the data could not be
/// sent. The data is returned back to the callee in this case.
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected(#[stable(feature = "rust1", since = "1.0.0")] T),
}
enum Flavor<T> {
Oneshot(Arc<UnsafeCell<oneshot::Packet<T>>>),
Stream(Arc<UnsafeCell<stream::Packet<T>>>),
Shared(Arc<UnsafeCell<shared::Packet<T>>>),
Sync(Arc<UnsafeCell<sync::Packet<T>>>),
}
#[doc(hidden)]
trait UnsafeFlavor<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>>;
unsafe fn inner_mut(&self) -> &mut Flavor<T> {
&mut *self.inner_unsafe().get()
}
unsafe fn inner(&self) -> &Flavor<T> {
&*self.inner_unsafe().get()
}
}
impl<T> UnsafeFlavor<T> for Sender<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
impl<T> UnsafeFlavor<T> for Receiver<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
/// Creates a new asynchronous channel, returning the sender/receiver halves.
/// All data sent on the sender will become available on the receiver, and no
/// send will block the calling thread (this channel has an "infinite buffer").
///
/// If the [`Receiver`] is disconnected while trying to [`send()`] with the
/// [`Sender`], the [`send()`] method will return an error.
///
/// [`send()`]: ../../../std/sync/mpsc/struct.Sender.html#method.send
/// [`Sender`]: ../../../std/sync/mpsc/struct.Sender.html
/// [`Receiver`]: ../../../std/sync/mpsc/struct.Receiver.html
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// // tx is the sending half (tx for transmission), and rx is the receiving
/// // half (rx for receiving).
/// let (tx, rx) = channel();
///
/// // Spawn off an expensive computation
/// thread::spawn(move|| {
/// # fn expensive_computation() {}
/// tx.send(expensive_computation()).unwrap();
/// });
///
/// // Do some useful work for awhile
///
/// // Let's see what that answer was
/// println!("{:?}", rx.recv().unwrap());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
let a = Arc::new(UnsafeCell::new(oneshot::Packet::new()));
(Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a)))
}
/// Creates a new synchronous, bounded channel.
///
/// Like asynchronous channels, the [`Receiver`] will block until a message
/// becomes available. These channels differ greatly in the semantics of the
/// sender from asynchronous channels, however.
///
/// This channel has an internal buffer on which messages will be queued.
/// `bound` specifies the buffer size. When the internal buffer becomes full,
/// future sends will *block* waiting for the buffer to open up. Note that a
/// buffer size of 0 is valid, in which case this becomes "rendezvous channel"
/// where each [`send()`] will not return until a recv is paired with it.
///
/// Like asynchronous channels, if the [`Receiver`] is disconnected while
/// trying to [`send()`] with the [`SyncSender`], the [`send()`] method will
/// return an error.
///
/// [`send()`]: ../../../std/sync/mpsc/struct.SyncSender.html#method.send
/// [`SyncSender`]: ../../../std/sync/mpsc/struct.SyncSender.html
/// [`Receiver`]: ../../../std/sync/mpsc/struct.Receiver.html
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// let (tx, rx) = sync_channel(1);
///
/// // this returns immediately
/// tx.send(1).unwrap();
///
/// thread::spawn(move|| {
/// // this will block until the previous message has been received
/// tx.send(2).unwrap();
/// });
///
/// assert_eq!(rx.recv().unwrap(), 1);
/// assert_eq!(rx.recv().unwrap(), 2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>) {
let a = Arc::new(UnsafeCell::new(sync::Packet::new(bound)));
(SyncSender::new(a.clone()), Receiver::new(Flavor::Sync(a)))
}
////////////////////////////////////////////////////////////////////////////////
// Sender
////////////////////////////////////////////////////////////////////////////////
impl<T> Sender<T> {
fn new(inner: Flavor<T>) -> Sender<T> {
Sender {
inner: UnsafeCell::new(inner),
}
}
/// Attempts to send a value on this channel, returning it back if it could
/// not be sent.
///
/// A successful send occurs when it is determined that the other end of
/// the channel has not hung up already. An unsuccessful send would be one
/// where the corresponding receiver has already been deallocated. Note
/// that a return value of `Err` means that the data will never be
/// received, but a return value of `Ok` does *not* mean that the data
/// will be received. It is possible for the corresponding receiver to
/// hang up immediately after this function returns `Ok`.
///
/// This method will never block the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
///
/// // This send is always successful
/// tx.send(1).unwrap();
///
/// // This send will fail because the receiver is gone
/// drop(rx);
/// assert_eq!(tx.send(1).unwrap_err().0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
let (new_inner, ret) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
unsafe {
let p = p.get();
if !(*p).sent() {
return (*p).send(t).map_err(SendError);
} else {
let a =
Arc::new(UnsafeCell::new(stream::Packet::new()));
let rx = Receiver::new(Flavor::Stream(a.clone()));
match (*p).upgrade(rx) {
oneshot::UpSuccess => {
let ret = (*a.get()).send(t);
(a, ret)
}
oneshot::UpDisconnected => (a, Err(t)),
oneshot::UpWoke(token) => {
// This send cannot panic because the thread is
// asleep (we're looking at it), so the receiver
// can't go away.
(*a.get()).send(t).ok().unwrap();
token.signal();
(a, Ok(()))
}
}
}
}
}
Flavor::Stream(ref p) => return unsafe {
(*p.get()).send(t).map_err(SendError)
},
Flavor::Shared(ref p) => return unsafe {
(*p.get()).send(t).map_err(SendError)
},
Flavor::Sync(..) => unreachable!(),
};
unsafe {
let tmp = Sender::new(Flavor::Stream(new_inner));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
ret.map_err(SendError)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Sender<T> {
fn clone(&self) -> Sender<T> {
let (packet, sleeper, guard) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
let a = Arc::new(UnsafeCell::new(shared::Packet::new()));
unsafe {
let guard = (*a.get()).postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
match (*p.get()).upgrade(rx) {
oneshot::UpSuccess |
oneshot::UpDisconnected => (a, None, guard),
oneshot::UpWoke(task) => (a, Some(task), guard)
}
}
}
Flavor::Stream(ref p) => {
let a = Arc::new(UnsafeCell::new(shared::Packet::new()));
unsafe {
let guard = (*a.get()).postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
match (*p.get()).upgrade(rx) {
stream::UpSuccess |
stream::UpDisconnected => (a, None, guard),
stream::UpWoke(task) => (a, Some(task), guard),
}
}
}
Flavor::Shared(ref p) => {
unsafe { (*p.get()).clone_chan(); }
return Sender::new(Flavor::Shared(p.clone()));
}
Flavor::Sync(..) => unreachable!(),
};
unsafe {
(*packet.get()).inherit_blocker(sleeper, guard);
let tmp = Sender::new(Flavor::Shared(packet.clone()));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
Sender::new(Flavor::Shared(packet))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
match *unsafe { self.inner_mut() } {
Flavor::Oneshot(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Stream(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Shared(ref mut p) => unsafe { (*p.get()).drop_chan(); },
Flavor::Sync(..) => unreachable!(),
}
}
}
#[stable(feature = "mpsc_debug", since = "1.7.0")]
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Sender {{ .. }}")
}
}
////////////////////////////////////////////////////////////////////////////////
// SyncSender
////////////////////////////////////////////////////////////////////////////////
impl<T> SyncSender<T> {
fn new(inner: Arc<UnsafeCell<sync::Packet<T>>>) -> SyncSender<T> {
SyncSender { inner: inner }
}
/// Sends a value on this synchronous channel.
///
/// This function will *block* until space in the internal buffer becomes
/// available or a receiver is available to hand off the message to.
///
/// Note that a successful send does *not* guarantee that the receiver will
/// ever see the data if there is a buffer on this channel. Items may be
/// enqueued in the internal buffer for the receiver to receive at a later
/// time. If the buffer size is 0, however, it can be guaranteed that the
/// receiver has indeed received the data if this function returns success.
///
/// This function will never panic, but it may return `Err` if the
/// `Receiver` has disconnected and is no longer able to receive
/// information.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
unsafe { (*self.inner.get()).send(t).map_err(SendError) }
}
/// Attempts to send a value on this channel without blocking.
///
/// This method differs from `send` by returning immediately if the
/// channel's buffer is full or no receiver is waiting to acquire some
/// data. Compared with `send`, this function has two failure cases
/// instead of one (one for disconnection, one for a full buffer).
///
/// See `SyncSender::send` for notes about guarantees of whether the
/// receiver has received the data or not if this function is successful.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
unsafe { (*self.inner.get()).try_send(t) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for SyncSender<T> {
fn clone(&self) -> SyncSender<T> {
unsafe { (*self.inner.get()).clone_chan(); }
SyncSender::new(self.inner.clone())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for SyncSender<T> {
fn drop(&mut self) {
unsafe { (*self.inner.get()).drop_chan(); }
}
}
#[stable(feature = "mpsc_debug", since = "1.7.0")]
impl<T> fmt::Debug for SyncSender<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SyncSender {{ .. }}")
}
}
////////////////////////////////////////////////////////////////////////////////
// Receiver
////////////////////////////////////////////////////////////////////////////////
impl<T> Receiver<T> {
fn new(inner: Flavor<T>) -> Receiver<T> {
Receiver { inner: UnsafeCell::new(inner) }
}
/// Attempts to return a pending value on this receiver without blocking
///
/// This method will never block the caller in order to wait for data to
/// become available. Instead, this will always return immediately with a
/// possible option of pending data on the channel.
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// block on a receiver.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_recv(&self) -> Result<T, TryRecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(oneshot::Empty) => return Err(TryRecvError::Empty),
Err(oneshot::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
Err(oneshot::Upgraded(rx)) => rx,
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(stream::Empty) => return Err(TryRecvError::Empty),
Err(stream::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
Err(stream::Upgraded(rx)) => rx,
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(shared::Empty) => return Err(TryRecvError::Empty),
Err(shared::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
}
}
Flavor::Sync(ref p) => {
match unsafe { (*p.get()).try_recv() } {
Ok(t) => return Ok(t),
Err(sync::Empty) => return Err(TryRecvError::Empty),
Err(sync::Disconnected) => {
return Err(TryRecvError::Disconnected)
}
}
}
};
unsafe {
mem::swap(self.inner_mut(),
new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding `Sender`, then this receiver will wake up and
/// return that message.
///
/// If the corresponding `Sender` has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return `Err` to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// ```
///
/// Buffering behavior:
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
/// use std::sync::mpsc::RecvError;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// drop(send);
/// });
///
/// // wait for the thread to join so we ensure the sender is dropped
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// assert_eq!(Ok(2), recv.recv());
/// assert_eq!(Ok(3), recv.recv());
/// assert_eq!(Err(RecvError), recv.recv());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn recv(&self) -> Result<T, RecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(RecvError),
Err(oneshot::Upgraded(rx)) => rx,
Err(oneshot::Empty) => unreachable!(),
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(RecvError),
Err(stream::Upgraded(rx)) => rx,
Err(stream::Empty) => unreachable!(),
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).recv(None) } {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(RecvError),
Err(shared::Empty) => unreachable!(),
}
}
Flavor::Sync(ref p) => return unsafe {
(*p.get()).recv(None).map_err(|_| RecvError)
}
};
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if it waits more than `timeout`.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding `Sender`, then this receiver will wake up and
/// return that message.
///
/// If the corresponding `Sender` has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return `Err` to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```no_run
/// use std::sync::mpsc::{self, RecvTimeoutError};
/// use std::time::Duration;
///
/// let (send, recv) = mpsc::channel::<()>();
///
/// let timeout = Duration::from_millis(100);
/// assert_eq!(Err(RecvTimeoutError::Timeout), recv.recv_timeout(timeout));
/// ```
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
// Do an optimistic try_recv to avoid the performance impact of
// Instant::now() in the full-channel case.
match self.try_recv() {
Ok(result)
=> Ok(result),
Err(TryRecvError::Disconnected)
=> Err(RecvTimeoutError::Disconnected),
Err(TryRecvError::Empty)
=> self.recv_max_until(Instant::now() + timeout)
}
}
fn recv_max_until(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
use self::RecvTimeoutError::*;
loop {
let port_or_empty = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(Disconnected),
Err(oneshot::Upgraded(rx)) => Some(rx),
Err(oneshot::Empty) => None,
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(Disconnected),
Err(stream::Upgraded(rx)) => Some(rx),
Err(stream::Empty) => None,
}
}
Flavor::Shared(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(Disconnected),
Err(shared::Empty) => None,
}
}
Flavor::Sync(ref p) => {
match unsafe { (*p.get()).recv(Some(deadline)) } {
Ok(t) => return Ok(t),
Err(sync::Disconnected) => return Err(Disconnected),
Err(sync::Empty) => None,
}
}
};
if let Some(new_port) = port_or_empty {
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
// If we're already passed the deadline, and we're here without
// data, return a timeout, else try again.
if Instant::now() >= deadline {
return Err(Timeout);
}
}
}
/// Returns an iterator that will block waiting for messages, but never
/// `panic!`. It will return `None` when the channel has hung up.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter { rx: self }
}
/// Returns an iterator that will attempt to yield all pending values.
/// It will return `None` if there are no more pending values or if the
/// channel has hung up. The iterator will never `panic!` or block the
/// user by waiting for values.
#[unstable(feature = "receiver_try_iter", issue = "34931")]
pub fn try_iter(&self) -> TryIter<T> {
TryIter { rx: self }
}
}
impl<T> select::Packet for Receiver<T> {
fn can_recv(&self) -> bool {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).can_recv() } {
Ok(ret) => return ret,
Err(upgrade) => upgrade,
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).can_recv() } {
Ok(ret) => return ret,
Err(upgrade) => upgrade,
}
}
Flavor::Shared(ref p) => {
return unsafe { (*p.get()).can_recv() };
}
Flavor::Sync(ref p) => {
return unsafe { (*p.get()).can_recv() };
}
};
unsafe {
mem::swap(self.inner_mut(),
new_port.inner_mut());
}
}
}
fn start_selection(&self, mut token: SignalToken) -> StartResult {
loop {
let (t, new_port) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
match unsafe { (*p.get()).start_selection(token) } {
oneshot::SelSuccess => return Installed,
oneshot::SelCanceled => return Abort,
oneshot::SelUpgraded(t, rx) => (t, rx),
}
}
Flavor::Stream(ref p) => {
match unsafe { (*p.get()).start_selection(token) } {
stream::SelSuccess => return Installed,
stream::SelCanceled => return Abort,
stream::SelUpgraded(t, rx) => (t, rx),
}
}
Flavor::Shared(ref p) => {
return unsafe { (*p.get()).start_selection(token) };
}
Flavor::Sync(ref p) => {
return unsafe { (*p.get()).start_selection(token) };
}
};
token = t;
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
}
fn abort_selection(&self) -> bool {
let mut was_upgrade = false;
loop {
let result = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => unsafe { (*p.get()).abort_selection() },
Flavor::Stream(ref p) => unsafe {
(*p.get()).abort_selection(was_upgrade)
},
Flavor::Shared(ref p) => return unsafe {
(*p.get()).abort_selection(was_upgrade)
},
Flavor::Sync(ref p) => return unsafe {
(*p.get()).abort_selection()
},
};
let new_port = match result { Ok(b) => return b, Err(p) => p };
was_upgrade = true;
unsafe {
mem::swap(self.inner_mut(),
new_port.inner_mut());
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.rx.recv().ok() }
}
#[unstable(feature = "receiver_try_iter", issue = "34931")]
impl<'a, T> Iterator for TryIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.rx.try_recv().ok() }
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<'a, T> IntoIterator for &'a Receiver<T> {
type Item = T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> { self.iter() }
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.rx.recv().ok() }
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl <T> IntoIterator for Receiver<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter { rx: self }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
match *unsafe { self.inner_mut() } {
Flavor::Oneshot(ref mut p) => unsafe { (*p.get()).drop_port(); },
Flavor::Stream(ref mut p) => unsafe { (*p.get()).drop_port(); },
Flavor::Shared(ref mut p) => unsafe { (*p.get()).drop_port(); },
Flavor::Sync(ref mut p) => unsafe { (*p.get()).drop_port(); },
}
}
}
#[stable(feature = "mpsc_debug", since = "1.7.0")]
impl<T> fmt::Debug for Receiver<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Receiver {{ .. }}")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
"SendError(..)".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
"sending on a closed channel".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for SendError<T> {
fn description(&self) -> &str {
"sending on a closed channel"
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TrySendError::Full(..) => "Full(..)".fmt(f),
TrySendError::Disconnected(..) => "Disconnected(..)".fmt(f),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TrySendError::Full(..) => {
"sending on a full channel".fmt(f)
}
TrySendError::Disconnected(..) => {
"sending on a closed channel".fmt(f)
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for TrySendError<T> {
fn description(&self) -> &str {
match *self {
TrySendError::Full(..) => {
"sending on a full channel"
}
TrySendError::Disconnected(..) => {
"sending on a closed channel"
}
}
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for RecvError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
"receiving on a closed channel".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for RecvError {
fn description(&self) -> &str {
"receiving on a closed channel"
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for TryRecvError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TryRecvError::Empty => {
"receiving on an empty channel".fmt(f)
}
TryRecvError::Disconnected => {
"receiving on a closed channel".fmt(f)
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for TryRecvError {
fn description(&self) -> &str {
match *self {
TryRecvError::Empty => {
"receiving on an empty channel"
}
TryRecvError::Disconnected => {
"receiving on a closed channel"
}
}
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
#[stable(feature = "mpsc_recv_timeout_error", since = "1.14.0")]
impl fmt::Display for RecvTimeoutError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
RecvTimeoutError::Timeout => {
"timed out waiting on channel".fmt(f)
}
RecvTimeoutError::Disconnected => {
"channel is empty and sending half is closed".fmt(f)
}
}
}
}
#[stable(feature = "mpsc_recv_timeout_error", since = "1.14.0")]
impl error::Error for RecvTimeoutError {
fn description(&self) -> &str {
match *self {
RecvTimeoutError::Timeout => {
"timed out waiting on channel"
}
RecvTimeoutError::Disconnected => {
"channel is empty and sending half is closed"
}
}
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use env;
use super::*;
use thread;
use time::{Duration, Instant};
pub fn stress_factor() -> usize {
match env::var("RUST_TEST_STRESS") {
Ok(val) => val.parse().unwrap(),
Err(..) => 1,
}
}
#[test]
fn smoke() {
let (tx, rx) = channel::<i32>();
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn drop_full() {
let (tx, _rx) = channel::<Box<isize>>();
tx.send(box 1).unwrap();
}
#[test]
fn drop_full_shared() {
let (tx, _rx) = channel::<Box<isize>>();
drop(tx.clone());
drop(tx.clone());
tx.send(box 1).unwrap();
}
#[test]
fn smoke_shared() {
let (tx, rx) = channel::<i32>();
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
let tx = tx.clone();
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn smoke_threads() {
let (tx, rx) = channel::<i32>();
let _t = thread::spawn(move|| {
tx.send(1).unwrap();
});
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn smoke_port_gone() {
let (tx, rx) = channel::<i32>();
drop(rx);
assert!(tx.send(1).is_err());
}
#[test]
fn smoke_shared_port_gone() {
let (tx, rx) = channel::<i32>();
drop(rx);
assert!(tx.send(1).is_err())
}
#[test]
fn smoke_shared_port_gone2() {
let (tx, rx) = channel::<i32>();
drop(rx);
let tx2 = tx.clone();
drop(tx);
assert!(tx2.send(1).is_err());
}
#[test]
fn port_gone_concurrent() {
let (tx, rx) = channel::<i32>();
let _t = thread::spawn(move|| {
rx.recv().unwrap();
});
while tx.send(1).is_ok() {}
}
#[test]
fn port_gone_concurrent_shared() {
let (tx, rx) = channel::<i32>();
let tx2 = tx.clone();
let _t = thread::spawn(move|| {
rx.recv().unwrap();
});
while tx.send(1).is_ok() && tx2.send(1).is_ok() {}
}
#[test]
fn smoke_chan_gone() {
let (tx, rx) = channel::<i32>();
drop(tx);
assert!(rx.recv().is_err());
}
#[test]
fn smoke_chan_gone_shared() {
let (tx, rx) = channel::<()>();
let tx2 = tx.clone();
drop(tx);
drop(tx2);
assert!(rx.recv().is_err());
}
#[test]
fn chan_gone_concurrent() {
let (tx, rx) = channel::<i32>();
let _t = thread::spawn(move|| {
tx.send(1).unwrap();
tx.send(1).unwrap();
});
while rx.recv().is_ok() {}
}
#[test]
fn stress() {
let (tx, rx) = channel::<i32>();
let t = thread::spawn(move|| {
for _ in 0..10000 { tx.send(1).unwrap(); }
});
for _ in 0..10000 {
assert_eq!(rx.recv().unwrap(), 1);
}
t.join().ok().unwrap();
}
#[test]
fn stress_shared() {
const AMT: u32 = 10000;
const NTHREADS: u32 = 8;
let (tx, rx) = channel::<i32>();
let t = thread::spawn(move|| {
for _ in 0..AMT * NTHREADS {
assert_eq!(rx.recv().unwrap(), 1);
}
match rx.try_recv() {
Ok(..) => panic!(),
_ => {}
}
});
for _ in 0..NTHREADS {
let tx = tx.clone();
thread::spawn(move|| {
for _ in 0..AMT { tx.send(1).unwrap(); }
});
}
drop(tx);
t.join().ok().unwrap();
}
#[test]
fn send_from_outside_runtime() {
let (tx1, rx1) = channel::<()>();
let (tx2, rx2) = channel::<i32>();
let t1 = thread::spawn(move|| {
tx1.send(()).unwrap();
for _ in 0..40 {
assert_eq!(rx2.recv().unwrap(), 1);
}
});
rx1.recv().unwrap();
let t2 = thread::spawn(move|| {
for _ in 0..40 {
tx2.send(1).unwrap();
}
});
t1.join().ok().unwrap();
t2.join().ok().unwrap();
}
#[test]
fn recv_from_outside_runtime() {
let (tx, rx) = channel::<i32>();
let t = thread::spawn(move|| {
for _ in 0..40 {
assert_eq!(rx.recv().unwrap(), 1);
}
});
for _ in 0..40 {
tx.send(1).unwrap();
}
t.join().ok().unwrap();
}
#[test]
fn no_runtime() {
let (tx1, rx1) = channel::<i32>();
let (tx2, rx2) = channel::<i32>();
let t1 = thread::spawn(move|| {
assert_eq!(rx1.recv().unwrap(), 1);
tx2.send(2).unwrap();
});
let t2 = thread::spawn(move|| {
tx1.send(1).unwrap();
assert_eq!(rx2.recv().unwrap(), 2);
});
t1.join().ok().unwrap();
t2.join().ok().unwrap();
}
#[test]
fn oneshot_single_thread_close_port_first() {
// Simple test of closing without sending
let (_tx, rx) = channel::<i32>();
drop(rx);
}
#[test]
fn oneshot_single_thread_close_chan_first() {
// Simple test of closing without sending
let (tx, _rx) = channel::<i32>();
drop(tx);
}
#[test]
fn oneshot_single_thread_send_port_close() {
// Testing that the sender cleans up the payload if receiver is closed
let (tx, rx) = channel::<Box<i32>>();
drop(rx);
assert!(tx.send(box 0).is_err());
}
#[test]
fn oneshot_single_thread_recv_chan_close() {
// Receiving on a closed chan will panic
let res = thread::spawn(move|| {
let (tx, rx) = channel::<i32>();
drop(tx);
rx.recv().unwrap();
}).join();
// What is our res?
assert!(res.is_err());
}
#[test]
fn oneshot_single_thread_send_then_recv() {
let (tx, rx) = channel::<Box<i32>>();
tx.send(box 10).unwrap();
assert!(rx.recv().unwrap() == box 10);
}
#[test]
fn oneshot_single_thread_try_send_open() {
let (tx, rx) = channel::<i32>();
assert!(tx.send(10).is_ok());
assert!(rx.recv().unwrap() == 10);
}
#[test]
fn oneshot_single_thread_try_send_closed() {
let (tx, rx) = channel::<i32>();
drop(rx);
assert!(tx.send(10).is_err());
}
#[test]
fn oneshot_single_thread_try_recv_open() {
let (tx, rx) = channel::<i32>();
tx.send(10).unwrap();
assert!(rx.recv() == Ok(10));
}
#[test]
fn oneshot_single_thread_try_recv_closed() {
let (tx, rx) = channel::<i32>();
drop(tx);
assert!(rx.recv().is_err());
}
#[test]
fn oneshot_single_thread_peek_data() {
let (tx, rx) = channel::<i32>();
assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
tx.send(10).unwrap();
assert_eq!(rx.try_recv(), Ok(10));
}
#[test]
fn oneshot_single_thread_peek_close() {
let (tx, rx) = channel::<i32>();
drop(tx);
assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
}
#[test]
fn oneshot_single_thread_peek_open() {
let (_tx, rx) = channel::<i32>();
assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
}
#[test]
fn oneshot_multi_task_recv_then_send() {
let (tx, rx) = channel::<Box<i32>>();
let _t = thread::spawn(move|| {
assert!(rx.recv().unwrap() == box 10);
});
tx.send(box 10).unwrap();
}
#[test]
fn oneshot_multi_task_recv_then_close() {
let (tx, rx) = channel::<Box<i32>>();
let _t = thread::spawn(move|| {
drop(tx);
});
let res = thread::spawn(move|| {
assert!(rx.recv().unwrap() == box 10);
}).join();
assert!(res.is_err());
}
#[test]
fn oneshot_multi_thread_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = channel::<i32>();
let _t = thread::spawn(move|| {
drop(rx);
});
drop(tx);
}
}
#[test]
fn oneshot_multi_thread_send_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = channel::<i32>();
let _t = thread::spawn(move|| {
drop(rx);
});
let _ = thread::spawn(move|| {
tx.send(1).unwrap();
}).join();
}
}
#[test]
fn oneshot_multi_thread_recv_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = channel::<i32>();
thread::spawn(move|| {
let res = thread::spawn(move|| {
rx.recv().unwrap();
}).join();
assert!(res.is_err());
});
let _t = thread::spawn(move|| {
thread::spawn(move|| {
drop(tx);
});
});
}
}
#[test]
fn oneshot_multi_thread_send_recv_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = channel::<Box<isize>>();
let _t = thread::spawn(move|| {
tx.send(box 10).unwrap();
});
assert!(rx.recv().unwrap() == box 10);
}
}
#[test]
fn stream_send_recv_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = channel();
send(tx, 0);
recv(rx, 0);
fn send(tx: Sender<Box<i32>>, i: i32) {
if i == 10 { return }
thread::spawn(move|| {
tx.send(box i).unwrap();
send(tx, i + 1);
});
}
fn recv(rx: Receiver<Box<i32>>, i: i32) {
if i == 10 { return }
thread::spawn(move|| {
assert!(rx.recv().unwrap() == box i);
recv(rx, i + 1);
});
}
}
}
#[test]
fn oneshot_single_thread_recv_timeout() {
let (tx, rx) = channel();
tx.send(()).unwrap();
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Err(RecvTimeoutError::Timeout));
tx.send(()).unwrap();
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
}
#[test]
fn stress_recv_timeout_two_threads() {
let (tx, rx) = channel();
let stress = stress_factor() + 100;
let timeout = Duration::from_millis(100);
thread::spawn(move || {
for i in 0..stress {
if i % 2 == 0 {
thread::sleep(timeout * 2);
}
tx.send(1usize).unwrap();
}
});
let mut recv_count = 0;
loop {
match rx.recv_timeout(timeout) {
Ok(n) => {
assert_eq!(n, 1usize);
recv_count += 1;
}
Err(RecvTimeoutError::Timeout) => continue,
Err(RecvTimeoutError::Disconnected) => break,
}
}
assert_eq!(recv_count, stress);
}
#[test]
fn recv_timeout_upgrade() {
let (tx, rx) = channel::<()>();
let timeout = Duration::from_millis(1);
let _tx_clone = tx.clone();
let start = Instant::now();
assert_eq!(rx.recv_timeout(timeout), Err(RecvTimeoutError::Timeout));
assert!(Instant::now() >= start + timeout);
}
#[test]
fn stress_recv_timeout_shared() {
let (tx, rx) = channel();
let stress = stress_factor() + 100;
for i in 0..stress {
let tx = tx.clone();
thread::spawn(move || {
thread::sleep(Duration::from_millis(i as u64 * 10));
tx.send(1usize).unwrap();
});
}
drop(tx);
let mut recv_count = 0;
loop {
match rx.recv_timeout(Duration::from_millis(10)) {
Ok(n) => {
assert_eq!(n, 1usize);
recv_count += 1;
}
Err(RecvTimeoutError::Timeout) => continue,
Err(RecvTimeoutError::Disconnected) => break,
}
}
assert_eq!(recv_count, stress);
}
#[test]
fn recv_a_lot() {
// Regression test that we don't run out of stack in scheduler context
let (tx, rx) = channel();
for _ in 0..10000 { tx.send(()).unwrap(); }
for _ in 0..10000 { rx.recv().unwrap(); }
}
#[test]
fn shared_recv_timeout() {
let (tx, rx) = channel();
let total = 5;
for _ in 0..total {
let tx = tx.clone();
thread::spawn(move|| {
tx.send(()).unwrap();
});
}
for _ in 0..total { rx.recv().unwrap(); }
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Err(RecvTimeoutError::Timeout));
tx.send(()).unwrap();
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(()));
}
#[test]
fn shared_chan_stress() {
let (tx, rx) = channel();
let total = stress_factor() + 100;
for _ in 0..total {
let tx = tx.clone();
thread::spawn(move|| {
tx.send(()).unwrap();
});
}
for _ in 0..total {
rx.recv().unwrap();
}
}
#[test]
fn test_nested_recv_iter() {
let (tx, rx) = channel::<i32>();
let (total_tx, total_rx) = channel::<i32>();
let _t = thread::spawn(move|| {
let mut acc = 0;
for x in rx.iter() {
acc += x;
}
total_tx.send(acc).unwrap();
});
tx.send(3).unwrap();
tx.send(1).unwrap();
tx.send(2).unwrap();
drop(tx);
assert_eq!(total_rx.recv().unwrap(), 6);
}
#[test]
fn test_recv_iter_break() {
let (tx, rx) = channel::<i32>();
let (count_tx, count_rx) = channel();
let _t = thread::spawn(move|| {
let mut count = 0;
for x in rx.iter() {
if count >= 3 {
break;
} else {
count += x;
}
}
count_tx.send(count).unwrap();
});
tx.send(2).unwrap();
tx.send(2).unwrap();
tx.send(2).unwrap();
let _ = tx.send(2);
drop(tx);
assert_eq!(count_rx.recv().unwrap(), 4);
}
#[test]
fn test_recv_try_iter() {
let (request_tx, request_rx) = channel();
let (response_tx, response_rx) = channel();
// Request `x`s until we have `6`.
let t = thread::spawn(move|| {
let mut count = 0;
loop {
for x in response_rx.try_iter() {
count += x;
if count == 6 {
return count;
}
}
request_tx.send(()).unwrap();
}
});
for _ in request_rx.iter() {
if response_tx.send(2).is_err() {
break;
}
}
assert_eq!(t.join().unwrap(), 6);
}
#[test]
fn test_recv_into_iter_owned() {
let mut iter = {
let (tx, rx) = channel::<i32>();
tx.send(1).unwrap();
tx.send(2).unwrap();
rx.into_iter()
};
assert_eq!(iter.next().unwrap(), 1);
assert_eq!(iter.next().unwrap(), 2);
assert_eq!(iter.next().is_none(), true);
}
#[test]
fn test_recv_into_iter_borrowed() {
let (tx, rx) = channel::<i32>();
tx.send(1).unwrap();
tx.send(2).unwrap();
drop(tx);
let mut iter = (&rx).into_iter();
assert_eq!(iter.next().unwrap(), 1);
assert_eq!(iter.next().unwrap(), 2);
assert_eq!(iter.next().is_none(), true);
}
#[test]
fn try_recv_states() {
let (tx1, rx1) = channel::<i32>();
let (tx2, rx2) = channel::<()>();
let (tx3, rx3) = channel::<()>();
let _t = thread::spawn(move|| {
rx2.recv().unwrap();
tx1.send(1).unwrap();
tx3.send(()).unwrap();
rx2.recv().unwrap();
drop(tx1);
tx3.send(()).unwrap();
});
assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
tx2.send(()).unwrap();
rx3.recv().unwrap();
assert_eq!(rx1.try_recv(), Ok(1));
assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
tx2.send(()).unwrap();
rx3.recv().unwrap();
assert_eq!(rx1.try_recv(), Err(TryRecvError::Disconnected));
}
// This bug used to end up in a livelock inside of the Receiver destructor
// because the internal state of the Shared packet was corrupted
#[test]
fn destroy_upgraded_shared_port_when_sender_still_active() {
let (tx, rx) = channel();
let (tx2, rx2) = channel();
let _t = thread::spawn(move|| {
rx.recv().unwrap(); // wait on a oneshot
drop(rx); // destroy a shared
tx2.send(()).unwrap();
});
// make sure the other thread has gone to sleep
for _ in 0..5000 { thread::yield_now(); }
// upgrade to a shared chan and send a message
let t = tx.clone();
drop(tx);
t.send(()).unwrap();
// wait for the child thread to exit before we exit
rx2.recv().unwrap();
}
#[test]
fn issue_32114() {
let (tx, _) = channel();
let _ = tx.send(123);
assert_eq!(tx.send(123), Err(SendError(123)));
}
}
#[cfg(all(test, not(target_os = "emscripten")))]
mod sync_tests {
use env;
use thread;
use super::*;
use time::Duration;
pub fn stress_factor() -> usize {
match env::var("RUST_TEST_STRESS") {
Ok(val) => val.parse().unwrap(),
Err(..) => 1,
}
}
#[test]
fn smoke() {
let (tx, rx) = sync_channel::<i32>(1);
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn drop_full() {
let (tx, _rx) = sync_channel::<Box<isize>>(1);
tx.send(box 1).unwrap();
}
#[test]
fn smoke_shared() {
let (tx, rx) = sync_channel::<i32>(1);
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
let tx = tx.clone();
tx.send(1).unwrap();
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn recv_timeout() {
let (tx, rx) = sync_channel::<i32>(1);
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Err(RecvTimeoutError::Timeout));
tx.send(1).unwrap();
assert_eq!(rx.recv_timeout(Duration::from_millis(1)), Ok(1));
}
#[test]
fn smoke_threads() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
tx.send(1).unwrap();
});
assert_eq!(rx.recv().unwrap(), 1);
}
#[test]
fn smoke_port_gone() {
let (tx, rx) = sync_channel::<i32>(0);
drop(rx);
assert!(tx.send(1).is_err());
}
#[test]
fn smoke_shared_port_gone2() {
let (tx, rx) = sync_channel::<i32>(0);
drop(rx);
let tx2 = tx.clone();
drop(tx);
assert!(tx2.send(1).is_err());
}
#[test]
fn port_gone_concurrent() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
rx.recv().unwrap();
});
while tx.send(1).is_ok() {}
}
#[test]
fn port_gone_concurrent_shared() {
let (tx, rx) = sync_channel::<i32>(0);
let tx2 = tx.clone();
let _t = thread::spawn(move|| {
rx.recv().unwrap();
});
while tx.send(1).is_ok() && tx2.send(1).is_ok() {}
}
#[test]
fn smoke_chan_gone() {
let (tx, rx) = sync_channel::<i32>(0);
drop(tx);
assert!(rx.recv().is_err());
}
#[test]
fn smoke_chan_gone_shared() {
let (tx, rx) = sync_channel::<()>(0);
let tx2 = tx.clone();
drop(tx);
drop(tx2);
assert!(rx.recv().is_err());
}
#[test]
fn chan_gone_concurrent() {
let (tx, rx) = sync_channel::<i32>(0);
thread::spawn(move|| {
tx.send(1).unwrap();
tx.send(1).unwrap();
});
while rx.recv().is_ok() {}
}
#[test]
fn stress() {
let (tx, rx) = sync_channel::<i32>(0);
thread::spawn(move|| {
for _ in 0..10000 { tx.send(1).unwrap(); }
});
for _ in 0..10000 {
assert_eq!(rx.recv().unwrap(), 1);
}
}
#[test]
fn stress_recv_timeout_two_threads() {
let (tx, rx) = sync_channel::<i32>(0);
thread::spawn(move|| {
for _ in 0..10000 { tx.send(1).unwrap(); }
});
let mut recv_count = 0;
loop {
match rx.recv_timeout(Duration::from_millis(1)) {
Ok(v) => {
assert_eq!(v, 1);
recv_count += 1;
},
Err(RecvTimeoutError::Timeout) => continue,
Err(RecvTimeoutError::Disconnected) => break,
}
}
assert_eq!(recv_count, 10000);
}
#[test]
fn stress_recv_timeout_shared() {
const AMT: u32 = 1000;
const NTHREADS: u32 = 8;
let (tx, rx) = sync_channel::<i32>(0);
let (dtx, drx) = sync_channel::<()>(0);
thread::spawn(move|| {
let mut recv_count = 0;
loop {
match rx.recv_timeout(Duration::from_millis(10)) {
Ok(v) => {
assert_eq!(v, 1);
recv_count += 1;
},
Err(RecvTimeoutError::Timeout) => continue,
Err(RecvTimeoutError::Disconnected) => break,
}
}
assert_eq!(recv_count, AMT * NTHREADS);
assert!(rx.try_recv().is_err());
dtx.send(()).unwrap();
});
for _ in 0..NTHREADS {
let tx = tx.clone();
thread::spawn(move|| {
for _ in 0..AMT { tx.send(1).unwrap(); }
});
}
drop(tx);
drx.recv().unwrap();
}
#[test]
fn stress_shared() {
const AMT: u32 = 1000;
const NTHREADS: u32 = 8;
let (tx, rx) = sync_channel::<i32>(0);
let (dtx, drx) = sync_channel::<()>(0);
thread::spawn(move|| {
for _ in 0..AMT * NTHREADS {
assert_eq!(rx.recv().unwrap(), 1);
}
match rx.try_recv() {
Ok(..) => panic!(),
_ => {}
}
dtx.send(()).unwrap();
});
for _ in 0..NTHREADS {
let tx = tx.clone();
thread::spawn(move|| {
for _ in 0..AMT { tx.send(1).unwrap(); }
});
}
drop(tx);
drx.recv().unwrap();
}
#[test]
fn oneshot_single_thread_close_port_first() {
// Simple test of closing without sending
let (_tx, rx) = sync_channel::<i32>(0);
drop(rx);
}
#[test]
fn oneshot_single_thread_close_chan_first() {
// Simple test of closing without sending
let (tx, _rx) = sync_channel::<i32>(0);
drop(tx);
}
#[test]
fn oneshot_single_thread_send_port_close() {
// Testing that the sender cleans up the payload if receiver is closed
let (tx, rx) = sync_channel::<Box<i32>>(0);
drop(rx);
assert!(tx.send(box 0).is_err());
}
#[test]
fn oneshot_single_thread_recv_chan_close() {
// Receiving on a closed chan will panic
let res = thread::spawn(move|| {
let (tx, rx) = sync_channel::<i32>(0);
drop(tx);
rx.recv().unwrap();
}).join();
// What is our res?
assert!(res.is_err());
}
#[test]
fn oneshot_single_thread_send_then_recv() {
let (tx, rx) = sync_channel::<Box<i32>>(1);
tx.send(box 10).unwrap();
assert!(rx.recv().unwrap() == box 10);
}
#[test]
fn oneshot_single_thread_try_send_open() {
let (tx, rx) = sync_channel::<i32>(1);
assert_eq!(tx.try_send(10), Ok(()));
assert!(rx.recv().unwrap() == 10);
}
#[test]
fn oneshot_single_thread_try_send_closed() {
let (tx, rx) = sync_channel::<i32>(0);
drop(rx);
assert_eq!(tx.try_send(10), Err(TrySendError::Disconnected(10)));
}
#[test]
fn oneshot_single_thread_try_send_closed2() {
let (tx, _rx) = sync_channel::<i32>(0);
assert_eq!(tx.try_send(10), Err(TrySendError::Full(10)));
}
#[test]
fn oneshot_single_thread_try_recv_open() {
let (tx, rx) = sync_channel::<i32>(1);
tx.send(10).unwrap();
assert!(rx.recv() == Ok(10));
}
#[test]
fn oneshot_single_thread_try_recv_closed() {
let (tx, rx) = sync_channel::<i32>(0);
drop(tx);
assert!(rx.recv().is_err());
}
#[test]
fn oneshot_single_thread_try_recv_closed_with_data() {
let (tx, rx) = sync_channel::<i32>(1);
tx.send(10).unwrap();
drop(tx);
assert_eq!(rx.try_recv(), Ok(10));
assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
}
#[test]
fn oneshot_single_thread_peek_data() {
let (tx, rx) = sync_channel::<i32>(1);
assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
tx.send(10).unwrap();
assert_eq!(rx.try_recv(), Ok(10));
}
#[test]
fn oneshot_single_thread_peek_close() {
let (tx, rx) = sync_channel::<i32>(0);
drop(tx);
assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
}
#[test]
fn oneshot_single_thread_peek_open() {
let (_tx, rx) = sync_channel::<i32>(0);
assert_eq!(rx.try_recv(), Err(TryRecvError::Empty));
}
#[test]
fn oneshot_multi_task_recv_then_send() {
let (tx, rx) = sync_channel::<Box<i32>>(0);
let _t = thread::spawn(move|| {
assert!(rx.recv().unwrap() == box 10);
});
tx.send(box 10).unwrap();
}
#[test]
fn oneshot_multi_task_recv_then_close() {
let (tx, rx) = sync_channel::<Box<i32>>(0);
let _t = thread::spawn(move|| {
drop(tx);
});
let res = thread::spawn(move|| {
assert!(rx.recv().unwrap() == box 10);
}).join();
assert!(res.is_err());
}
#[test]
fn oneshot_multi_thread_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
drop(rx);
});
drop(tx);
}
}
#[test]
fn oneshot_multi_thread_send_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
drop(rx);
});
let _ = thread::spawn(move || {
tx.send(1).unwrap();
}).join();
}
}
#[test]
fn oneshot_multi_thread_recv_close_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
let res = thread::spawn(move|| {
rx.recv().unwrap();
}).join();
assert!(res.is_err());
});
let _t = thread::spawn(move|| {
thread::spawn(move|| {
drop(tx);
});
});
}
}
#[test]
fn oneshot_multi_thread_send_recv_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = sync_channel::<Box<i32>>(0);
let _t = thread::spawn(move|| {
tx.send(box 10).unwrap();
});
assert!(rx.recv().unwrap() == box 10);
}
}
#[test]
fn stream_send_recv_stress() {
for _ in 0..stress_factor() {
let (tx, rx) = sync_channel::<Box<i32>>(0);
send(tx, 0);
recv(rx, 0);
fn send(tx: SyncSender<Box<i32>>, i: i32) {
if i == 10 { return }
thread::spawn(move|| {
tx.send(box i).unwrap();
send(tx, i + 1);
});
}
fn recv(rx: Receiver<Box<i32>>, i: i32) {
if i == 10 { return }
thread::spawn(move|| {
assert!(rx.recv().unwrap() == box i);
recv(rx, i + 1);
});
}
}
}
#[test]
fn recv_a_lot() {
// Regression test that we don't run out of stack in scheduler context
let (tx, rx) = sync_channel(10000);
for _ in 0..10000 { tx.send(()).unwrap(); }
for _ in 0..10000 { rx.recv().unwrap(); }
}
#[test]
fn shared_chan_stress() {
let (tx, rx) = sync_channel(0);
let total = stress_factor() + 100;
for _ in 0..total {
let tx = tx.clone();
thread::spawn(move|| {
tx.send(()).unwrap();
});
}
for _ in 0..total {
rx.recv().unwrap();
}
}
#[test]
fn test_nested_recv_iter() {
let (tx, rx) = sync_channel::<i32>(0);
let (total_tx, total_rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| {
let mut acc = 0;
for x in rx.iter() {
acc += x;
}
total_tx.send(acc).unwrap();
});
tx.send(3).unwrap();
tx.send(1).unwrap();
tx.send(2).unwrap();
drop(tx);
assert_eq!(total_rx.recv().unwrap(), 6);
}
#[test]
fn test_recv_iter_break() {
let (tx, rx) = sync_channel::<i32>(0);
let (count_tx, count_rx) = sync_channel(0);
let _t = thread::spawn(move|| {
let mut count = 0;
for x in rx.iter() {
if count >= 3 {
break;
} else {
count += x;
}
}
count_tx.send(count).unwrap();
});
tx.send(2).unwrap();
tx.send(2).unwrap();
tx.send(2).unwrap();
let _ = tx.try_send(2);
drop(tx);
assert_eq!(count_rx.recv().unwrap(), 4);
}
#[test]
fn try_recv_states() {
let (tx1, rx1) = sync_channel::<i32>(1);
let (tx2, rx2) = sync_channel::<()>(1);
let (tx3, rx3) = sync_channel::<()>(1);
let _t = thread::spawn(move|| {
rx2.recv().unwrap();
tx1.send(1).unwrap();
tx3.send(()).unwrap();
rx2.recv().unwrap();
drop(tx1);
tx3.send(()).unwrap();
});
assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
tx2.send(()).unwrap();
rx3.recv().unwrap();
assert_eq!(rx1.try_recv(), Ok(1));
assert_eq!(rx1.try_recv(), Err(TryRecvError::Empty));
tx2.send(()).unwrap();
rx3.recv().unwrap();
assert_eq!(rx1.try_recv(), Err(TryRecvError::Disconnected));
}
// This bug used to end up in a livelock inside of the Receiver destructor
// because the internal state of the Shared packet was corrupted
#[test]
fn destroy_upgraded_shared_port_when_sender_still_active() {
let (tx, rx) = sync_channel::<()>(0);
let (tx2, rx2) = sync_channel::<()>(0);
let _t = thread::spawn(move|| {
rx.recv().unwrap(); // wait on a oneshot
drop(rx); // destroy a shared
tx2.send(()).unwrap();
});
// make sure the other thread has gone to sleep
for _ in 0..5000 { thread::yield_now(); }
// upgrade to a shared chan and send a message
let t = tx.clone();
drop(tx);
t.send(()).unwrap();
// wait for the child thread to exit before we exit
rx2.recv().unwrap();
}
#[test]
fn send1() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| { rx.recv().unwrap(); });
assert_eq!(tx.send(1), Ok(()));
}
#[test]
fn send2() {
let (tx, rx) = sync_channel::<i32>(0);
let _t = thread::spawn(move|| { drop(rx); });
assert!(tx.send(1).is_err());
}
#[test]
fn send3() {
let (tx, rx) = sync_channel::<i32>(1);
assert_eq!(tx.send(1), Ok(()));
let _t =thread::spawn(move|| { drop(rx); });
assert!(tx.send(1).is_err());
}
#[test]
fn send4() {
let (tx, rx) = sync_channel::<i32>(0);
let tx2 = tx.clone();
let (done, donerx) = channel();
let done2 = done.clone();
let _t = thread::spawn(move|| {
assert!(tx.send(1).is_err());
done.send(()).unwrap();
});
let _t = thread::spawn(move|| {
assert!(tx2.send(2).is_err());
done2.send(()).unwrap();
});
drop(rx);
donerx.recv().unwrap();
donerx.recv().unwrap();
}
#[test]
fn try_send1() {
let (tx, _rx) = sync_channel::<i32>(0);
assert_eq!(tx.try_send(1), Err(TrySendError::Full(1)));
}
#[test]
fn try_send2() {
let (tx, _rx) = sync_channel::<i32>(1);
assert_eq!(tx.try_send(1), Ok(()));
assert_eq!(tx.try_send(1), Err(TrySendError::Full(1)));
}
#[test]
fn try_send3() {
let (tx, rx) = sync_channel::<i32>(1);
assert_eq!(tx.try_send(1), Ok(()));
drop(rx);
assert_eq!(tx.try_send(1), Err(TrySendError::Disconnected(1)));
}
#[test]
fn issue_15761() {
fn repro() {
let (tx1, rx1) = sync_channel::<()>(3);
let (tx2, rx2) = sync_channel::<()>(3);
let _t = thread::spawn(move|| {
rx1.recv().unwrap();
tx2.try_send(()).unwrap();
});
tx1.try_send(()).unwrap();
rx2.recv().unwrap();
}
for _ in 0..100 {
repro()
}
}
#[test]
fn fmt_debug_sender() {
let (tx, _) = channel::<i32>();
assert_eq!(format!("{:?}", tx), "Sender { .. }");
}
#[test]
fn fmt_debug_recv() {
let (_, rx) = channel::<i32>();
assert_eq!(format!("{:?}", rx), "Receiver { .. }");
}
#[test]
fn fmt_debug_sync_sender() {
let (tx, _) = sync_channel::<i32>(1);
assert_eq!(format!("{:?}", tx), "SyncSender { .. }");
}
}