
Bump bootstrap compiler to just-released beta https://forge.rust-lang.org/release/process.html#master-bootstrap-update-t-2-day-tuesday
2629 lines
86 KiB
Rust
2629 lines
86 KiB
Rust
//! String manipulation.
|
|
//!
|
|
//! For more details, see the [`std::str`] module.
|
|
//!
|
|
//! [`std::str`]: ../../std/str/index.html
|
|
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
mod converts;
|
|
mod count;
|
|
mod error;
|
|
mod iter;
|
|
mod traits;
|
|
mod validations;
|
|
|
|
use self::pattern::Pattern;
|
|
use self::pattern::{DoubleEndedSearcher, ReverseSearcher, Searcher};
|
|
|
|
use crate::ascii;
|
|
use crate::char::{self, EscapeDebugExtArgs};
|
|
use crate::mem;
|
|
use crate::slice::{self, SliceIndex};
|
|
|
|
pub mod pattern;
|
|
|
|
mod lossy;
|
|
#[unstable(feature = "utf8_chunks", issue = "99543")]
|
|
pub use lossy::{Utf8Chunk, Utf8Chunks};
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use converts::{from_utf8, from_utf8_unchecked};
|
|
|
|
#[stable(feature = "str_mut_extras", since = "1.20.0")]
|
|
pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use error::{ParseBoolError, Utf8Error};
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use traits::FromStr;
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[allow(deprecated)]
|
|
pub use iter::LinesAny;
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use iter::{RSplitN, SplitN};
|
|
|
|
#[stable(feature = "str_matches", since = "1.2.0")]
|
|
pub use iter::{Matches, RMatches};
|
|
|
|
#[stable(feature = "str_match_indices", since = "1.5.0")]
|
|
pub use iter::{MatchIndices, RMatchIndices};
|
|
|
|
#[stable(feature = "encode_utf16", since = "1.8.0")]
|
|
pub use iter::EncodeUtf16;
|
|
|
|
#[stable(feature = "str_escape", since = "1.34.0")]
|
|
pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
|
|
|
|
#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
|
|
pub use iter::SplitAsciiWhitespace;
|
|
|
|
#[stable(feature = "split_inclusive", since = "1.51.0")]
|
|
pub use iter::SplitInclusive;
|
|
|
|
#[unstable(feature = "str_internals", issue = "none")]
|
|
pub use validations::{next_code_point, utf8_char_width};
|
|
|
|
use iter::MatchIndicesInternal;
|
|
use iter::SplitInternal;
|
|
use iter::{MatchesInternal, SplitNInternal};
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
#[track_caller]
|
|
#[rustc_allow_const_fn_unstable(const_eval_select)]
|
|
const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
|
|
// SAFETY: panics for both branches
|
|
unsafe {
|
|
crate::intrinsics::const_eval_select(
|
|
(s, begin, end),
|
|
slice_error_fail_ct,
|
|
slice_error_fail_rt,
|
|
)
|
|
}
|
|
}
|
|
|
|
#[track_caller]
|
|
const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
|
|
panic!("failed to slice string");
|
|
}
|
|
|
|
#[track_caller]
|
|
fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
|
|
const MAX_DISPLAY_LENGTH: usize = 256;
|
|
let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
|
|
let s_trunc = &s[..trunc_len];
|
|
let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
|
|
|
|
// 1. out of bounds
|
|
if begin > s.len() || end > s.len() {
|
|
let oob_index = if begin > s.len() { begin } else { end };
|
|
panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
|
|
}
|
|
|
|
// 2. begin <= end
|
|
assert!(
|
|
begin <= end,
|
|
"begin <= end ({} <= {}) when slicing `{}`{}",
|
|
begin,
|
|
end,
|
|
s_trunc,
|
|
ellipsis
|
|
);
|
|
|
|
// 3. character boundary
|
|
let index = if !s.is_char_boundary(begin) { begin } else { end };
|
|
// find the character
|
|
let char_start = s.floor_char_boundary(index);
|
|
// `char_start` must be less than len and a char boundary
|
|
let ch = s[char_start..].chars().next().unwrap();
|
|
let char_range = char_start..char_start + ch.len_utf8();
|
|
panic!(
|
|
"byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
|
|
index, ch, char_range, s_trunc, ellipsis
|
|
);
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl str {
|
|
/// Returns the length of `self`.
|
|
///
|
|
/// This length is in bytes, not [`char`]s or graphemes. In other words,
|
|
/// it might not be what a human considers the length of the string.
|
|
///
|
|
/// [`char`]: prim@char
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let len = "foo".len();
|
|
/// assert_eq!(3, len);
|
|
///
|
|
/// assert_eq!("ƒoo".len(), 4); // fancy f!
|
|
/// assert_eq!("ƒoo".chars().count(), 3);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn len(&self) -> usize {
|
|
self.as_bytes().len()
|
|
}
|
|
|
|
/// Returns `true` if `self` has a length of zero bytes.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "";
|
|
/// assert!(s.is_empty());
|
|
///
|
|
/// let s = "not empty";
|
|
/// assert!(!s.is_empty());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Checks that `index`-th byte is the first byte in a UTF-8 code point
|
|
/// sequence or the end of the string.
|
|
///
|
|
/// The start and end of the string (when `index == self.len()`) are
|
|
/// considered to be boundaries.
|
|
///
|
|
/// Returns `false` if `index` is greater than `self.len()`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
/// assert!(s.is_char_boundary(0));
|
|
/// // start of `老`
|
|
/// assert!(s.is_char_boundary(6));
|
|
/// assert!(s.is_char_boundary(s.len()));
|
|
///
|
|
/// // second byte of `ö`
|
|
/// assert!(!s.is_char_boundary(2));
|
|
///
|
|
/// // third byte of `老`
|
|
/// assert!(!s.is_char_boundary(8));
|
|
/// ```
|
|
#[must_use]
|
|
#[stable(feature = "is_char_boundary", since = "1.9.0")]
|
|
#[inline]
|
|
pub fn is_char_boundary(&self, index: usize) -> bool {
|
|
// 0 is always ok.
|
|
// Test for 0 explicitly so that it can optimize out the check
|
|
// easily and skip reading string data for that case.
|
|
// Note that optimizing `self.get(..index)` relies on this.
|
|
if index == 0 {
|
|
return true;
|
|
}
|
|
|
|
match self.as_bytes().get(index) {
|
|
// For `None` we have two options:
|
|
//
|
|
// - index == self.len()
|
|
// Empty strings are valid, so return true
|
|
// - index > self.len()
|
|
// In this case return false
|
|
//
|
|
// The check is placed exactly here, because it improves generated
|
|
// code on higher opt-levels. See PR #84751 for more details.
|
|
None => index == self.len(),
|
|
|
|
Some(&b) => b.is_utf8_char_boundary(),
|
|
}
|
|
}
|
|
|
|
/// Finds the closest `x` not exceeding `index` where `is_char_boundary(x)` is `true`.
|
|
///
|
|
/// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
|
|
/// exceed a given number of bytes. Note that this is done purely at the character level
|
|
/// and can still visually split graphemes, even though the underlying characters aren't
|
|
/// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
|
|
/// includes 🧑 (person) instead.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(round_char_boundary)]
|
|
/// let s = "❤️🧡💛💚💙💜";
|
|
/// assert_eq!(s.len(), 26);
|
|
/// assert!(!s.is_char_boundary(13));
|
|
///
|
|
/// let closest = s.floor_char_boundary(13);
|
|
/// assert_eq!(closest, 10);
|
|
/// assert_eq!(&s[..closest], "❤️🧡");
|
|
/// ```
|
|
#[unstable(feature = "round_char_boundary", issue = "93743")]
|
|
#[inline]
|
|
pub fn floor_char_boundary(&self, index: usize) -> usize {
|
|
if index >= self.len() {
|
|
self.len()
|
|
} else {
|
|
let lower_bound = index.saturating_sub(3);
|
|
let new_index = self.as_bytes()[lower_bound..=index]
|
|
.iter()
|
|
.rposition(|b| b.is_utf8_char_boundary());
|
|
|
|
// SAFETY: we know that the character boundary will be within four bytes
|
|
unsafe { lower_bound + new_index.unwrap_unchecked() }
|
|
}
|
|
}
|
|
|
|
/// Finds the closest `x` not below `index` where `is_char_boundary(x)` is `true`.
|
|
///
|
|
/// If `index` is greater than the length of the string, this returns the length of the string.
|
|
///
|
|
/// This method is the natural complement to [`floor_char_boundary`]. See that method
|
|
/// for more details.
|
|
///
|
|
/// [`floor_char_boundary`]: str::floor_char_boundary
|
|
///
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(round_char_boundary)]
|
|
/// let s = "❤️🧡💛💚💙💜";
|
|
/// assert_eq!(s.len(), 26);
|
|
/// assert!(!s.is_char_boundary(13));
|
|
///
|
|
/// let closest = s.ceil_char_boundary(13);
|
|
/// assert_eq!(closest, 14);
|
|
/// assert_eq!(&s[..closest], "❤️🧡💛");
|
|
/// ```
|
|
#[unstable(feature = "round_char_boundary", issue = "93743")]
|
|
#[inline]
|
|
pub fn ceil_char_boundary(&self, index: usize) -> usize {
|
|
if index > self.len() {
|
|
self.len()
|
|
} else {
|
|
let upper_bound = Ord::min(index + 4, self.len());
|
|
self.as_bytes()[index..upper_bound]
|
|
.iter()
|
|
.position(|b| b.is_utf8_char_boundary())
|
|
.map_or(upper_bound, |pos| pos + index)
|
|
}
|
|
}
|
|
|
|
/// Converts a string slice to a byte slice. To convert the byte slice back
|
|
/// into a string slice, use the [`from_utf8`] function.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let bytes = "bors".as_bytes();
|
|
/// assert_eq!(b"bors", bytes);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
#[allow(unused_attributes)]
|
|
pub const fn as_bytes(&self) -> &[u8] {
|
|
// SAFETY: const sound because we transmute two types with the same layout
|
|
unsafe { mem::transmute(self) }
|
|
}
|
|
|
|
/// Converts a mutable string slice to a mutable byte slice.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The caller must ensure that the content of the slice is valid UTF-8
|
|
/// before the borrow ends and the underlying `str` is used.
|
|
///
|
|
/// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let mut s = String::from("Hello");
|
|
/// let bytes = unsafe { s.as_bytes_mut() };
|
|
///
|
|
/// assert_eq!(b"Hello", bytes);
|
|
/// ```
|
|
///
|
|
/// Mutability:
|
|
///
|
|
/// ```
|
|
/// let mut s = String::from("🗻∈🌏");
|
|
///
|
|
/// unsafe {
|
|
/// let bytes = s.as_bytes_mut();
|
|
///
|
|
/// bytes[0] = 0xF0;
|
|
/// bytes[1] = 0x9F;
|
|
/// bytes[2] = 0x8D;
|
|
/// bytes[3] = 0x94;
|
|
/// }
|
|
///
|
|
/// assert_eq!("🍔∈🌏", s);
|
|
/// ```
|
|
#[stable(feature = "str_mut_extras", since = "1.20.0")]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
|
|
// SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
|
|
// has the same layout as `&[u8]` (only std can make this guarantee).
|
|
// The pointer dereference is safe since it comes from a mutable reference which
|
|
// is guaranteed to be valid for writes.
|
|
unsafe { &mut *(self as *mut str as *mut [u8]) }
|
|
}
|
|
|
|
/// Converts a string slice to a raw pointer.
|
|
///
|
|
/// As string slices are a slice of bytes, the raw pointer points to a
|
|
/// [`u8`]. This pointer will be pointing to the first byte of the string
|
|
/// slice.
|
|
///
|
|
/// The caller must ensure that the returned pointer is never written to.
|
|
/// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
|
|
///
|
|
/// [`as_mut_ptr`]: str::as_mut_ptr
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "Hello";
|
|
/// let ptr = s.as_ptr();
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
|
|
#[rustc_never_returns_null_ptr]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub const fn as_ptr(&self) -> *const u8 {
|
|
self as *const str as *const u8
|
|
}
|
|
|
|
/// Converts a mutable string slice to a raw pointer.
|
|
///
|
|
/// As string slices are a slice of bytes, the raw pointer points to a
|
|
/// [`u8`]. This pointer will be pointing to the first byte of the string
|
|
/// slice.
|
|
///
|
|
/// It is your responsibility to make sure that the string slice only gets
|
|
/// modified in a way that it remains valid UTF-8.
|
|
#[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
|
|
#[rustc_never_returns_null_ptr]
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn as_mut_ptr(&mut self) -> *mut u8 {
|
|
self as *mut str as *mut u8
|
|
}
|
|
|
|
/// Returns a subslice of `str`.
|
|
///
|
|
/// This is the non-panicking alternative to indexing the `str`. Returns
|
|
/// [`None`] whenever equivalent indexing operation would panic.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = String::from("🗻∈🌏");
|
|
///
|
|
/// assert_eq!(Some("🗻"), v.get(0..4));
|
|
///
|
|
/// // indices not on UTF-8 sequence boundaries
|
|
/// assert!(v.get(1..).is_none());
|
|
/// assert!(v.get(..8).is_none());
|
|
///
|
|
/// // out of bounds
|
|
/// assert!(v.get(..42).is_none());
|
|
/// ```
|
|
#[stable(feature = "str_checked_slicing", since = "1.20.0")]
|
|
#[inline]
|
|
pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
|
|
i.get(self)
|
|
}
|
|
|
|
/// Returns a mutable subslice of `str`.
|
|
///
|
|
/// This is the non-panicking alternative to indexing the `str`. Returns
|
|
/// [`None`] whenever equivalent indexing operation would panic.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = String::from("hello");
|
|
/// // correct length
|
|
/// assert!(v.get_mut(0..5).is_some());
|
|
/// // out of bounds
|
|
/// assert!(v.get_mut(..42).is_none());
|
|
/// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
|
|
///
|
|
/// assert_eq!("hello", v);
|
|
/// {
|
|
/// let s = v.get_mut(0..2);
|
|
/// let s = s.map(|s| {
|
|
/// s.make_ascii_uppercase();
|
|
/// &*s
|
|
/// });
|
|
/// assert_eq!(Some("HE"), s);
|
|
/// }
|
|
/// assert_eq!("HEllo", v);
|
|
/// ```
|
|
#[stable(feature = "str_checked_slicing", since = "1.20.0")]
|
|
#[inline]
|
|
pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
|
|
i.get_mut(self)
|
|
}
|
|
|
|
/// Returns an unchecked subslice of `str`.
|
|
///
|
|
/// This is the unchecked alternative to indexing the `str`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers of this function are responsible that these preconditions are
|
|
/// satisfied:
|
|
///
|
|
/// * The starting index must not exceed the ending index;
|
|
/// * Indexes must be within bounds of the original slice;
|
|
/// * Indexes must lie on UTF-8 sequence boundaries.
|
|
///
|
|
/// Failing that, the returned string slice may reference invalid memory or
|
|
/// violate the invariants communicated by the `str` type.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = "🗻∈🌏";
|
|
/// unsafe {
|
|
/// assert_eq!("🗻", v.get_unchecked(0..4));
|
|
/// assert_eq!("∈", v.get_unchecked(4..7));
|
|
/// assert_eq!("🌏", v.get_unchecked(7..11));
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "str_checked_slicing", since = "1.20.0")]
|
|
#[inline]
|
|
pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
|
|
// SAFETY: the caller must uphold the safety contract for `get_unchecked`;
|
|
// the slice is dereferenceable because `self` is a safe reference.
|
|
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
|
unsafe { &*i.get_unchecked(self) }
|
|
}
|
|
|
|
/// Returns a mutable, unchecked subslice of `str`.
|
|
///
|
|
/// This is the unchecked alternative to indexing the `str`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers of this function are responsible that these preconditions are
|
|
/// satisfied:
|
|
///
|
|
/// * The starting index must not exceed the ending index;
|
|
/// * Indexes must be within bounds of the original slice;
|
|
/// * Indexes must lie on UTF-8 sequence boundaries.
|
|
///
|
|
/// Failing that, the returned string slice may reference invalid memory or
|
|
/// violate the invariants communicated by the `str` type.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = String::from("🗻∈🌏");
|
|
/// unsafe {
|
|
/// assert_eq!("🗻", v.get_unchecked_mut(0..4));
|
|
/// assert_eq!("∈", v.get_unchecked_mut(4..7));
|
|
/// assert_eq!("🌏", v.get_unchecked_mut(7..11));
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "str_checked_slicing", since = "1.20.0")]
|
|
#[inline]
|
|
pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
|
|
// SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
|
|
// the slice is dereferenceable because `self` is a safe reference.
|
|
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
|
unsafe { &mut *i.get_unchecked_mut(self) }
|
|
}
|
|
|
|
/// Creates a string slice from another string slice, bypassing safety
|
|
/// checks.
|
|
///
|
|
/// This is generally not recommended, use with caution! For a safe
|
|
/// alternative see [`str`] and [`Index`].
|
|
///
|
|
/// [`Index`]: crate::ops::Index
|
|
///
|
|
/// This new slice goes from `begin` to `end`, including `begin` but
|
|
/// excluding `end`.
|
|
///
|
|
/// To get a mutable string slice instead, see the
|
|
/// [`slice_mut_unchecked`] method.
|
|
///
|
|
/// [`slice_mut_unchecked`]: str::slice_mut_unchecked
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers of this function are responsible that three preconditions are
|
|
/// satisfied:
|
|
///
|
|
/// * `begin` must not exceed `end`.
|
|
/// * `begin` and `end` must be byte positions within the string slice.
|
|
/// * `begin` and `end` must lie on UTF-8 sequence boundaries.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
///
|
|
/// unsafe {
|
|
/// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
|
|
/// }
|
|
///
|
|
/// let s = "Hello, world!";
|
|
///
|
|
/// unsafe {
|
|
/// assert_eq!("world", s.slice_unchecked(7, 12));
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
|
|
// SAFETY: the caller must uphold the safety contract for `get_unchecked`;
|
|
// the slice is dereferenceable because `self` is a safe reference.
|
|
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
|
unsafe { &*(begin..end).get_unchecked(self) }
|
|
}
|
|
|
|
/// Creates a string slice from another string slice, bypassing safety
|
|
/// checks.
|
|
/// This is generally not recommended, use with caution! For a safe
|
|
/// alternative see [`str`] and [`IndexMut`].
|
|
///
|
|
/// [`IndexMut`]: crate::ops::IndexMut
|
|
///
|
|
/// This new slice goes from `begin` to `end`, including `begin` but
|
|
/// excluding `end`.
|
|
///
|
|
/// To get an immutable string slice instead, see the
|
|
/// [`slice_unchecked`] method.
|
|
///
|
|
/// [`slice_unchecked`]: str::slice_unchecked
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers of this function are responsible that three preconditions are
|
|
/// satisfied:
|
|
///
|
|
/// * `begin` must not exceed `end`.
|
|
/// * `begin` and `end` must be byte positions within the string slice.
|
|
/// * `begin` and `end` must lie on UTF-8 sequence boundaries.
|
|
#[stable(feature = "str_slice_mut", since = "1.5.0")]
|
|
#[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
|
|
#[inline]
|
|
pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
|
|
// SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
|
|
// the slice is dereferenceable because `self` is a safe reference.
|
|
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
|
|
unsafe { &mut *(begin..end).get_unchecked_mut(self) }
|
|
}
|
|
|
|
/// Divide one string slice into two at an index.
|
|
///
|
|
/// The argument, `mid`, should be a byte offset from the start of the
|
|
/// string. It must also be on the boundary of a UTF-8 code point.
|
|
///
|
|
/// The two slices returned go from the start of the string slice to `mid`,
|
|
/// and from `mid` to the end of the string slice.
|
|
///
|
|
/// To get mutable string slices instead, see the [`split_at_mut`]
|
|
/// method.
|
|
///
|
|
/// [`split_at_mut`]: str::split_at_mut
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
|
|
/// past the end of the last code point of the string slice.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "Per Martin-Löf";
|
|
///
|
|
/// let (first, last) = s.split_at(3);
|
|
///
|
|
/// assert_eq!("Per", first);
|
|
/// assert_eq!(" Martin-Löf", last);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
#[stable(feature = "str_split_at", since = "1.4.0")]
|
|
pub fn split_at(&self, mid: usize) -> (&str, &str) {
|
|
// is_char_boundary checks that the index is in [0, .len()]
|
|
if self.is_char_boundary(mid) {
|
|
// SAFETY: just checked that `mid` is on a char boundary.
|
|
unsafe { (self.get_unchecked(0..mid), self.get_unchecked(mid..self.len())) }
|
|
} else {
|
|
slice_error_fail(self, 0, mid)
|
|
}
|
|
}
|
|
|
|
/// Divide one mutable string slice into two at an index.
|
|
///
|
|
/// The argument, `mid`, should be a byte offset from the start of the
|
|
/// string. It must also be on the boundary of a UTF-8 code point.
|
|
///
|
|
/// The two slices returned go from the start of the string slice to `mid`,
|
|
/// and from `mid` to the end of the string slice.
|
|
///
|
|
/// To get immutable string slices instead, see the [`split_at`] method.
|
|
///
|
|
/// [`split_at`]: str::split_at
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
|
|
/// past the end of the last code point of the string slice.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut s = "Per Martin-Löf".to_string();
|
|
/// {
|
|
/// let (first, last) = s.split_at_mut(3);
|
|
/// first.make_ascii_uppercase();
|
|
/// assert_eq!("PER", first);
|
|
/// assert_eq!(" Martin-Löf", last);
|
|
/// }
|
|
/// assert_eq!("PER Martin-Löf", s);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
#[stable(feature = "str_split_at", since = "1.4.0")]
|
|
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
|
|
// is_char_boundary checks that the index is in [0, .len()]
|
|
if self.is_char_boundary(mid) {
|
|
let len = self.len();
|
|
let ptr = self.as_mut_ptr();
|
|
// SAFETY: just checked that `mid` is on a char boundary.
|
|
unsafe {
|
|
(
|
|
from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
|
|
from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
|
|
)
|
|
}
|
|
} else {
|
|
slice_error_fail(self, 0, mid)
|
|
}
|
|
}
|
|
|
|
/// Returns an iterator over the [`char`]s of a string slice.
|
|
///
|
|
/// As a string slice consists of valid UTF-8, we can iterate through a
|
|
/// string slice by [`char`]. This method returns such an iterator.
|
|
///
|
|
/// It's important to remember that [`char`] represents a Unicode Scalar
|
|
/// Value, and might not match your idea of what a 'character' is. Iteration
|
|
/// over grapheme clusters may be what you actually want. This functionality
|
|
/// is not provided by Rust's standard library, check crates.io instead.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let word = "goodbye";
|
|
///
|
|
/// let count = word.chars().count();
|
|
/// assert_eq!(7, count);
|
|
///
|
|
/// let mut chars = word.chars();
|
|
///
|
|
/// assert_eq!(Some('g'), chars.next());
|
|
/// assert_eq!(Some('o'), chars.next());
|
|
/// assert_eq!(Some('o'), chars.next());
|
|
/// assert_eq!(Some('d'), chars.next());
|
|
/// assert_eq!(Some('b'), chars.next());
|
|
/// assert_eq!(Some('y'), chars.next());
|
|
/// assert_eq!(Some('e'), chars.next());
|
|
///
|
|
/// assert_eq!(None, chars.next());
|
|
/// ```
|
|
///
|
|
/// Remember, [`char`]s might not match your intuition about characters:
|
|
///
|
|
/// [`char`]: prim@char
|
|
///
|
|
/// ```
|
|
/// let y = "y̆";
|
|
///
|
|
/// let mut chars = y.chars();
|
|
///
|
|
/// assert_eq!(Some('y'), chars.next()); // not 'y̆'
|
|
/// assert_eq!(Some('\u{0306}'), chars.next());
|
|
///
|
|
/// assert_eq!(None, chars.next());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn chars(&self) -> Chars<'_> {
|
|
Chars { iter: self.as_bytes().iter() }
|
|
}
|
|
|
|
/// Returns an iterator over the [`char`]s of a string slice, and their
|
|
/// positions.
|
|
///
|
|
/// As a string slice consists of valid UTF-8, we can iterate through a
|
|
/// string slice by [`char`]. This method returns an iterator of both
|
|
/// these [`char`]s, as well as their byte positions.
|
|
///
|
|
/// The iterator yields tuples. The position is first, the [`char`] is
|
|
/// second.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let word = "goodbye";
|
|
///
|
|
/// let count = word.char_indices().count();
|
|
/// assert_eq!(7, count);
|
|
///
|
|
/// let mut char_indices = word.char_indices();
|
|
///
|
|
/// assert_eq!(Some((0, 'g')), char_indices.next());
|
|
/// assert_eq!(Some((1, 'o')), char_indices.next());
|
|
/// assert_eq!(Some((2, 'o')), char_indices.next());
|
|
/// assert_eq!(Some((3, 'd')), char_indices.next());
|
|
/// assert_eq!(Some((4, 'b')), char_indices.next());
|
|
/// assert_eq!(Some((5, 'y')), char_indices.next());
|
|
/// assert_eq!(Some((6, 'e')), char_indices.next());
|
|
///
|
|
/// assert_eq!(None, char_indices.next());
|
|
/// ```
|
|
///
|
|
/// Remember, [`char`]s might not match your intuition about characters:
|
|
///
|
|
/// [`char`]: prim@char
|
|
///
|
|
/// ```
|
|
/// let yes = "y̆es";
|
|
///
|
|
/// let mut char_indices = yes.char_indices();
|
|
///
|
|
/// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
|
|
/// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
|
|
///
|
|
/// // note the 3 here - the previous character took up two bytes
|
|
/// assert_eq!(Some((3, 'e')), char_indices.next());
|
|
/// assert_eq!(Some((4, 's')), char_indices.next());
|
|
///
|
|
/// assert_eq!(None, char_indices.next());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn char_indices(&self) -> CharIndices<'_> {
|
|
CharIndices { front_offset: 0, iter: self.chars() }
|
|
}
|
|
|
|
/// An iterator over the bytes of a string slice.
|
|
///
|
|
/// As a string slice consists of a sequence of bytes, we can iterate
|
|
/// through a string slice by byte. This method returns such an iterator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut bytes = "bors".bytes();
|
|
///
|
|
/// assert_eq!(Some(b'b'), bytes.next());
|
|
/// assert_eq!(Some(b'o'), bytes.next());
|
|
/// assert_eq!(Some(b'r'), bytes.next());
|
|
/// assert_eq!(Some(b's'), bytes.next());
|
|
///
|
|
/// assert_eq!(None, bytes.next());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn bytes(&self) -> Bytes<'_> {
|
|
Bytes(self.as_bytes().iter().copied())
|
|
}
|
|
|
|
/// Splits a string slice by whitespace.
|
|
///
|
|
/// The iterator returned will return string slices that are sub-slices of
|
|
/// the original string slice, separated by any amount of whitespace.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`. If you only want to split on ASCII whitespace
|
|
/// instead, use [`split_ascii_whitespace`].
|
|
///
|
|
/// [`split_ascii_whitespace`]: str::split_ascii_whitespace
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let mut iter = "A few words".split_whitespace();
|
|
///
|
|
/// assert_eq!(Some("A"), iter.next());
|
|
/// assert_eq!(Some("few"), iter.next());
|
|
/// assert_eq!(Some("words"), iter.next());
|
|
///
|
|
/// assert_eq!(None, iter.next());
|
|
/// ```
|
|
///
|
|
/// All kinds of whitespace are considered:
|
|
///
|
|
/// ```
|
|
/// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
|
|
/// assert_eq!(Some("Mary"), iter.next());
|
|
/// assert_eq!(Some("had"), iter.next());
|
|
/// assert_eq!(Some("a"), iter.next());
|
|
/// assert_eq!(Some("little"), iter.next());
|
|
/// assert_eq!(Some("lamb"), iter.next());
|
|
///
|
|
/// assert_eq!(None, iter.next());
|
|
/// ```
|
|
///
|
|
/// If the string is empty or all whitespace, the iterator yields no string slices:
|
|
/// ```
|
|
/// assert_eq!("".split_whitespace().next(), None);
|
|
/// assert_eq!(" ".split_whitespace().next(), None);
|
|
/// ```
|
|
#[must_use = "this returns the split string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "split_whitespace", since = "1.1.0")]
|
|
#[cfg_attr(not(test), rustc_diagnostic_item = "str_split_whitespace")]
|
|
#[inline]
|
|
pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
|
|
SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
|
|
}
|
|
|
|
/// Splits a string slice by ASCII whitespace.
|
|
///
|
|
/// The iterator returned will return string slices that are sub-slices of
|
|
/// the original string slice, separated by any amount of ASCII whitespace.
|
|
///
|
|
/// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
|
|
///
|
|
/// [`split_whitespace`]: str::split_whitespace
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let mut iter = "A few words".split_ascii_whitespace();
|
|
///
|
|
/// assert_eq!(Some("A"), iter.next());
|
|
/// assert_eq!(Some("few"), iter.next());
|
|
/// assert_eq!(Some("words"), iter.next());
|
|
///
|
|
/// assert_eq!(None, iter.next());
|
|
/// ```
|
|
///
|
|
/// All kinds of ASCII whitespace are considered:
|
|
///
|
|
/// ```
|
|
/// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
|
|
/// assert_eq!(Some("Mary"), iter.next());
|
|
/// assert_eq!(Some("had"), iter.next());
|
|
/// assert_eq!(Some("a"), iter.next());
|
|
/// assert_eq!(Some("little"), iter.next());
|
|
/// assert_eq!(Some("lamb"), iter.next());
|
|
///
|
|
/// assert_eq!(None, iter.next());
|
|
/// ```
|
|
///
|
|
/// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
|
|
/// ```
|
|
/// assert_eq!("".split_ascii_whitespace().next(), None);
|
|
/// assert_eq!(" ".split_ascii_whitespace().next(), None);
|
|
/// ```
|
|
#[must_use = "this returns the split string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
|
|
#[inline]
|
|
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
|
|
let inner =
|
|
self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
|
|
SplitAsciiWhitespace { inner }
|
|
}
|
|
|
|
/// An iterator over the lines of a string, as string slices.
|
|
///
|
|
/// Lines are split at line endings that are either newlines (`\n`) or
|
|
/// sequences of a carriage return followed by a line feed (`\r\n`).
|
|
///
|
|
/// Line terminators are not included in the lines returned by the iterator.
|
|
///
|
|
/// Note that any carriage return (`\r`) not immediately followed by a
|
|
/// line feed (`\n`) does not split a line. These carriage returns are
|
|
/// thereby included in the produced lines.
|
|
///
|
|
/// The final line ending is optional. A string that ends with a final line
|
|
/// ending will return the same lines as an otherwise identical string
|
|
/// without a final line ending.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let text = "foo\r\nbar\n\nbaz\r";
|
|
/// let mut lines = text.lines();
|
|
///
|
|
/// assert_eq!(Some("foo"), lines.next());
|
|
/// assert_eq!(Some("bar"), lines.next());
|
|
/// assert_eq!(Some(""), lines.next());
|
|
/// // Trailing carriage return is included in the last line
|
|
/// assert_eq!(Some("baz\r"), lines.next());
|
|
///
|
|
/// assert_eq!(None, lines.next());
|
|
/// ```
|
|
///
|
|
/// The final line does not require any ending:
|
|
///
|
|
/// ```
|
|
/// let text = "foo\nbar\n\r\nbaz";
|
|
/// let mut lines = text.lines();
|
|
///
|
|
/// assert_eq!(Some("foo"), lines.next());
|
|
/// assert_eq!(Some("bar"), lines.next());
|
|
/// assert_eq!(Some(""), lines.next());
|
|
/// assert_eq!(Some("baz"), lines.next());
|
|
///
|
|
/// assert_eq!(None, lines.next());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn lines(&self) -> Lines<'_> {
|
|
Lines(self.split_inclusive('\n').map(LinesMap))
|
|
}
|
|
|
|
/// An iterator over the lines of a string.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
|
|
#[inline]
|
|
#[allow(deprecated)]
|
|
pub fn lines_any(&self) -> LinesAny<'_> {
|
|
LinesAny(self.lines())
|
|
}
|
|
|
|
/// Returns an iterator of `u16` over the string encoded as UTF-16.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let text = "Zażółć gęślą jaźń";
|
|
///
|
|
/// let utf8_len = text.len();
|
|
/// let utf16_len = text.encode_utf16().count();
|
|
///
|
|
/// assert!(utf16_len <= utf8_len);
|
|
/// ```
|
|
#[must_use = "this returns the encoded string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "encode_utf16", since = "1.8.0")]
|
|
pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
|
|
EncodeUtf16 { chars: self.chars(), extra: 0 }
|
|
}
|
|
|
|
/// Returns `true` if the given pattern matches a sub-slice of
|
|
/// this string slice.
|
|
///
|
|
/// Returns `false` if it does not.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let bananas = "bananas";
|
|
///
|
|
/// assert!(bananas.contains("nana"));
|
|
/// assert!(!bananas.contains("apples"));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
|
|
pat.is_contained_in(self)
|
|
}
|
|
|
|
/// Returns `true` if the given pattern matches a prefix of this
|
|
/// string slice.
|
|
///
|
|
/// Returns `false` if it does not.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let bananas = "bananas";
|
|
///
|
|
/// assert!(bananas.starts_with("bana"));
|
|
/// assert!(!bananas.starts_with("nana"));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
|
|
pat.is_prefix_of(self)
|
|
}
|
|
|
|
/// Returns `true` if the given pattern matches a suffix of this
|
|
/// string slice.
|
|
///
|
|
/// Returns `false` if it does not.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let bananas = "bananas";
|
|
///
|
|
/// assert!(bananas.ends_with("anas"));
|
|
/// assert!(!bananas.ends_with("nana"));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
pat.is_suffix_of(self)
|
|
}
|
|
|
|
/// Returns the byte index of the first character of this string slice that
|
|
/// matches the pattern.
|
|
///
|
|
/// Returns [`None`] if the pattern doesn't match.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard Gepardi";
|
|
///
|
|
/// assert_eq!(s.find('L'), Some(0));
|
|
/// assert_eq!(s.find('é'), Some(14));
|
|
/// assert_eq!(s.find("pard"), Some(17));
|
|
/// ```
|
|
///
|
|
/// More complex patterns using point-free style and closures:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
///
|
|
/// assert_eq!(s.find(char::is_whitespace), Some(5));
|
|
/// assert_eq!(s.find(char::is_lowercase), Some(1));
|
|
/// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
|
|
/// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
|
|
/// ```
|
|
///
|
|
/// Not finding the pattern:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
/// let x: &[_] = &['1', '2'];
|
|
///
|
|
/// assert_eq!(s.find(x), None);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
|
|
pat.into_searcher(self).next_match().map(|(i, _)| i)
|
|
}
|
|
|
|
/// Returns the byte index for the first character of the last match of the pattern in
|
|
/// this string slice.
|
|
///
|
|
/// Returns [`None`] if the pattern doesn't match.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard Gepardi";
|
|
///
|
|
/// assert_eq!(s.rfind('L'), Some(13));
|
|
/// assert_eq!(s.rfind('é'), Some(14));
|
|
/// assert_eq!(s.rfind("pard"), Some(24));
|
|
/// ```
|
|
///
|
|
/// More complex patterns with closures:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
///
|
|
/// assert_eq!(s.rfind(char::is_whitespace), Some(12));
|
|
/// assert_eq!(s.rfind(char::is_lowercase), Some(20));
|
|
/// ```
|
|
///
|
|
/// Not finding the pattern:
|
|
///
|
|
/// ```
|
|
/// let s = "Löwe 老虎 Léopard";
|
|
/// let x: &[_] = &['1', '2'];
|
|
///
|
|
/// assert_eq!(s.rfind(x), None);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
pat.into_searcher(self).next_match_back().map(|(i, _)| i)
|
|
}
|
|
|
|
/// An iterator over substrings of this string slice, separated by
|
|
/// characters matched by a pattern.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
|
|
/// allows a reverse search and forward/reverse search yields the same
|
|
/// elements. This is true for, e.g., [`char`], but not for `&str`.
|
|
///
|
|
/// If the pattern allows a reverse search but its results might differ
|
|
/// from a forward search, the [`rsplit`] method can be used.
|
|
///
|
|
/// [`rsplit`]: str::rsplit
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
|
|
/// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
|
|
///
|
|
/// let v: Vec<&str> = "".split('X').collect();
|
|
/// assert_eq!(v, [""]);
|
|
///
|
|
/// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
|
|
/// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
|
|
///
|
|
/// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
|
|
/// assert_eq!(v, ["lion", "tiger", "leopard"]);
|
|
///
|
|
/// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
|
|
/// assert_eq!(v, ["abc", "def", "ghi"]);
|
|
///
|
|
/// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
|
|
/// assert_eq!(v, ["lion", "tiger", "leopard"]);
|
|
/// ```
|
|
///
|
|
/// If the pattern is a slice of chars, split on each occurrence of any of the characters:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
|
|
/// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
|
|
/// assert_eq!(v, ["abc", "def", "ghi"]);
|
|
/// ```
|
|
///
|
|
/// If a string contains multiple contiguous separators, you will end up
|
|
/// with empty strings in the output:
|
|
///
|
|
/// ```
|
|
/// let x = "||||a||b|c".to_string();
|
|
/// let d: Vec<_> = x.split('|').collect();
|
|
///
|
|
/// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
|
|
/// ```
|
|
///
|
|
/// Contiguous separators are separated by the empty string.
|
|
///
|
|
/// ```
|
|
/// let x = "(///)".to_string();
|
|
/// let d: Vec<_> = x.split('/').collect();
|
|
///
|
|
/// assert_eq!(d, &["(", "", "", ")"]);
|
|
/// ```
|
|
///
|
|
/// Separators at the start or end of a string are neighbored
|
|
/// by empty strings.
|
|
///
|
|
/// ```
|
|
/// let d: Vec<_> = "010".split("0").collect();
|
|
/// assert_eq!(d, &["", "1", ""]);
|
|
/// ```
|
|
///
|
|
/// When the empty string is used as a separator, it separates
|
|
/// every character in the string, along with the beginning
|
|
/// and end of the string.
|
|
///
|
|
/// ```
|
|
/// let f: Vec<_> = "rust".split("").collect();
|
|
/// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
|
|
/// ```
|
|
///
|
|
/// Contiguous separators can lead to possibly surprising behavior
|
|
/// when whitespace is used as the separator. This code is correct:
|
|
///
|
|
/// ```
|
|
/// let x = " a b c".to_string();
|
|
/// let d: Vec<_> = x.split(' ').collect();
|
|
///
|
|
/// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
|
|
/// ```
|
|
///
|
|
/// It does _not_ give you:
|
|
///
|
|
/// ```,ignore
|
|
/// assert_eq!(d, &["a", "b", "c"]);
|
|
/// ```
|
|
///
|
|
/// Use [`split_whitespace`] for this behavior.
|
|
///
|
|
/// [`split_whitespace`]: str::split_whitespace
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
|
|
Split(SplitInternal {
|
|
start: 0,
|
|
end: self.len(),
|
|
matcher: pat.into_searcher(self),
|
|
allow_trailing_empty: true,
|
|
finished: false,
|
|
})
|
|
}
|
|
|
|
/// An iterator over substrings of this string slice, separated by
|
|
/// characters matched by a pattern. Differs from the iterator produced by
|
|
/// `split` in that `split_inclusive` leaves the matched part as the
|
|
/// terminator of the substring.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
|
|
/// .split_inclusive('\n').collect();
|
|
/// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
|
|
/// ```
|
|
///
|
|
/// If the last element of the string is matched,
|
|
/// that element will be considered the terminator of the preceding substring.
|
|
/// That substring will be the last item returned by the iterator.
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
|
|
/// .split_inclusive('\n').collect();
|
|
/// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
|
|
/// ```
|
|
#[stable(feature = "split_inclusive", since = "1.51.0")]
|
|
#[inline]
|
|
pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> {
|
|
SplitInclusive(SplitInternal {
|
|
start: 0,
|
|
end: self.len(),
|
|
matcher: pat.into_searcher(self),
|
|
allow_trailing_empty: false,
|
|
finished: false,
|
|
})
|
|
}
|
|
|
|
/// An iterator over substrings of the given string slice, separated by
|
|
/// characters matched by a pattern and yielded in reverse order.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator requires that the pattern supports a reverse
|
|
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
|
|
/// search yields the same elements.
|
|
///
|
|
/// For iterating from the front, the [`split`] method can be used.
|
|
///
|
|
/// [`split`]: str::split
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
|
|
/// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
|
|
///
|
|
/// let v: Vec<&str> = "".rsplit('X').collect();
|
|
/// assert_eq!(v, [""]);
|
|
///
|
|
/// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
|
|
/// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
|
|
///
|
|
/// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
|
|
/// assert_eq!(v, ["leopard", "tiger", "lion"]);
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
|
|
/// assert_eq!(v, ["ghi", "def", "abc"]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
RSplit(self.split(pat).0)
|
|
}
|
|
|
|
/// An iterator over substrings of the given string slice, separated by
|
|
/// characters matched by a pattern.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// Equivalent to [`split`], except that the trailing substring
|
|
/// is skipped if empty.
|
|
///
|
|
/// [`split`]: str::split
|
|
///
|
|
/// This method can be used for string data that is _terminated_,
|
|
/// rather than _separated_ by a pattern.
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
|
|
/// allows a reverse search and forward/reverse search yields the same
|
|
/// elements. This is true for, e.g., [`char`], but not for `&str`.
|
|
///
|
|
/// If the pattern allows a reverse search but its results might differ
|
|
/// from a forward search, the [`rsplit_terminator`] method can be used.
|
|
///
|
|
/// [`rsplit_terminator`]: str::rsplit_terminator
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
|
|
/// assert_eq!(v, ["A", "B"]);
|
|
///
|
|
/// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
|
|
/// assert_eq!(v, ["A", "", "B", ""]);
|
|
///
|
|
/// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
|
|
/// assert_eq!(v, ["A", "B", "C", "D"]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> {
|
|
SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
|
|
}
|
|
|
|
/// An iterator over substrings of `self`, separated by characters
|
|
/// matched by a pattern and yielded in reverse order.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// Equivalent to [`split`], except that the trailing substring is
|
|
/// skipped if empty.
|
|
///
|
|
/// [`split`]: str::split
|
|
///
|
|
/// This method can be used for string data that is _terminated_,
|
|
/// rather than _separated_ by a pattern.
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator requires that the pattern supports a
|
|
/// reverse search, and it will be double ended if a forward/reverse
|
|
/// search yields the same elements.
|
|
///
|
|
/// For iterating from the front, the [`split_terminator`] method can be
|
|
/// used.
|
|
///
|
|
/// [`split_terminator`]: str::split_terminator
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
|
|
/// assert_eq!(v, ["B", "A"]);
|
|
///
|
|
/// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
|
|
/// assert_eq!(v, ["", "B", "", "A"]);
|
|
///
|
|
/// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
|
|
/// assert_eq!(v, ["D", "C", "B", "A"]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
RSplitTerminator(self.split_terminator(pat).0)
|
|
}
|
|
|
|
/// An iterator over substrings of the given string slice, separated by a
|
|
/// pattern, restricted to returning at most `n` items.
|
|
///
|
|
/// If `n` substrings are returned, the last substring (the `n`th substring)
|
|
/// will contain the remainder of the string.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will not be double ended, because it is
|
|
/// not efficient to support.
|
|
///
|
|
/// If the pattern allows a reverse search, the [`rsplitn`] method can be
|
|
/// used.
|
|
///
|
|
/// [`rsplitn`]: str::rsplitn
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
|
|
/// assert_eq!(v, ["Mary", "had", "a little lambda"]);
|
|
///
|
|
/// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
|
|
/// assert_eq!(v, ["lion", "", "tigerXleopard"]);
|
|
///
|
|
/// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
|
|
/// assert_eq!(v, ["abcXdef"]);
|
|
///
|
|
/// let v: Vec<&str> = "".splitn(1, 'X').collect();
|
|
/// assert_eq!(v, [""]);
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
|
|
/// assert_eq!(v, ["abc", "defXghi"]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> {
|
|
SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
|
|
}
|
|
|
|
/// An iterator over substrings of this string slice, separated by a
|
|
/// pattern, starting from the end of the string, restricted to returning
|
|
/// at most `n` items.
|
|
///
|
|
/// If `n` substrings are returned, the last substring (the `n`th substring)
|
|
/// will contain the remainder of the string.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will not be double ended, because it is not
|
|
/// efficient to support.
|
|
///
|
|
/// For splitting from the front, the [`splitn`] method can be used.
|
|
///
|
|
/// [`splitn`]: str::splitn
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
|
|
/// assert_eq!(v, ["lamb", "little", "Mary had a"]);
|
|
///
|
|
/// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
|
|
/// assert_eq!(v, ["leopard", "tiger", "lionX"]);
|
|
///
|
|
/// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
|
|
/// assert_eq!(v, ["leopard", "lion::tiger"]);
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
|
|
/// assert_eq!(v, ["ghi", "abc1def"]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
RSplitN(self.splitn(n, pat).0)
|
|
}
|
|
|
|
/// Splits the string on the first occurrence of the specified delimiter and
|
|
/// returns prefix before delimiter and suffix after delimiter.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("cfg".split_once('='), None);
|
|
/// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
|
|
/// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
|
|
/// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
|
|
/// ```
|
|
#[stable(feature = "str_split_once", since = "1.52.0")]
|
|
#[inline]
|
|
pub fn split_once<'a, P: Pattern<'a>>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> {
|
|
let (start, end) = delimiter.into_searcher(self).next_match()?;
|
|
// SAFETY: `Searcher` is known to return valid indices.
|
|
unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
|
|
}
|
|
|
|
/// Splits the string on the last occurrence of the specified delimiter and
|
|
/// returns prefix before delimiter and suffix after delimiter.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("cfg".rsplit_once('='), None);
|
|
/// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
|
|
/// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
|
|
/// ```
|
|
#[stable(feature = "str_split_once", since = "1.52.0")]
|
|
#[inline]
|
|
pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
let (start, end) = delimiter.into_searcher(self).next_match_back()?;
|
|
// SAFETY: `Searcher` is known to return valid indices.
|
|
unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
|
|
}
|
|
|
|
/// An iterator over the disjoint matches of a pattern within the given string
|
|
/// slice.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
|
|
/// allows a reverse search and forward/reverse search yields the same
|
|
/// elements. This is true for, e.g., [`char`], but not for `&str`.
|
|
///
|
|
/// If the pattern allows a reverse search but its results might differ
|
|
/// from a forward search, the [`rmatches`] method can be used.
|
|
///
|
|
/// [`rmatches`]: str::rmatches
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
|
|
/// assert_eq!(v, ["abc", "abc", "abc"]);
|
|
///
|
|
/// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
|
|
/// assert_eq!(v, ["1", "2", "3"]);
|
|
/// ```
|
|
#[stable(feature = "str_matches", since = "1.2.0")]
|
|
#[inline]
|
|
pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> {
|
|
Matches(MatchesInternal(pat.into_searcher(self)))
|
|
}
|
|
|
|
/// An iterator over the disjoint matches of a pattern within this string slice,
|
|
/// yielded in reverse order.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator requires that the pattern supports a reverse
|
|
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
|
|
/// search yields the same elements.
|
|
///
|
|
/// For iterating from the front, the [`matches`] method can be used.
|
|
///
|
|
/// [`matches`]: str::matches
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
|
|
/// assert_eq!(v, ["abc", "abc", "abc"]);
|
|
///
|
|
/// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
|
|
/// assert_eq!(v, ["3", "2", "1"]);
|
|
/// ```
|
|
#[stable(feature = "str_matches", since = "1.2.0")]
|
|
#[inline]
|
|
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
RMatches(self.matches(pat).0)
|
|
}
|
|
|
|
/// An iterator over the disjoint matches of a pattern within this string
|
|
/// slice as well as the index that the match starts at.
|
|
///
|
|
/// For matches of `pat` within `self` that overlap, only the indices
|
|
/// corresponding to the first match are returned.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
|
|
/// allows a reverse search and forward/reverse search yields the same
|
|
/// elements. This is true for, e.g., [`char`], but not for `&str`.
|
|
///
|
|
/// If the pattern allows a reverse search but its results might differ
|
|
/// from a forward search, the [`rmatch_indices`] method can be used.
|
|
///
|
|
/// [`rmatch_indices`]: str::rmatch_indices
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
|
|
/// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
|
|
///
|
|
/// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
|
|
/// assert_eq!(v, [(1, "abc"), (4, "abc")]);
|
|
///
|
|
/// let v: Vec<_> = "ababa".match_indices("aba").collect();
|
|
/// assert_eq!(v, [(0, "aba")]); // only the first `aba`
|
|
/// ```
|
|
#[stable(feature = "str_match_indices", since = "1.5.0")]
|
|
#[inline]
|
|
pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> {
|
|
MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
|
|
}
|
|
|
|
/// An iterator over the disjoint matches of a pattern within `self`,
|
|
/// yielded in reverse order along with the index of the match.
|
|
///
|
|
/// For matches of `pat` within `self` that overlap, only the indices
|
|
/// corresponding to the last match are returned.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Iterator behavior
|
|
///
|
|
/// The returned iterator requires that the pattern supports a reverse
|
|
/// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
|
|
/// search yields the same elements.
|
|
///
|
|
/// For iterating from the front, the [`match_indices`] method can be used.
|
|
///
|
|
/// [`match_indices`]: str::match_indices
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
|
|
/// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
|
|
///
|
|
/// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
|
|
/// assert_eq!(v, [(4, "abc"), (1, "abc")]);
|
|
///
|
|
/// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
|
|
/// assert_eq!(v, [(2, "aba")]); // only the last `aba`
|
|
/// ```
|
|
#[stable(feature = "str_match_indices", since = "1.5.0")]
|
|
#[inline]
|
|
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
RMatchIndices(self.match_indices(pat).0)
|
|
}
|
|
|
|
/// Returns a string slice with leading and trailing whitespace removed.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`, which includes newlines.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = "\n Hello\tworld\t\n";
|
|
///
|
|
/// assert_eq!("Hello\tworld", s.trim());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "this returns the trimmed string as a slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[cfg_attr(not(test), rustc_diagnostic_item = "str_trim")]
|
|
pub fn trim(&self) -> &str {
|
|
self.trim_matches(|c: char| c.is_whitespace())
|
|
}
|
|
|
|
/// Returns a string slice with leading whitespace removed.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`, which includes newlines.
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. `start` in this context means the first
|
|
/// position of that byte string; for a left-to-right language like English or
|
|
/// Russian, this will be left side, and for right-to-left languages like
|
|
/// Arabic or Hebrew, this will be the right side.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let s = "\n Hello\tworld\t\n";
|
|
/// assert_eq!("Hello\tworld\t\n", s.trim_start());
|
|
/// ```
|
|
///
|
|
/// Directionality:
|
|
///
|
|
/// ```
|
|
/// let s = " English ";
|
|
/// assert!(Some('E') == s.trim_start().chars().next());
|
|
///
|
|
/// let s = " עברית ";
|
|
/// assert!(Some('ע') == s.trim_start().chars().next());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "trim_direction", since = "1.30.0")]
|
|
#[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_start")]
|
|
pub fn trim_start(&self) -> &str {
|
|
self.trim_start_matches(|c: char| c.is_whitespace())
|
|
}
|
|
|
|
/// Returns a string slice with trailing whitespace removed.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`, which includes newlines.
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. `end` in this context means the last
|
|
/// position of that byte string; for a left-to-right language like English or
|
|
/// Russian, this will be right side, and for right-to-left languages like
|
|
/// Arabic or Hebrew, this will be the left side.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let s = "\n Hello\tworld\t\n";
|
|
/// assert_eq!("\n Hello\tworld", s.trim_end());
|
|
/// ```
|
|
///
|
|
/// Directionality:
|
|
///
|
|
/// ```
|
|
/// let s = " English ";
|
|
/// assert!(Some('h') == s.trim_end().chars().rev().next());
|
|
///
|
|
/// let s = " עברית ";
|
|
/// assert!(Some('ת') == s.trim_end().chars().rev().next());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "trim_direction", since = "1.30.0")]
|
|
#[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_end")]
|
|
pub fn trim_end(&self) -> &str {
|
|
self.trim_end_matches(|c: char| c.is_whitespace())
|
|
}
|
|
|
|
/// Returns a string slice with leading whitespace removed.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`.
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. 'Left' in this context means the first
|
|
/// position of that byte string; for a language like Arabic or Hebrew
|
|
/// which are 'right to left' rather than 'left to right', this will be
|
|
/// the _right_ side, not the left.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let s = " Hello\tworld\t";
|
|
///
|
|
/// assert_eq!("Hello\tworld\t", s.trim_left());
|
|
/// ```
|
|
///
|
|
/// Directionality:
|
|
///
|
|
/// ```
|
|
/// let s = " English";
|
|
/// assert!(Some('E') == s.trim_left().chars().next());
|
|
///
|
|
/// let s = " עברית";
|
|
/// assert!(Some('ע') == s.trim_left().chars().next());
|
|
/// ```
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
|
|
pub fn trim_left(&self) -> &str {
|
|
self.trim_start()
|
|
}
|
|
|
|
/// Returns a string slice with trailing whitespace removed.
|
|
///
|
|
/// 'Whitespace' is defined according to the terms of the Unicode Derived
|
|
/// Core Property `White_Space`.
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. 'Right' in this context means the last
|
|
/// position of that byte string; for a language like Arabic or Hebrew
|
|
/// which are 'right to left' rather than 'left to right', this will be
|
|
/// the _left_ side, not the right.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// let s = " Hello\tworld\t";
|
|
///
|
|
/// assert_eq!(" Hello\tworld", s.trim_right());
|
|
/// ```
|
|
///
|
|
/// Directionality:
|
|
///
|
|
/// ```
|
|
/// let s = "English ";
|
|
/// assert!(Some('h') == s.trim_right().chars().rev().next());
|
|
///
|
|
/// let s = "עברית ";
|
|
/// assert!(Some('ת') == s.trim_right().chars().rev().next());
|
|
/// ```
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
|
|
pub fn trim_right(&self) -> &str {
|
|
self.trim_end()
|
|
}
|
|
|
|
/// Returns a string slice with all prefixes and suffixes that match a
|
|
/// pattern repeatedly removed.
|
|
///
|
|
/// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
|
|
/// or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
|
|
/// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
|
|
///
|
|
/// let x: &[_] = &['1', '2'];
|
|
/// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
|
|
/// ```
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str
|
|
where
|
|
P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>,
|
|
{
|
|
let mut i = 0;
|
|
let mut j = 0;
|
|
let mut matcher = pat.into_searcher(self);
|
|
if let Some((a, b)) = matcher.next_reject() {
|
|
i = a;
|
|
j = b; // Remember earliest known match, correct it below if
|
|
// last match is different
|
|
}
|
|
if let Some((_, b)) = matcher.next_reject_back() {
|
|
j = b;
|
|
}
|
|
// SAFETY: `Searcher` is known to return valid indices.
|
|
unsafe { self.get_unchecked(i..j) }
|
|
}
|
|
|
|
/// Returns a string slice with all prefixes that match a pattern
|
|
/// repeatedly removed.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. `start` in this context means the first
|
|
/// position of that byte string; for a left-to-right language like English or
|
|
/// Russian, this will be left side, and for right-to-left languages like
|
|
/// Arabic or Hebrew, this will be the right side.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
|
|
/// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
|
|
///
|
|
/// let x: &[_] = &['1', '2'];
|
|
/// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
|
|
/// ```
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "trim_direction", since = "1.30.0")]
|
|
pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
|
|
let mut i = self.len();
|
|
let mut matcher = pat.into_searcher(self);
|
|
if let Some((a, _)) = matcher.next_reject() {
|
|
i = a;
|
|
}
|
|
// SAFETY: `Searcher` is known to return valid indices.
|
|
unsafe { self.get_unchecked(i..self.len()) }
|
|
}
|
|
|
|
/// Returns a string slice with the prefix removed.
|
|
///
|
|
/// If the string starts with the pattern `prefix`, returns substring after the prefix, wrapped
|
|
/// in `Some`. Unlike `trim_start_matches`, this method removes the prefix exactly once.
|
|
///
|
|
/// If the string does not start with `prefix`, returns `None`.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
|
|
/// assert_eq!("foo:bar".strip_prefix("bar"), None);
|
|
/// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
|
|
/// ```
|
|
#[must_use = "this returns the remaining substring as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "str_strip", since = "1.45.0")]
|
|
pub fn strip_prefix<'a, P: Pattern<'a>>(&'a self, prefix: P) -> Option<&'a str> {
|
|
prefix.strip_prefix_of(self)
|
|
}
|
|
|
|
/// Returns a string slice with the suffix removed.
|
|
///
|
|
/// If the string ends with the pattern `suffix`, returns the substring before the suffix,
|
|
/// wrapped in `Some`. Unlike `trim_end_matches`, this method removes the suffix exactly once.
|
|
///
|
|
/// If the string does not end with `suffix`, returns `None`.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
|
|
/// assert_eq!("bar:foo".strip_suffix("bar"), None);
|
|
/// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
|
|
/// ```
|
|
#[must_use = "this returns the remaining substring as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "str_strip", since = "1.45.0")]
|
|
pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str>
|
|
where
|
|
P: Pattern<'a>,
|
|
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
|
|
{
|
|
suffix.strip_suffix_of(self)
|
|
}
|
|
|
|
/// Returns a string slice with all suffixes that match a pattern
|
|
/// repeatedly removed.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. `end` in this context means the last
|
|
/// position of that byte string; for a left-to-right language like English or
|
|
/// Russian, this will be right side, and for right-to-left languages like
|
|
/// Arabic or Hebrew, this will be the left side.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
|
|
/// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
|
|
///
|
|
/// let x: &[_] = &['1', '2'];
|
|
/// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
|
|
/// ```
|
|
#[must_use = "this returns the trimmed string as a new slice, \
|
|
without modifying the original"]
|
|
#[stable(feature = "trim_direction", since = "1.30.0")]
|
|
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
let mut j = 0;
|
|
let mut matcher = pat.into_searcher(self);
|
|
if let Some((_, b)) = matcher.next_reject_back() {
|
|
j = b;
|
|
}
|
|
// SAFETY: `Searcher` is known to return valid indices.
|
|
unsafe { self.get_unchecked(0..j) }
|
|
}
|
|
|
|
/// Returns a string slice with all prefixes that match a pattern
|
|
/// repeatedly removed.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. 'Left' in this context means the first
|
|
/// position of that byte string; for a language like Arabic or Hebrew
|
|
/// which are 'right to left' rather than 'left to right', this will be
|
|
/// the _right_ side, not the left.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
|
|
/// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
|
|
///
|
|
/// let x: &[_] = &['1', '2'];
|
|
/// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(
|
|
since = "1.33.0",
|
|
note = "superseded by `trim_start_matches`",
|
|
suggestion = "trim_start_matches"
|
|
)]
|
|
pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
|
|
self.trim_start_matches(pat)
|
|
}
|
|
|
|
/// Returns a string slice with all suffixes that match a pattern
|
|
/// repeatedly removed.
|
|
///
|
|
/// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
|
|
/// function or closure that determines if a character matches.
|
|
///
|
|
/// [`char`]: prim@char
|
|
/// [pattern]: self::pattern
|
|
///
|
|
/// # Text directionality
|
|
///
|
|
/// A string is a sequence of bytes. 'Right' in this context means the last
|
|
/// position of that byte string; for a language like Arabic or Hebrew
|
|
/// which are 'right to left' rather than 'left to right', this will be
|
|
/// the _left_ side, not the right.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Simple patterns:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
|
|
/// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
|
|
///
|
|
/// let x: &[_] = &['1', '2'];
|
|
/// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
|
|
/// ```
|
|
///
|
|
/// A more complex pattern, using a closure:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(
|
|
since = "1.33.0",
|
|
note = "superseded by `trim_end_matches`",
|
|
suggestion = "trim_end_matches"
|
|
)]
|
|
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str
|
|
where
|
|
P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
|
|
{
|
|
self.trim_end_matches(pat)
|
|
}
|
|
|
|
/// Parses this string slice into another type.
|
|
///
|
|
/// Because `parse` is so general, it can cause problems with type
|
|
/// inference. As such, `parse` is one of the few times you'll see
|
|
/// the syntax affectionately known as the 'turbofish': `::<>`. This
|
|
/// helps the inference algorithm understand specifically which type
|
|
/// you're trying to parse into.
|
|
///
|
|
/// `parse` can parse into any type that implements the [`FromStr`] trait.
|
|
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Will return [`Err`] if it's not possible to parse this string slice into
|
|
/// the desired type.
|
|
///
|
|
/// [`Err`]: FromStr::Err
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage
|
|
///
|
|
/// ```
|
|
/// let four: u32 = "4".parse().unwrap();
|
|
///
|
|
/// assert_eq!(4, four);
|
|
/// ```
|
|
///
|
|
/// Using the 'turbofish' instead of annotating `four`:
|
|
///
|
|
/// ```
|
|
/// let four = "4".parse::<u32>();
|
|
///
|
|
/// assert_eq!(Ok(4), four);
|
|
/// ```
|
|
///
|
|
/// Failing to parse:
|
|
///
|
|
/// ```
|
|
/// let nope = "j".parse::<u32>();
|
|
///
|
|
/// assert!(nope.is_err());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
|
|
FromStr::from_str(self)
|
|
}
|
|
|
|
/// Checks if all characters in this string are within the ASCII range.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let ascii = "hello!\n";
|
|
/// let non_ascii = "Grüße, Jürgen ❤";
|
|
///
|
|
/// assert!(ascii.is_ascii());
|
|
/// assert!(!non_ascii.is_ascii());
|
|
/// ```
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn is_ascii(&self) -> bool {
|
|
// We can treat each byte as character here: all multibyte characters
|
|
// start with a byte that is not in the ASCII range, so we will stop
|
|
// there already.
|
|
self.as_bytes().is_ascii()
|
|
}
|
|
|
|
/// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
|
|
/// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
|
|
#[unstable(feature = "ascii_char", issue = "110998")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
|
|
// Like in `is_ascii`, we can work on the bytes directly.
|
|
self.as_bytes().as_ascii()
|
|
}
|
|
|
|
/// Checks that two strings are an ASCII case-insensitive match.
|
|
///
|
|
/// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
|
|
/// but without allocating and copying temporaries.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
|
|
/// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
|
|
/// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
|
|
/// ```
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool {
|
|
self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
|
|
}
|
|
|
|
/// Converts this string to its ASCII upper case equivalent in-place.
|
|
///
|
|
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To return a new uppercased value without modifying the existing one, use
|
|
/// [`to_ascii_uppercase()`].
|
|
///
|
|
/// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut s = String::from("Grüße, Jürgen ❤");
|
|
///
|
|
/// s.make_ascii_uppercase();
|
|
///
|
|
/// assert_eq!("GRüßE, JüRGEN ❤", s);
|
|
/// ```
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[inline]
|
|
pub fn make_ascii_uppercase(&mut self) {
|
|
// SAFETY: changing ASCII letters only does not invalidate UTF-8.
|
|
let me = unsafe { self.as_bytes_mut() };
|
|
me.make_ascii_uppercase()
|
|
}
|
|
|
|
/// Converts this string to its ASCII lower case equivalent in-place.
|
|
///
|
|
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To return a new lowercased value without modifying the existing one, use
|
|
/// [`to_ascii_lowercase()`].
|
|
///
|
|
/// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut s = String::from("GRÜßE, JÜRGEN ❤");
|
|
///
|
|
/// s.make_ascii_lowercase();
|
|
///
|
|
/// assert_eq!("grÜße, jÜrgen ❤", s);
|
|
/// ```
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[inline]
|
|
pub fn make_ascii_lowercase(&mut self) {
|
|
// SAFETY: changing ASCII letters only does not invalidate UTF-8.
|
|
let me = unsafe { self.as_bytes_mut() };
|
|
me.make_ascii_lowercase()
|
|
}
|
|
|
|
/// Return an iterator that escapes each char in `self` with [`char::escape_debug`].
|
|
///
|
|
/// Note: only extended grapheme codepoints that begin the string will be
|
|
/// escaped.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// As an iterator:
|
|
///
|
|
/// ```
|
|
/// for c in "❤\n!".escape_debug() {
|
|
/// print!("{c}");
|
|
/// }
|
|
/// println!();
|
|
/// ```
|
|
///
|
|
/// Using `println!` directly:
|
|
///
|
|
/// ```
|
|
/// println!("{}", "❤\n!".escape_debug());
|
|
/// ```
|
|
///
|
|
///
|
|
/// Both are equivalent to:
|
|
///
|
|
/// ```
|
|
/// println!("❤\\n!");
|
|
/// ```
|
|
///
|
|
/// Using `to_string`:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
|
|
/// ```
|
|
#[must_use = "this returns the escaped string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "str_escape", since = "1.34.0")]
|
|
pub fn escape_debug(&self) -> EscapeDebug<'_> {
|
|
let mut chars = self.chars();
|
|
EscapeDebug {
|
|
inner: chars
|
|
.next()
|
|
.map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
|
|
.into_iter()
|
|
.flatten()
|
|
.chain(chars.flat_map(CharEscapeDebugContinue)),
|
|
}
|
|
}
|
|
|
|
/// Return an iterator that escapes each char in `self` with [`char::escape_default`].
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// As an iterator:
|
|
///
|
|
/// ```
|
|
/// for c in "❤\n!".escape_default() {
|
|
/// print!("{c}");
|
|
/// }
|
|
/// println!();
|
|
/// ```
|
|
///
|
|
/// Using `println!` directly:
|
|
///
|
|
/// ```
|
|
/// println!("{}", "❤\n!".escape_default());
|
|
/// ```
|
|
///
|
|
///
|
|
/// Both are equivalent to:
|
|
///
|
|
/// ```
|
|
/// println!("\\u{{2764}}\\n!");
|
|
/// ```
|
|
///
|
|
/// Using `to_string`:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
|
|
/// ```
|
|
#[must_use = "this returns the escaped string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "str_escape", since = "1.34.0")]
|
|
pub fn escape_default(&self) -> EscapeDefault<'_> {
|
|
EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
|
|
}
|
|
|
|
/// Return an iterator that escapes each char in `self` with [`char::escape_unicode`].
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// As an iterator:
|
|
///
|
|
/// ```
|
|
/// for c in "❤\n!".escape_unicode() {
|
|
/// print!("{c}");
|
|
/// }
|
|
/// println!();
|
|
/// ```
|
|
///
|
|
/// Using `println!` directly:
|
|
///
|
|
/// ```
|
|
/// println!("{}", "❤\n!".escape_unicode());
|
|
/// ```
|
|
///
|
|
///
|
|
/// Both are equivalent to:
|
|
///
|
|
/// ```
|
|
/// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
|
|
/// ```
|
|
///
|
|
/// Using `to_string`:
|
|
///
|
|
/// ```
|
|
/// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
|
|
/// ```
|
|
#[must_use = "this returns the escaped string as an iterator, \
|
|
without modifying the original"]
|
|
#[stable(feature = "str_escape", since = "1.34.0")]
|
|
pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
|
|
EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl AsRef<[u8]> for str {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[u8] {
|
|
self.as_bytes()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Default for &str {
|
|
/// Creates an empty str
|
|
#[inline]
|
|
fn default() -> Self {
|
|
""
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "default_mut_str", since = "1.28.0")]
|
|
impl Default for &mut str {
|
|
/// Creates an empty mutable str
|
|
#[inline]
|
|
fn default() -> Self {
|
|
// SAFETY: The empty string is valid UTF-8.
|
|
unsafe { from_utf8_unchecked_mut(&mut []) }
|
|
}
|
|
}
|
|
|
|
impl_fn_for_zst! {
|
|
/// A nameable, cloneable fn type
|
|
#[derive(Clone)]
|
|
struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
|
|
let Some(line) = line.strip_suffix('\n') else { return line };
|
|
let Some(line) = line.strip_suffix('\r') else { return line };
|
|
line
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
|
|
c.escape_debug_ext(EscapeDebugExtArgs {
|
|
escape_grapheme_extended: false,
|
|
escape_single_quote: true,
|
|
escape_double_quote: true
|
|
})
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
|
|
c.escape_unicode()
|
|
};
|
|
#[derive(Clone)]
|
|
struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
|
|
c.escape_default()
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct IsWhitespace impl Fn = |c: char| -> bool {
|
|
c.is_whitespace()
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
|
|
byte.is_ascii_whitespace()
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
|
|
!s.is_empty()
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
|
|
!s.is_empty()
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
|
|
// SAFETY: not safe
|
|
unsafe { from_utf8_unchecked(bytes) }
|
|
};
|
|
}
|
|
|
|
// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl !crate::error::Error for &str {}
|