2354 lines
94 KiB
Rust
2354 lines
94 KiB
Rust
use core::ops::ControlFlow;
|
|
use std::borrow::Cow;
|
|
use std::iter;
|
|
|
|
use hir::def_id::{DefId, DefIdMap, LocalDefId};
|
|
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
|
|
use rustc_errors::codes::*;
|
|
use rustc_errors::{Applicability, ErrorGuaranteed, pluralize, struct_span_code_err};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::{DefKind, Res};
|
|
use rustc_hir::{GenericParamKind, ImplItemKind, intravisit};
|
|
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
|
|
use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
|
|
use rustc_infer::traits::util;
|
|
use rustc_middle::ty::error::{ExpectedFound, TypeError};
|
|
use rustc_middle::ty::fold::BottomUpFolder;
|
|
use rustc_middle::ty::util::ExplicitSelf;
|
|
use rustc_middle::ty::{
|
|
self, GenericArgs, GenericParamDefKind, Ty, TyCtxt, TypeFoldable, TypeFolder,
|
|
TypeSuperFoldable, TypeVisitableExt, TypingMode, Upcast,
|
|
};
|
|
use rustc_middle::{bug, span_bug};
|
|
use rustc_span::Span;
|
|
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
|
|
use rustc_trait_selection::infer::InferCtxtExt;
|
|
use rustc_trait_selection::regions::InferCtxtRegionExt;
|
|
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
|
|
use rustc_trait_selection::traits::{
|
|
self, FulfillmentError, ObligationCause, ObligationCauseCode, ObligationCtxt,
|
|
};
|
|
use tracing::{debug, instrument};
|
|
|
|
use super::potentially_plural_count;
|
|
use crate::errors::{LifetimesOrBoundsMismatchOnTrait, MethodShouldReturnFuture};
|
|
|
|
mod refine;
|
|
|
|
/// Checks that a method from an impl conforms to the signature of
|
|
/// the same method as declared in the trait.
|
|
///
|
|
/// # Parameters
|
|
///
|
|
/// - `impl_m`: type of the method we are checking
|
|
/// - `trait_m`: the method in the trait
|
|
/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
pub(super) fn compare_impl_method<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) {
|
|
let _: Result<_, ErrorGuaranteed> = try {
|
|
check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, false)?;
|
|
compare_method_predicate_entailment(tcx, impl_m, trait_m, impl_trait_ref)?;
|
|
refine::check_refining_return_position_impl_trait_in_trait(
|
|
tcx,
|
|
impl_m,
|
|
trait_m,
|
|
impl_trait_ref,
|
|
);
|
|
};
|
|
}
|
|
|
|
/// Checks a bunch of different properties of the impl/trait methods for
|
|
/// compatibility, such as asyncness, number of argument, self receiver kind,
|
|
/// and number of early- and late-bound generics.
|
|
fn check_method_is_structurally_compatible<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
compare_self_type(tcx, impl_m, trait_m, impl_trait_ref, delay)?;
|
|
compare_number_of_generics(tcx, impl_m, trait_m, delay)?;
|
|
compare_generic_param_kinds(tcx, impl_m, trait_m, delay)?;
|
|
compare_number_of_method_arguments(tcx, impl_m, trait_m, delay)?;
|
|
compare_synthetic_generics(tcx, impl_m, trait_m, delay)?;
|
|
check_region_bounds_on_impl_item(tcx, impl_m, trait_m, delay)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// This function is best explained by example. Consider a trait with its implementation:
|
|
///
|
|
/// ```rust
|
|
/// trait Trait<'t, T> {
|
|
/// // `trait_m`
|
|
/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
|
|
/// }
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
|
|
/// // `impl_m`
|
|
/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo { Foo }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// We wish to decide if those two method types are compatible.
|
|
/// For this we have to show that, assuming the bounds of the impl hold, the
|
|
/// bounds of `trait_m` imply the bounds of `impl_m`.
|
|
///
|
|
/// We start out with `trait_to_impl_args`, that maps the trait
|
|
/// type parameters to impl type parameters. This is taken from the
|
|
/// impl trait reference:
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// trait_to_impl_args = {'t => 'j, T => &'i U, Self => Foo}
|
|
/// ```
|
|
///
|
|
/// We create a mapping `dummy_args` that maps from the impl type
|
|
/// parameters to fresh types and regions. For type parameters,
|
|
/// this is the identity transform, but we could as well use any
|
|
/// placeholder types. For regions, we convert from bound to free
|
|
/// regions (Note: but only early-bound regions, i.e., those
|
|
/// declared on the impl or used in type parameter bounds).
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// impl_to_placeholder_args = {'i => 'i0, U => U0, N => N0 }
|
|
/// ```
|
|
///
|
|
/// Now we can apply `placeholder_args` to the type of the impl method
|
|
/// to yield a new function type in terms of our fresh, placeholder
|
|
/// types:
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// <'b> fn(t: &'i0 U0, m: &'b N0) -> Foo
|
|
/// ```
|
|
///
|
|
/// We now want to extract and instantiate the type of the *trait*
|
|
/// method and compare it. To do so, we must create a compound
|
|
/// instantiation by combining `trait_to_impl_args` and
|
|
/// `impl_to_placeholder_args`, and also adding a mapping for the method
|
|
/// type parameters. We extend the mapping to also include
|
|
/// the method parameters.
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// trait_to_placeholder_args = { T => &'i0 U0, Self => Foo, M => N0 }
|
|
/// ```
|
|
///
|
|
/// Applying this to the trait method type yields:
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// <'a> fn(t: &'i0 U0, m: &'a N0) -> Foo
|
|
/// ```
|
|
///
|
|
/// This type is also the same but the name of the bound region (`'a`
|
|
/// vs `'b`). However, the normal subtyping rules on fn types handle
|
|
/// this kind of equivalency just fine.
|
|
///
|
|
/// We now use these generic parameters to ensure that all declared bounds
|
|
/// are satisfied by the implementation's method.
|
|
///
|
|
/// We do this by creating a parameter environment which contains a
|
|
/// generic parameter corresponding to `impl_to_placeholder_args`. We then build
|
|
/// `trait_to_placeholder_args` and use it to convert the predicates contained
|
|
/// in the `trait_m` generics to the placeholder form.
|
|
///
|
|
/// Finally we register each of these predicates as an obligation and check that
|
|
/// they hold.
|
|
#[instrument(level = "debug", skip(tcx, impl_trait_ref))]
|
|
fn compare_method_predicate_entailment<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
// This node-id should be used for the `body_id` field on each
|
|
// `ObligationCause` (and the `FnCtxt`).
|
|
//
|
|
// FIXME(@lcnr): remove that after removing `cause.body_id` from
|
|
// obligations.
|
|
let impl_m_def_id = impl_m.def_id.expect_local();
|
|
let impl_m_span = tcx.def_span(impl_m_def_id);
|
|
let cause =
|
|
ObligationCause::new(impl_m_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_m_def_id,
|
|
trait_item_def_id: trait_m.def_id,
|
|
kind: impl_m.kind,
|
|
});
|
|
|
|
// Create mapping from trait method to impl method.
|
|
let impl_def_id = impl_m.container_id(tcx);
|
|
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
|
|
tcx,
|
|
impl_m.container_id(tcx),
|
|
impl_trait_ref.args,
|
|
);
|
|
debug!(?trait_to_impl_args);
|
|
|
|
let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
|
|
let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
|
|
|
|
// This is the only tricky bit of the new way we check implementation methods
|
|
// We need to build a set of predicates where only the method-level bounds
|
|
// are from the trait and we assume all other bounds from the implementation
|
|
// to be previously satisfied.
|
|
//
|
|
// We then register the obligations from the impl_m and check to see
|
|
// if all constraints hold.
|
|
let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
|
|
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
|
|
hybrid_preds.extend(
|
|
trait_m_predicates.instantiate_own(tcx, trait_to_impl_args).map(|(predicate, _)| predicate),
|
|
);
|
|
|
|
let is_conditionally_const = tcx.is_conditionally_const(impl_def_id);
|
|
if is_conditionally_const {
|
|
// Augment the hybrid param-env with the const conditions
|
|
// of the impl header and the trait method.
|
|
hybrid_preds.extend(
|
|
tcx.const_conditions(impl_def_id)
|
|
.instantiate_identity(tcx)
|
|
.into_iter()
|
|
.chain(
|
|
tcx.const_conditions(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args),
|
|
)
|
|
.map(|(trait_ref, _)| {
|
|
trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
|
|
}),
|
|
);
|
|
}
|
|
|
|
let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_def_id);
|
|
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
|
|
let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
|
|
debug!(caller_bounds=?param_env.caller_bounds());
|
|
|
|
let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
|
|
let ocx = ObligationCtxt::new_with_diagnostics(infcx);
|
|
|
|
// Create obligations for each predicate declared by the impl
|
|
// definition in the context of the hybrid param-env. This makes
|
|
// sure that the impl's method's where clauses are not more
|
|
// restrictive than the trait's method (and the impl itself).
|
|
let impl_m_own_bounds = impl_m_predicates.instantiate_own_identity();
|
|
for (predicate, span) in impl_m_own_bounds {
|
|
let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
|
|
let predicate = ocx.normalize(&normalize_cause, param_env, predicate);
|
|
|
|
let cause =
|
|
ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_m_def_id,
|
|
trait_item_def_id: trait_m.def_id,
|
|
kind: impl_m.kind,
|
|
});
|
|
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
|
|
}
|
|
|
|
// If we're within a const implementation, we need to make sure that the method
|
|
// does not assume stronger `~const` bounds than the trait definition.
|
|
//
|
|
// This registers the `~const` bounds of the impl method, which we will prove
|
|
// using the hybrid param-env that we earlier augmented with the const conditions
|
|
// from the impl header and trait method declaration.
|
|
if is_conditionally_const {
|
|
for (const_condition, span) in
|
|
tcx.const_conditions(impl_m.def_id).instantiate_own_identity()
|
|
{
|
|
let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
|
|
let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);
|
|
|
|
let cause =
|
|
ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_m_def_id,
|
|
trait_item_def_id: trait_m.def_id,
|
|
kind: impl_m.kind,
|
|
});
|
|
ocx.register_obligation(traits::Obligation::new(
|
|
tcx,
|
|
cause,
|
|
param_env,
|
|
const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
|
|
));
|
|
}
|
|
}
|
|
|
|
// We now need to check that the signature of the impl method is
|
|
// compatible with that of the trait method. We do this by
|
|
// checking that `impl_fty <: trait_fty`.
|
|
//
|
|
// FIXME. Unfortunately, this doesn't quite work right now because
|
|
// associated type normalization is not integrated into subtype
|
|
// checks. For the comparison to be valid, we need to
|
|
// normalize the associated types in the impl/trait methods
|
|
// first. However, because function types bind regions, just
|
|
// calling `FnCtxt::normalize` would have no effect on
|
|
// any associated types appearing in the fn arguments or return
|
|
// type.
|
|
|
|
let mut wf_tys = FxIndexSet::default();
|
|
|
|
let unnormalized_impl_sig = infcx.instantiate_binder_with_fresh_vars(
|
|
impl_m_span,
|
|
infer::HigherRankedType,
|
|
tcx.fn_sig(impl_m.def_id).instantiate_identity(),
|
|
);
|
|
|
|
let norm_cause = ObligationCause::misc(impl_m_span, impl_m_def_id);
|
|
let impl_sig = ocx.normalize(&norm_cause, param_env, unnormalized_impl_sig);
|
|
debug!(?impl_sig);
|
|
|
|
let trait_sig = tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args);
|
|
let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
|
|
|
|
// Next, add all inputs and output as well-formed tys. Importantly,
|
|
// we have to do this before normalization, since the normalized ty may
|
|
// not contain the input parameters. See issue #87748.
|
|
wf_tys.extend(trait_sig.inputs_and_output.iter());
|
|
let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
|
|
// We also have to add the normalized trait signature
|
|
// as we don't normalize during implied bounds computation.
|
|
wf_tys.extend(trait_sig.inputs_and_output.iter());
|
|
debug!(?trait_sig);
|
|
|
|
// FIXME: We'd want to keep more accurate spans than "the method signature" when
|
|
// processing the comparison between the trait and impl fn, but we sadly lose them
|
|
// and point at the whole signature when a trait bound or specific input or output
|
|
// type would be more appropriate. In other places we have a `Vec<Span>`
|
|
// corresponding to their `Vec<Predicate>`, but we don't have that here.
|
|
// Fixing this would improve the output of test `issue-83765.rs`.
|
|
let result = ocx.sup(&cause, param_env, trait_sig, impl_sig);
|
|
|
|
if let Err(terr) = result {
|
|
debug!(?impl_sig, ?trait_sig, ?terr, "sub_types failed");
|
|
|
|
let emitted = report_trait_method_mismatch(
|
|
infcx,
|
|
cause,
|
|
param_env,
|
|
terr,
|
|
(trait_m, trait_sig),
|
|
(impl_m, impl_sig),
|
|
impl_trait_ref,
|
|
);
|
|
return Err(emitted);
|
|
}
|
|
|
|
if !(impl_sig, trait_sig).references_error() {
|
|
// Select obligations to make progress on inference before processing
|
|
// the wf obligation below.
|
|
// FIXME(-Znext-solver): Not needed when the hack below is removed.
|
|
let errors = ocx.select_where_possible();
|
|
if !errors.is_empty() {
|
|
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
|
|
return Err(reported);
|
|
}
|
|
|
|
// See #108544. Annoying, we can end up in cases where, because of winnowing,
|
|
// we pick param env candidates over a more general impl, leading to more
|
|
// stricter lifetime requirements than we would otherwise need. This can
|
|
// trigger the lint. Instead, let's only consider type outlives and
|
|
// region outlives obligations.
|
|
//
|
|
// FIXME(-Znext-solver): Try removing this hack again once the new
|
|
// solver is stable. We should just be able to register a WF pred for
|
|
// the fn sig.
|
|
let mut wf_args: smallvec::SmallVec<[_; 4]> =
|
|
unnormalized_impl_sig.inputs_and_output.iter().map(|ty| ty.into()).collect();
|
|
// Annoyingly, asking for the WF predicates of an array (with an unevaluated const (only?))
|
|
// will give back the well-formed predicate of the same array.
|
|
let mut wf_args_seen: FxHashSet<_> = wf_args.iter().copied().collect();
|
|
while let Some(arg) = wf_args.pop() {
|
|
let Some(obligations) = rustc_trait_selection::traits::wf::obligations(
|
|
infcx,
|
|
param_env,
|
|
impl_m_def_id,
|
|
0,
|
|
arg,
|
|
impl_m_span,
|
|
) else {
|
|
continue;
|
|
};
|
|
for obligation in obligations {
|
|
debug!(?obligation);
|
|
match obligation.predicate.kind().skip_binder() {
|
|
// We need to register Projection oblgiations too, because we may end up with
|
|
// an implied `X::Item: 'a`, which gets desugared into `X::Item = ?0`, `?0: 'a`.
|
|
// If we only register the region outlives obligation, this leads to an unconstrained var.
|
|
// See `implied_bounds_entailment_alias_var.rs` test.
|
|
ty::PredicateKind::Clause(
|
|
ty::ClauseKind::RegionOutlives(..)
|
|
| ty::ClauseKind::TypeOutlives(..)
|
|
| ty::ClauseKind::Projection(..),
|
|
) => ocx.register_obligation(obligation),
|
|
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
|
|
if wf_args_seen.insert(arg) {
|
|
wf_args.push(arg)
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that all obligations are satisfied by the implementation's
|
|
// version.
|
|
let errors = ocx.select_all_or_error();
|
|
if !errors.is_empty() {
|
|
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
|
|
return Err(reported);
|
|
}
|
|
|
|
// Finally, resolve all regions. This catches wily misuses of
|
|
// lifetime parameters.
|
|
let outlives_env = OutlivesEnvironment::with_bounds(
|
|
param_env,
|
|
infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
|
|
);
|
|
let errors = infcx.resolve_regions(&outlives_env);
|
|
if !errors.is_empty() {
|
|
return Err(infcx
|
|
.tainted_by_errors()
|
|
.unwrap_or_else(|| infcx.err_ctxt().report_region_errors(impl_m_def_id, &errors)));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
struct RemapLateBound<'a, 'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
mapping: &'a FxIndexMap<ty::BoundRegionKind, ty::BoundRegionKind>,
|
|
}
|
|
|
|
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for RemapLateBound<'_, 'tcx> {
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
|
|
if let ty::ReLateParam(fr) = *r {
|
|
ty::Region::new_late_param(
|
|
self.tcx,
|
|
fr.scope,
|
|
self.mapping.get(&fr.bound_region).copied().unwrap_or(fr.bound_region),
|
|
)
|
|
} else {
|
|
r
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a method def-id in an impl, compare the method signature of the impl
|
|
/// against the trait that it's implementing. In doing so, infer the hidden types
|
|
/// that this method's signature provides to satisfy each return-position `impl Trait`
|
|
/// in the trait signature.
|
|
///
|
|
/// The method is also responsible for making sure that the hidden types for each
|
|
/// RPITIT actually satisfy the bounds of the `impl Trait`, i.e. that if we infer
|
|
/// `impl Trait = Foo`, that `Foo: Trait` holds.
|
|
///
|
|
/// For example, given the sample code:
|
|
///
|
|
/// ```
|
|
/// use std::ops::Deref;
|
|
///
|
|
/// trait Foo {
|
|
/// fn bar() -> impl Deref<Target = impl Sized>;
|
|
/// // ^- RPITIT #1 ^- RPITIT #2
|
|
/// }
|
|
///
|
|
/// impl Foo for () {
|
|
/// fn bar() -> Box<String> { Box::new(String::new()) }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// The hidden types for the RPITITs in `bar` would be inferred to:
|
|
/// * `impl Deref` (RPITIT #1) = `Box<String>`
|
|
/// * `impl Sized` (RPITIT #2) = `String`
|
|
///
|
|
/// The relationship between these two types is straightforward in this case, but
|
|
/// may be more tenuously connected via other `impl`s and normalization rules for
|
|
/// cases of more complicated nested RPITITs.
|
|
#[instrument(skip(tcx), level = "debug", ret)]
|
|
pub(super) fn collect_return_position_impl_trait_in_trait_tys<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m_def_id: LocalDefId,
|
|
) -> Result<&'tcx DefIdMap<ty::EarlyBinder<'tcx, Ty<'tcx>>>, ErrorGuaranteed> {
|
|
let impl_m = tcx.opt_associated_item(impl_m_def_id.to_def_id()).unwrap();
|
|
let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
|
|
let impl_trait_ref =
|
|
tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap().instantiate_identity();
|
|
// First, check a few of the same things as `compare_impl_method`,
|
|
// just so we don't ICE during instantiation later.
|
|
check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, true)?;
|
|
|
|
let impl_m_hir_id = tcx.local_def_id_to_hir_id(impl_m_def_id);
|
|
let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
|
|
let cause =
|
|
ObligationCause::new(return_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_m_def_id,
|
|
trait_item_def_id: trait_m.def_id,
|
|
kind: impl_m.kind,
|
|
});
|
|
|
|
// Create mapping from trait to impl (i.e. impl trait header + impl method identity args).
|
|
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
|
|
tcx,
|
|
impl_m.container_id(tcx),
|
|
impl_trait_ref.args,
|
|
);
|
|
|
|
let hybrid_preds = tcx
|
|
.predicates_of(impl_m.container_id(tcx))
|
|
.instantiate_identity(tcx)
|
|
.into_iter()
|
|
.chain(tcx.predicates_of(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args))
|
|
.map(|(clause, _)| clause);
|
|
let param_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(hybrid_preds));
|
|
let param_env = traits::normalize_param_env_or_error(
|
|
tcx,
|
|
param_env,
|
|
ObligationCause::misc(tcx.def_span(impl_m_def_id), impl_m_def_id),
|
|
);
|
|
|
|
let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
|
|
let ocx = ObligationCtxt::new_with_diagnostics(infcx);
|
|
|
|
// Normalize the impl signature with fresh variables for lifetime inference.
|
|
let misc_cause = ObligationCause::misc(return_span, impl_m_def_id);
|
|
let impl_sig = ocx.normalize(
|
|
&misc_cause,
|
|
param_env,
|
|
tcx.liberate_late_bound_regions(
|
|
impl_m.def_id,
|
|
tcx.fn_sig(impl_m.def_id).instantiate_identity(),
|
|
),
|
|
);
|
|
impl_sig.error_reported()?;
|
|
let impl_return_ty = impl_sig.output();
|
|
|
|
// Normalize the trait signature with liberated bound vars, passing it through
|
|
// the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
|
|
// them with inference variables.
|
|
// We will use these inference variables to collect the hidden types of RPITITs.
|
|
let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_def_id);
|
|
let unnormalized_trait_sig = infcx
|
|
.instantiate_binder_with_fresh_vars(
|
|
return_span,
|
|
infer::HigherRankedType,
|
|
tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args),
|
|
)
|
|
.fold_with(&mut collector);
|
|
|
|
let trait_sig = ocx.normalize(&misc_cause, param_env, unnormalized_trait_sig);
|
|
trait_sig.error_reported()?;
|
|
let trait_return_ty = trait_sig.output();
|
|
|
|
// RPITITs are allowed to use the implied predicates of the method that
|
|
// defines them. This is because we want code like:
|
|
// ```
|
|
// trait Foo {
|
|
// fn test<'a, T>(_: &'a T) -> impl Sized;
|
|
// }
|
|
// impl Foo for () {
|
|
// fn test<'a, T>(x: &'a T) -> &'a T { x }
|
|
// }
|
|
// ```
|
|
// .. to compile. However, since we use both the normalized and unnormalized
|
|
// inputs and outputs from the instantiated trait signature, we will end up
|
|
// seeing the hidden type of an RPIT in the signature itself. Naively, this
|
|
// means that we will use the hidden type to imply the hidden type's own
|
|
// well-formedness.
|
|
//
|
|
// To avoid this, we replace the infer vars used for hidden type inference
|
|
// with placeholders, which imply nothing about outlives bounds, and then
|
|
// prove below that the hidden types are well formed.
|
|
let universe = infcx.create_next_universe();
|
|
let mut idx = 0;
|
|
let mapping: FxIndexMap<_, _> = collector
|
|
.types
|
|
.iter()
|
|
.map(|(_, &(ty, _))| {
|
|
assert!(
|
|
infcx.resolve_vars_if_possible(ty) == ty && ty.is_ty_var(),
|
|
"{ty:?} should not have been constrained via normalization",
|
|
ty = infcx.resolve_vars_if_possible(ty)
|
|
);
|
|
idx += 1;
|
|
(
|
|
ty,
|
|
Ty::new_placeholder(tcx, ty::Placeholder {
|
|
universe,
|
|
bound: ty::BoundTy {
|
|
var: ty::BoundVar::from_usize(idx),
|
|
kind: ty::BoundTyKind::Anon,
|
|
},
|
|
}),
|
|
)
|
|
})
|
|
.collect();
|
|
let mut type_mapper = BottomUpFolder {
|
|
tcx,
|
|
ty_op: |ty| *mapping.get(&ty).unwrap_or(&ty),
|
|
lt_op: |lt| lt,
|
|
ct_op: |ct| ct,
|
|
};
|
|
let wf_tys = FxIndexSet::from_iter(
|
|
unnormalized_trait_sig
|
|
.inputs_and_output
|
|
.iter()
|
|
.chain(trait_sig.inputs_and_output.iter())
|
|
.map(|ty| ty.fold_with(&mut type_mapper)),
|
|
);
|
|
|
|
match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
|
|
Ok(()) => {}
|
|
Err(terr) => {
|
|
let mut diag = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
cause.span,
|
|
E0053,
|
|
"method `{}` has an incompatible return type for trait",
|
|
trait_m.name
|
|
);
|
|
let hir = tcx.hir();
|
|
infcx.err_ctxt().note_type_err(
|
|
&mut diag,
|
|
&cause,
|
|
hir.get_if_local(impl_m.def_id)
|
|
.and_then(|node| node.fn_decl())
|
|
.map(|decl| (decl.output.span(), Cow::from("return type in trait"), false)),
|
|
Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
|
|
expected: trait_return_ty.into(),
|
|
found: impl_return_ty.into(),
|
|
}))),
|
|
terr,
|
|
false,
|
|
);
|
|
return Err(diag.emit());
|
|
}
|
|
}
|
|
|
|
debug!(?trait_sig, ?impl_sig, "equating function signatures");
|
|
|
|
// Unify the whole function signature. We need to do this to fully infer
|
|
// the lifetimes of the return type, but do this after unifying just the
|
|
// return types, since we want to avoid duplicating errors from
|
|
// `compare_method_predicate_entailment`.
|
|
match ocx.eq(&cause, param_env, trait_sig, impl_sig) {
|
|
Ok(()) => {}
|
|
Err(terr) => {
|
|
// This function gets called during `compare_method_predicate_entailment` when normalizing a
|
|
// signature that contains RPITIT. When the method signatures don't match, we have to
|
|
// emit an error now because `compare_method_predicate_entailment` will not report the error
|
|
// when normalization fails.
|
|
let emitted = report_trait_method_mismatch(
|
|
infcx,
|
|
cause,
|
|
param_env,
|
|
terr,
|
|
(trait_m, trait_sig),
|
|
(impl_m, impl_sig),
|
|
impl_trait_ref,
|
|
);
|
|
return Err(emitted);
|
|
}
|
|
}
|
|
|
|
if !unnormalized_trait_sig.output().references_error() && collector.types.is_empty() {
|
|
tcx.dcx().delayed_bug(
|
|
"expect >0 RPITITs in call to `collect_return_position_impl_trait_in_trait_tys`",
|
|
);
|
|
}
|
|
|
|
// FIXME: This has the same issue as #108544, but since this isn't breaking
|
|
// existing code, I'm not particularly inclined to do the same hack as above
|
|
// where we process wf obligations manually. This can be fixed in a forward-
|
|
// compatible way later.
|
|
let collected_types = collector.types;
|
|
for (_, &(ty, _)) in &collected_types {
|
|
ocx.register_obligation(traits::Obligation::new(
|
|
tcx,
|
|
misc_cause.clone(),
|
|
param_env,
|
|
ty::ClauseKind::WellFormed(ty.into()),
|
|
));
|
|
}
|
|
|
|
// Check that all obligations are satisfied by the implementation's
|
|
// RPITs.
|
|
let errors = ocx.select_all_or_error();
|
|
if !errors.is_empty() {
|
|
if let Err(guar) = try_report_async_mismatch(tcx, infcx, &errors, trait_m, impl_m, impl_sig)
|
|
{
|
|
return Err(guar);
|
|
}
|
|
|
|
let guar = infcx.err_ctxt().report_fulfillment_errors(errors);
|
|
return Err(guar);
|
|
}
|
|
|
|
// Finally, resolve all regions. This catches wily misuses of
|
|
// lifetime parameters.
|
|
let outlives_env = OutlivesEnvironment::with_bounds(
|
|
param_env,
|
|
infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
|
|
);
|
|
ocx.resolve_regions_and_report_errors(impl_m_def_id, &outlives_env)?;
|
|
|
|
let mut remapped_types = DefIdMap::default();
|
|
for (def_id, (ty, args)) in collected_types {
|
|
match infcx.fully_resolve((ty, args)) {
|
|
Ok((ty, args)) => {
|
|
// `ty` contains free regions that we created earlier while liberating the
|
|
// trait fn signature. However, projection normalization expects `ty` to
|
|
// contains `def_id`'s early-bound regions.
|
|
let id_args = GenericArgs::identity_for_item(tcx, def_id);
|
|
debug!(?id_args, ?args);
|
|
let map: FxIndexMap<_, _> = std::iter::zip(args, id_args)
|
|
.skip(tcx.generics_of(trait_m.def_id).count())
|
|
.filter_map(|(a, b)| Some((a.as_region()?, b.as_region()?)))
|
|
.collect();
|
|
debug!(?map);
|
|
|
|
// NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
|
|
// region args that are synthesized during AST lowering. These are args
|
|
// that are appended to the parent args (trait and trait method). However,
|
|
// we're trying to infer the uninstantiated type value of the RPITIT inside
|
|
// the *impl*, so we can later use the impl's method args to normalize
|
|
// an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
|
|
//
|
|
// Due to the design of RPITITs, during AST lowering, we have no idea that
|
|
// an impl method corresponds to a trait method with RPITITs in it. Therefore,
|
|
// we don't have a list of early-bound region args for the RPITIT in the impl.
|
|
// Since early region parameters are index-based, we can't just rebase these
|
|
// (trait method) early-bound region args onto the impl, and there's no
|
|
// guarantee that the indices from the trait args and impl args line up.
|
|
// So to fix this, we subtract the number of trait args and add the number of
|
|
// impl args to *renumber* these early-bound regions to their corresponding
|
|
// indices in the impl's generic parameters list.
|
|
//
|
|
// Also, we only need to account for a difference in trait and impl args,
|
|
// since we previously enforce that the trait method and impl method have the
|
|
// same generics.
|
|
let num_trait_args = impl_trait_ref.args.len();
|
|
let num_impl_args = tcx.generics_of(impl_m.container_id(tcx)).own_params.len();
|
|
let ty = match ty.try_fold_with(&mut RemapHiddenTyRegions {
|
|
tcx,
|
|
map,
|
|
num_trait_args,
|
|
num_impl_args,
|
|
def_id,
|
|
impl_m_def_id: impl_m.def_id,
|
|
ty,
|
|
return_span,
|
|
}) {
|
|
Ok(ty) => ty,
|
|
Err(guar) => Ty::new_error(tcx, guar),
|
|
};
|
|
remapped_types.insert(def_id, ty::EarlyBinder::bind(ty));
|
|
}
|
|
Err(err) => {
|
|
// This code path is not reached in any tests, but may be
|
|
// reachable. If this is triggered, it should be converted to
|
|
// `span_delayed_bug` and the triggering case turned into a
|
|
// test.
|
|
tcx.dcx()
|
|
.span_bug(return_span, format!("could not fully resolve: {ty} => {err:?}"));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We may not collect all RPITITs that we see in the HIR for a trait signature
|
|
// because an RPITIT was located within a missing item. Like if we have a sig
|
|
// returning `-> Missing<impl Sized>`, that gets converted to `-> {type error}`,
|
|
// and when walking through the signature we end up never collecting the def id
|
|
// of the `impl Sized`. Insert that here, so we don't ICE later.
|
|
for assoc_item in tcx.associated_types_for_impl_traits_in_associated_fn(trait_m.def_id) {
|
|
if !remapped_types.contains_key(assoc_item) {
|
|
remapped_types.insert(
|
|
*assoc_item,
|
|
ty::EarlyBinder::bind(Ty::new_error_with_message(
|
|
tcx,
|
|
return_span,
|
|
"missing synthetic item for RPITIT",
|
|
)),
|
|
);
|
|
}
|
|
}
|
|
|
|
Ok(&*tcx.arena.alloc(remapped_types))
|
|
}
|
|
|
|
struct ImplTraitInTraitCollector<'a, 'tcx, E> {
|
|
ocx: &'a ObligationCtxt<'a, 'tcx, E>,
|
|
types: FxIndexMap<DefId, (Ty<'tcx>, ty::GenericArgsRef<'tcx>)>,
|
|
span: Span,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
body_id: LocalDefId,
|
|
}
|
|
|
|
impl<'a, 'tcx, E> ImplTraitInTraitCollector<'a, 'tcx, E>
|
|
where
|
|
E: 'tcx,
|
|
{
|
|
fn new(
|
|
ocx: &'a ObligationCtxt<'a, 'tcx, E>,
|
|
span: Span,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
body_id: LocalDefId,
|
|
) -> Self {
|
|
ImplTraitInTraitCollector { ocx, types: FxIndexMap::default(), span, param_env, body_id }
|
|
}
|
|
}
|
|
|
|
impl<'tcx, E> TypeFolder<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'_, 'tcx, E>
|
|
where
|
|
E: 'tcx,
|
|
{
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.ocx.infcx.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
if let ty::Alias(ty::Projection, proj) = ty.kind()
|
|
&& self.cx().is_impl_trait_in_trait(proj.def_id)
|
|
{
|
|
if let Some((ty, _)) = self.types.get(&proj.def_id) {
|
|
return *ty;
|
|
}
|
|
//FIXME(RPITIT): Deny nested RPITIT in args too
|
|
if proj.args.has_escaping_bound_vars() {
|
|
bug!("FIXME(RPITIT): error here");
|
|
}
|
|
// Replace with infer var
|
|
let infer_ty = self.ocx.infcx.next_ty_var(self.span);
|
|
self.types.insert(proj.def_id, (infer_ty, proj.args));
|
|
// Recurse into bounds
|
|
for (pred, pred_span) in self
|
|
.cx()
|
|
.explicit_item_bounds(proj.def_id)
|
|
.iter_instantiated_copied(self.cx(), proj.args)
|
|
{
|
|
let pred = pred.fold_with(self);
|
|
let pred = self.ocx.normalize(
|
|
&ObligationCause::misc(self.span, self.body_id),
|
|
self.param_env,
|
|
pred,
|
|
);
|
|
|
|
self.ocx.register_obligation(traits::Obligation::new(
|
|
self.cx(),
|
|
ObligationCause::new(
|
|
self.span,
|
|
self.body_id,
|
|
ObligationCauseCode::WhereClause(proj.def_id, pred_span),
|
|
),
|
|
self.param_env,
|
|
pred,
|
|
));
|
|
}
|
|
infer_ty
|
|
} else {
|
|
ty.super_fold_with(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
struct RemapHiddenTyRegions<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
/// Map from early/late params of the impl to identity regions of the RPITIT (GAT)
|
|
/// in the trait.
|
|
map: FxIndexMap<ty::Region<'tcx>, ty::Region<'tcx>>,
|
|
num_trait_args: usize,
|
|
num_impl_args: usize,
|
|
/// Def id of the RPITIT (GAT) in the *trait*.
|
|
def_id: DefId,
|
|
/// Def id of the impl method which owns the opaque hidden type we're remapping.
|
|
impl_m_def_id: DefId,
|
|
/// The hidden type we're remapping. Useful for diagnostics.
|
|
ty: Ty<'tcx>,
|
|
/// Span of the return type. Useful for diagnostics.
|
|
return_span: Span,
|
|
}
|
|
|
|
impl<'tcx> ty::FallibleTypeFolder<TyCtxt<'tcx>> for RemapHiddenTyRegions<'tcx> {
|
|
type Error = ErrorGuaranteed;
|
|
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
|
|
if let ty::Alias(ty::Opaque, ty::AliasTy { args, def_id, .. }) = *t.kind() {
|
|
let mut mapped_args = Vec::with_capacity(args.len());
|
|
for (arg, v) in std::iter::zip(args, self.tcx.variances_of(def_id)) {
|
|
mapped_args.push(match (arg.unpack(), v) {
|
|
// Skip uncaptured opaque args
|
|
(ty::GenericArgKind::Lifetime(_), ty::Bivariant) => arg,
|
|
_ => arg.try_fold_with(self)?,
|
|
});
|
|
}
|
|
Ok(Ty::new_opaque(self.tcx, def_id, self.tcx.mk_args(&mapped_args)))
|
|
} else {
|
|
t.try_super_fold_with(self)
|
|
}
|
|
}
|
|
|
|
fn try_fold_region(
|
|
&mut self,
|
|
region: ty::Region<'tcx>,
|
|
) -> Result<ty::Region<'tcx>, Self::Error> {
|
|
match region.kind() {
|
|
// Remap late-bound regions from the function.
|
|
ty::ReLateParam(_) => {}
|
|
// Remap early-bound regions as long as they don't come from the `impl` itself,
|
|
// in which case we don't really need to renumber them.
|
|
ty::ReEarlyParam(ebr) if ebr.index as usize >= self.num_impl_args => {}
|
|
_ => return Ok(region),
|
|
}
|
|
|
|
let e = if let Some(id_region) = self.map.get(®ion) {
|
|
if let ty::ReEarlyParam(e) = id_region.kind() {
|
|
e
|
|
} else {
|
|
bug!(
|
|
"expected to map region {region} to early-bound identity region, but got {id_region}"
|
|
);
|
|
}
|
|
} else {
|
|
let guar = match region.opt_param_def_id(self.tcx, self.impl_m_def_id) {
|
|
Some(def_id) => {
|
|
let return_span = if let ty::Alias(ty::Opaque, opaque_ty) = self.ty.kind() {
|
|
self.tcx.def_span(opaque_ty.def_id)
|
|
} else {
|
|
self.return_span
|
|
};
|
|
self.tcx
|
|
.dcx()
|
|
.struct_span_err(
|
|
return_span,
|
|
"return type captures more lifetimes than trait definition",
|
|
)
|
|
.with_span_label(self.tcx.def_span(def_id), "this lifetime was captured")
|
|
.with_span_note(
|
|
self.tcx.def_span(self.def_id),
|
|
"hidden type must only reference lifetimes captured by this impl trait",
|
|
)
|
|
.with_note(format!("hidden type inferred to be `{}`", self.ty))
|
|
.emit()
|
|
}
|
|
None => {
|
|
// This code path is not reached in any tests, but may be
|
|
// reachable. If this is triggered, it should be converted
|
|
// to `delayed_bug` and the triggering case turned into a
|
|
// test.
|
|
self.tcx.dcx().bug("should've been able to remap region");
|
|
}
|
|
};
|
|
return Err(guar);
|
|
};
|
|
|
|
Ok(ty::Region::new_early_param(self.tcx, ty::EarlyParamRegion {
|
|
name: e.name,
|
|
index: (e.index as usize - self.num_trait_args + self.num_impl_args) as u32,
|
|
}))
|
|
}
|
|
}
|
|
|
|
fn report_trait_method_mismatch<'tcx>(
|
|
infcx: &InferCtxt<'tcx>,
|
|
mut cause: ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
terr: TypeError<'tcx>,
|
|
(trait_m, trait_sig): (ty::AssocItem, ty::FnSig<'tcx>),
|
|
(impl_m, impl_sig): (ty::AssocItem, ty::FnSig<'tcx>),
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> ErrorGuaranteed {
|
|
let tcx = infcx.tcx;
|
|
let (impl_err_span, trait_err_span) =
|
|
extract_spans_for_error_reporting(infcx, terr, &cause, impl_m, trait_m);
|
|
|
|
let mut diag = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
impl_err_span,
|
|
E0053,
|
|
"method `{}` has an incompatible type for trait",
|
|
trait_m.name
|
|
);
|
|
match &terr {
|
|
TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
|
|
if trait_m.fn_has_self_parameter =>
|
|
{
|
|
let ty = trait_sig.inputs()[0];
|
|
let sugg = match ExplicitSelf::determine(ty, |ty| ty == impl_trait_ref.self_ty()) {
|
|
ExplicitSelf::ByValue => "self".to_owned(),
|
|
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
|
|
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
|
|
_ => format!("self: {ty}"),
|
|
};
|
|
|
|
// When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
|
|
// span points only at the type `Box<Self`>, but we want to cover the whole
|
|
// argument pattern and type.
|
|
let (sig, body) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
|
|
let span = tcx
|
|
.hir()
|
|
.body_param_names(body)
|
|
.zip(sig.decl.inputs.iter())
|
|
.map(|(param, ty)| param.span.to(ty.span))
|
|
.next()
|
|
.unwrap_or(impl_err_span);
|
|
|
|
diag.span_suggestion_verbose(
|
|
span,
|
|
"change the self-receiver type to match the trait",
|
|
sugg,
|
|
Applicability::MachineApplicable,
|
|
);
|
|
}
|
|
TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
|
|
if trait_sig.inputs().len() == *i {
|
|
// Suggestion to change output type. We do not suggest in `async` functions
|
|
// to avoid complex logic or incorrect output.
|
|
if let ImplItemKind::Fn(sig, _) =
|
|
&tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind
|
|
&& !sig.header.asyncness.is_async()
|
|
{
|
|
let msg = "change the output type to match the trait";
|
|
let ap = Applicability::MachineApplicable;
|
|
match sig.decl.output {
|
|
hir::FnRetTy::DefaultReturn(sp) => {
|
|
let sugg = format!(" -> {}", trait_sig.output());
|
|
diag.span_suggestion_verbose(sp, msg, sugg, ap);
|
|
}
|
|
hir::FnRetTy::Return(hir_ty) => {
|
|
let sugg = trait_sig.output();
|
|
diag.span_suggestion_verbose(hir_ty.span, msg, sugg, ap);
|
|
}
|
|
};
|
|
};
|
|
} else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
|
|
diag.span_suggestion_verbose(
|
|
impl_err_span,
|
|
"change the parameter type to match the trait",
|
|
trait_ty,
|
|
Applicability::MachineApplicable,
|
|
);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
cause.span = impl_err_span;
|
|
infcx.err_ctxt().note_type_err(
|
|
&mut diag,
|
|
&cause,
|
|
trait_err_span.map(|sp| (sp, Cow::from("type in trait"), false)),
|
|
Some(param_env.and(infer::ValuePairs::PolySigs(ExpectedFound {
|
|
expected: ty::Binder::dummy(trait_sig),
|
|
found: ty::Binder::dummy(impl_sig),
|
|
}))),
|
|
terr,
|
|
false,
|
|
);
|
|
|
|
diag.emit()
|
|
}
|
|
|
|
fn check_region_bounds_on_impl_item<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let impl_generics = tcx.generics_of(impl_m.def_id);
|
|
let impl_params = impl_generics.own_counts().lifetimes;
|
|
|
|
let trait_generics = tcx.generics_of(trait_m.def_id);
|
|
let trait_params = trait_generics.own_counts().lifetimes;
|
|
|
|
debug!(?trait_generics, ?impl_generics);
|
|
|
|
// Must have same number of early-bound lifetime parameters.
|
|
// Unfortunately, if the user screws up the bounds, then this
|
|
// will change classification between early and late. E.g.,
|
|
// if in trait we have `<'a,'b:'a>`, and in impl we just have
|
|
// `<'a,'b>`, then we have 2 early-bound lifetime parameters
|
|
// in trait but 0 in the impl. But if we report "expected 2
|
|
// but found 0" it's confusing, because it looks like there
|
|
// are zero. Since I don't quite know how to phrase things at
|
|
// the moment, give a kind of vague error message.
|
|
if trait_params != impl_params {
|
|
let span = tcx
|
|
.hir()
|
|
.get_generics(impl_m.def_id.expect_local())
|
|
.expect("expected impl item to have generics or else we can't compare them")
|
|
.span;
|
|
|
|
let mut generics_span = None;
|
|
let mut bounds_span = vec![];
|
|
let mut where_span = None;
|
|
if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
|
|
&& let Some(trait_generics) = trait_node.generics()
|
|
{
|
|
generics_span = Some(trait_generics.span);
|
|
// FIXME: we could potentially look at the impl's bounds to not point at bounds that
|
|
// *are* present in the impl.
|
|
for p in trait_generics.predicates {
|
|
if let hir::WherePredicate::BoundPredicate(pred) = p {
|
|
for b in pred.bounds {
|
|
if let hir::GenericBound::Outlives(lt) = b {
|
|
bounds_span.push(lt.ident.span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
|
|
&& let Some(impl_generics) = impl_node.generics()
|
|
{
|
|
let mut impl_bounds = 0;
|
|
for p in impl_generics.predicates {
|
|
if let hir::WherePredicate::BoundPredicate(pred) = p {
|
|
for b in pred.bounds {
|
|
if let hir::GenericBound::Outlives(_) = b {
|
|
impl_bounds += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if impl_bounds == bounds_span.len() {
|
|
bounds_span = vec![];
|
|
} else if impl_generics.has_where_clause_predicates {
|
|
where_span = Some(impl_generics.where_clause_span);
|
|
}
|
|
}
|
|
}
|
|
let reported = tcx
|
|
.dcx()
|
|
.create_err(LifetimesOrBoundsMismatchOnTrait {
|
|
span,
|
|
item_kind: impl_m.descr(),
|
|
ident: impl_m.ident(tcx),
|
|
generics_span,
|
|
bounds_span,
|
|
where_span,
|
|
})
|
|
.emit_unless(delay);
|
|
return Err(reported);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(infcx))]
|
|
fn extract_spans_for_error_reporting<'tcx>(
|
|
infcx: &infer::InferCtxt<'tcx>,
|
|
terr: TypeError<'_>,
|
|
cause: &ObligationCause<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
) -> (Span, Option<Span>) {
|
|
let tcx = infcx.tcx;
|
|
let mut impl_args = {
|
|
let (sig, _) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
|
|
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
|
|
};
|
|
|
|
let trait_args = trait_m.def_id.as_local().map(|def_id| {
|
|
let (sig, _) = tcx.hir().expect_trait_item(def_id).expect_fn();
|
|
sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
|
|
});
|
|
|
|
match terr {
|
|
TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
|
|
(impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
|
|
}
|
|
_ => (cause.span, tcx.hir().span_if_local(trait_m.def_id)),
|
|
}
|
|
}
|
|
|
|
fn compare_self_type<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
// Try to give more informative error messages about self typing
|
|
// mismatches. Note that any mismatch will also be detected
|
|
// below, where we construct a canonical function type that
|
|
// includes the self parameter as a normal parameter. It's just
|
|
// that the error messages you get out of this code are a bit more
|
|
// inscrutable, particularly for cases where one method has no
|
|
// self.
|
|
|
|
let self_string = |method: ty::AssocItem| {
|
|
let untransformed_self_ty = match method.container {
|
|
ty::AssocItemContainer::Impl => impl_trait_ref.self_ty(),
|
|
ty::AssocItemContainer::Trait => tcx.types.self_param,
|
|
};
|
|
let self_arg_ty = tcx.fn_sig(method.def_id).instantiate_identity().input(0);
|
|
let (infcx, param_env) = tcx
|
|
.infer_ctxt()
|
|
.build_with_typing_env(ty::TypingEnv::non_body_analysis(tcx, method.def_id));
|
|
let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
|
|
let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty);
|
|
match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
|
|
ExplicitSelf::ByValue => "self".to_owned(),
|
|
ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
|
|
ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
|
|
_ => format!("self: {self_arg_ty}"),
|
|
}
|
|
};
|
|
|
|
match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
|
|
(false, false) | (true, true) => {}
|
|
|
|
(false, true) => {
|
|
let self_descr = self_string(impl_m);
|
|
let impl_m_span = tcx.def_span(impl_m.def_id);
|
|
let mut err = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
impl_m_span,
|
|
E0185,
|
|
"method `{}` has a `{}` declaration in the impl, but not in the trait",
|
|
trait_m.name,
|
|
self_descr
|
|
);
|
|
err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
|
|
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
|
|
err.span_label(span, format!("trait method declared without `{self_descr}`"));
|
|
} else {
|
|
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
|
|
}
|
|
return Err(err.emit_unless(delay));
|
|
}
|
|
|
|
(true, false) => {
|
|
let self_descr = self_string(trait_m);
|
|
let impl_m_span = tcx.def_span(impl_m.def_id);
|
|
let mut err = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
impl_m_span,
|
|
E0186,
|
|
"method `{}` has a `{}` declaration in the trait, but not in the impl",
|
|
trait_m.name,
|
|
self_descr
|
|
);
|
|
err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
|
|
if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
|
|
err.span_label(span, format!("`{self_descr}` used in trait"));
|
|
} else {
|
|
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
|
|
}
|
|
|
|
return Err(err.emit_unless(delay));
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Checks that the number of generics on a given assoc item in a trait impl is the same
|
|
/// as the number of generics on the respective assoc item in the trait definition.
|
|
///
|
|
/// For example this code emits the errors in the following code:
|
|
/// ```rust,compile_fail
|
|
/// trait Trait {
|
|
/// fn foo();
|
|
/// type Assoc<T>;
|
|
/// }
|
|
///
|
|
/// impl Trait for () {
|
|
/// fn foo<T>() {}
|
|
/// //~^ error
|
|
/// type Assoc = u32;
|
|
/// //~^ error
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
|
|
/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
|
|
/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
|
|
fn compare_number_of_generics<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_: ty::AssocItem,
|
|
trait_: ty::AssocItem,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
|
|
let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
|
|
|
|
// This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
|
|
// in `compare_generic_param_kinds` which will give a nicer error message than something like:
|
|
// "expected 1 type parameter, found 0 type parameters"
|
|
if (trait_own_counts.types + trait_own_counts.consts)
|
|
== (impl_own_counts.types + impl_own_counts.consts)
|
|
{
|
|
return Ok(());
|
|
}
|
|
|
|
// We never need to emit a separate error for RPITITs, since if an RPITIT
|
|
// has mismatched type or const generic arguments, then the method that it's
|
|
// inheriting the generics from will also have mismatched arguments, and
|
|
// we'll report an error for that instead. Delay a bug for safety, though.
|
|
if trait_.is_impl_trait_in_trait() {
|
|
// FIXME: no tests trigger this. If you find example code that does
|
|
// trigger this, please add it to the test suite.
|
|
tcx.dcx()
|
|
.bug("errors comparing numbers of generics of trait/impl functions were not emitted");
|
|
}
|
|
|
|
let matchings = [
|
|
("type", trait_own_counts.types, impl_own_counts.types),
|
|
("const", trait_own_counts.consts, impl_own_counts.consts),
|
|
];
|
|
|
|
let item_kind = impl_.descr();
|
|
|
|
let mut err_occurred = None;
|
|
for (kind, trait_count, impl_count) in matchings {
|
|
if impl_count != trait_count {
|
|
let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
|
|
let mut spans = generics
|
|
.params
|
|
.iter()
|
|
.filter(|p| match p.kind {
|
|
hir::GenericParamKind::Lifetime {
|
|
kind: hir::LifetimeParamKind::Elided(_),
|
|
} => {
|
|
// A fn can have an arbitrary number of extra elided lifetimes for the
|
|
// same signature.
|
|
!matches!(kind, ty::AssocKind::Fn)
|
|
}
|
|
_ => true,
|
|
})
|
|
.map(|p| p.span)
|
|
.collect::<Vec<Span>>();
|
|
if spans.is_empty() {
|
|
spans = vec![generics.span]
|
|
}
|
|
spans
|
|
};
|
|
let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
|
|
let trait_item = tcx.hir().expect_trait_item(def_id);
|
|
let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
|
|
let impl_trait_spans: Vec<Span> = trait_item
|
|
.generics
|
|
.params
|
|
.iter()
|
|
.filter_map(|p| match p.kind {
|
|
GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
|
|
_ => None,
|
|
})
|
|
.collect();
|
|
(Some(arg_spans), impl_trait_spans)
|
|
} else {
|
|
let trait_span = tcx.hir().span_if_local(trait_.def_id);
|
|
(trait_span.map(|s| vec![s]), vec![])
|
|
};
|
|
|
|
let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
|
|
let impl_item_impl_trait_spans: Vec<Span> = impl_item
|
|
.generics
|
|
.params
|
|
.iter()
|
|
.filter_map(|p| match p.kind {
|
|
GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
|
|
_ => None,
|
|
})
|
|
.collect();
|
|
let spans = arg_spans(impl_.kind, impl_item.generics);
|
|
let span = spans.first().copied();
|
|
|
|
let mut err = tcx.dcx().struct_span_err(
|
|
spans,
|
|
format!(
|
|
"{} `{}` has {} {kind} parameter{} but its trait \
|
|
declaration has {} {kind} parameter{}",
|
|
item_kind,
|
|
trait_.name,
|
|
impl_count,
|
|
pluralize!(impl_count),
|
|
trait_count,
|
|
pluralize!(trait_count),
|
|
kind = kind,
|
|
),
|
|
);
|
|
err.code(E0049);
|
|
|
|
let msg =
|
|
format!("expected {trait_count} {kind} parameter{}", pluralize!(trait_count),);
|
|
if let Some(spans) = trait_spans {
|
|
let mut spans = spans.iter();
|
|
if let Some(span) = spans.next() {
|
|
err.span_label(*span, msg);
|
|
}
|
|
for span in spans {
|
|
err.span_label(*span, "");
|
|
}
|
|
} else {
|
|
err.span_label(tcx.def_span(trait_.def_id), msg);
|
|
}
|
|
|
|
if let Some(span) = span {
|
|
err.span_label(
|
|
span,
|
|
format!("found {} {} parameter{}", impl_count, kind, pluralize!(impl_count),),
|
|
);
|
|
}
|
|
|
|
for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
|
|
err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
|
|
}
|
|
|
|
let reported = err.emit_unless(delay);
|
|
err_occurred = Some(reported);
|
|
}
|
|
}
|
|
|
|
if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
|
|
}
|
|
|
|
fn compare_number_of_method_arguments<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let impl_m_fty = tcx.fn_sig(impl_m.def_id);
|
|
let trait_m_fty = tcx.fn_sig(trait_m.def_id);
|
|
let trait_number_args = trait_m_fty.skip_binder().inputs().skip_binder().len();
|
|
let impl_number_args = impl_m_fty.skip_binder().inputs().skip_binder().len();
|
|
|
|
if trait_number_args != impl_number_args {
|
|
let trait_span = trait_m
|
|
.def_id
|
|
.as_local()
|
|
.and_then(|def_id| {
|
|
let (trait_m_sig, _) = &tcx.hir().expect_trait_item(def_id).expect_fn();
|
|
let pos = trait_number_args.saturating_sub(1);
|
|
trait_m_sig.decl.inputs.get(pos).map(|arg| {
|
|
if pos == 0 {
|
|
arg.span
|
|
} else {
|
|
arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
|
|
}
|
|
})
|
|
})
|
|
.or_else(|| tcx.hir().span_if_local(trait_m.def_id));
|
|
|
|
let (impl_m_sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
|
|
let pos = impl_number_args.saturating_sub(1);
|
|
let impl_span = impl_m_sig
|
|
.decl
|
|
.inputs
|
|
.get(pos)
|
|
.map(|arg| {
|
|
if pos == 0 {
|
|
arg.span
|
|
} else {
|
|
arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
|
|
}
|
|
})
|
|
.unwrap_or_else(|| tcx.def_span(impl_m.def_id));
|
|
|
|
let mut err = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
impl_span,
|
|
E0050,
|
|
"method `{}` has {} but the declaration in trait `{}` has {}",
|
|
trait_m.name,
|
|
potentially_plural_count(impl_number_args, "parameter"),
|
|
tcx.def_path_str(trait_m.def_id),
|
|
trait_number_args
|
|
);
|
|
|
|
if let Some(trait_span) = trait_span {
|
|
err.span_label(
|
|
trait_span,
|
|
format!(
|
|
"trait requires {}",
|
|
potentially_plural_count(trait_number_args, "parameter")
|
|
),
|
|
);
|
|
} else {
|
|
err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
|
|
}
|
|
|
|
err.span_label(
|
|
impl_span,
|
|
format!(
|
|
"expected {}, found {}",
|
|
potentially_plural_count(trait_number_args, "parameter"),
|
|
impl_number_args
|
|
),
|
|
);
|
|
|
|
return Err(err.emit_unless(delay));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn compare_synthetic_generics<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_m: ty::AssocItem,
|
|
trait_m: ty::AssocItem,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
// FIXME(chrisvittal) Clean up this function, list of FIXME items:
|
|
// 1. Better messages for the span labels
|
|
// 2. Explanation as to what is going on
|
|
// If we get here, we already have the same number of generics, so the zip will
|
|
// be okay.
|
|
let mut error_found = None;
|
|
let impl_m_generics = tcx.generics_of(impl_m.def_id);
|
|
let trait_m_generics = tcx.generics_of(trait_m.def_id);
|
|
let impl_m_type_params =
|
|
impl_m_generics.own_params.iter().filter_map(|param| match param.kind {
|
|
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
|
|
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
|
|
});
|
|
let trait_m_type_params =
|
|
trait_m_generics.own_params.iter().filter_map(|param| match param.kind {
|
|
GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
|
|
GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
|
|
});
|
|
for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
|
|
iter::zip(impl_m_type_params, trait_m_type_params)
|
|
{
|
|
if impl_synthetic != trait_synthetic {
|
|
let impl_def_id = impl_def_id.expect_local();
|
|
let impl_span = tcx.def_span(impl_def_id);
|
|
let trait_span = tcx.def_span(trait_def_id);
|
|
let mut err = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
impl_span,
|
|
E0643,
|
|
"method `{}` has incompatible signature for trait",
|
|
trait_m.name
|
|
);
|
|
err.span_label(trait_span, "declaration in trait here");
|
|
if impl_synthetic {
|
|
// The case where the impl method uses `impl Trait` but the trait method uses
|
|
// explicit generics
|
|
err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
|
|
let _: Option<_> = try {
|
|
// try taking the name from the trait impl
|
|
// FIXME: this is obviously suboptimal since the name can already be used
|
|
// as another generic argument
|
|
let new_name = tcx.opt_item_name(trait_def_id)?;
|
|
let trait_m = trait_m.def_id.as_local()?;
|
|
let trait_m = tcx.hir().expect_trait_item(trait_m);
|
|
|
|
let impl_m = impl_m.def_id.as_local()?;
|
|
let impl_m = tcx.hir().expect_impl_item(impl_m);
|
|
|
|
// in case there are no generics, take the spot between the function name
|
|
// and the opening paren of the argument list
|
|
let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
|
|
// in case there are generics, just replace them
|
|
let generics_span = impl_m.generics.span.substitute_dummy(new_generics_span);
|
|
// replace with the generics from the trait
|
|
let new_generics =
|
|
tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
|
|
|
|
err.multipart_suggestion(
|
|
"try changing the `impl Trait` argument to a generic parameter",
|
|
vec![
|
|
// replace `impl Trait` with `T`
|
|
(impl_span, new_name.to_string()),
|
|
// replace impl method generics with trait method generics
|
|
// This isn't quite right, as users might have changed the names
|
|
// of the generics, but it works for the common case
|
|
(generics_span, new_generics),
|
|
],
|
|
Applicability::MaybeIncorrect,
|
|
);
|
|
};
|
|
} else {
|
|
// The case where the trait method uses `impl Trait`, but the impl method uses
|
|
// explicit generics.
|
|
err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
|
|
let _: Option<_> = try {
|
|
let impl_m = impl_m.def_id.as_local()?;
|
|
let impl_m = tcx.hir().expect_impl_item(impl_m);
|
|
let (sig, _) = impl_m.expect_fn();
|
|
let input_tys = sig.decl.inputs;
|
|
|
|
struct Visitor(hir::def_id::LocalDefId);
|
|
impl<'v> intravisit::Visitor<'v> for Visitor {
|
|
type Result = ControlFlow<Span>;
|
|
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) -> Self::Result {
|
|
if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = ty.kind
|
|
&& let Res::Def(DefKind::TyParam, def_id) = path.res
|
|
&& def_id == self.0.to_def_id()
|
|
{
|
|
ControlFlow::Break(ty.span)
|
|
} else {
|
|
intravisit::walk_ty(self, ty)
|
|
}
|
|
}
|
|
}
|
|
|
|
let span = input_tys.iter().find_map(|ty| {
|
|
intravisit::Visitor::visit_ty(&mut Visitor(impl_def_id), ty).break_value()
|
|
})?;
|
|
|
|
let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
|
|
let bounds = bounds.first()?.span().to(bounds.last()?.span());
|
|
let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
|
|
|
|
err.multipart_suggestion(
|
|
"try removing the generic parameter and using `impl Trait` instead",
|
|
vec![
|
|
// delete generic parameters
|
|
(impl_m.generics.span, String::new()),
|
|
// replace param usage with `impl Trait`
|
|
(span, format!("impl {bounds}")),
|
|
],
|
|
Applicability::MaybeIncorrect,
|
|
);
|
|
};
|
|
}
|
|
error_found = Some(err.emit_unless(delay));
|
|
}
|
|
}
|
|
if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
|
|
}
|
|
|
|
/// Checks that all parameters in the generics of a given assoc item in a trait impl have
|
|
/// the same kind as the respective generic parameter in the trait def.
|
|
///
|
|
/// For example all 4 errors in the following code are emitted here:
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// trait Foo {
|
|
/// fn foo<const N: u8>();
|
|
/// type Bar<const N: u8>;
|
|
/// fn baz<const N: u32>();
|
|
/// type Blah<T>;
|
|
/// }
|
|
///
|
|
/// impl Foo for () {
|
|
/// fn foo<const N: u64>() {}
|
|
/// //~^ error
|
|
/// type Bar<const N: u64> = ();
|
|
/// //~^ error
|
|
/// fn baz<T>() {}
|
|
/// //~^ error
|
|
/// type Blah<const N: i64> = u32;
|
|
/// //~^ error
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// This function does not handle lifetime parameters
|
|
fn compare_generic_param_kinds<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_item: ty::AssocItem,
|
|
trait_item: ty::AssocItem,
|
|
delay: bool,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
assert_eq!(impl_item.kind, trait_item.kind);
|
|
|
|
let ty_const_params_of = |def_id| {
|
|
tcx.generics_of(def_id).own_params.iter().filter(|param| {
|
|
matches!(
|
|
param.kind,
|
|
GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
|
|
)
|
|
})
|
|
};
|
|
|
|
for (param_impl, param_trait) in
|
|
iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
|
|
{
|
|
use GenericParamDefKind::*;
|
|
if match (¶m_impl.kind, ¶m_trait.kind) {
|
|
(Const { .. }, Const { .. })
|
|
if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
|
|
{
|
|
true
|
|
}
|
|
(Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
|
|
// this is exhaustive so that anyone adding new generic param kinds knows
|
|
// to make sure this error is reported for them.
|
|
(Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
|
|
(Lifetime { .. }, _) | (_, Lifetime { .. }) => {
|
|
bug!("lifetime params are expected to be filtered by `ty_const_params_of`")
|
|
}
|
|
} {
|
|
let param_impl_span = tcx.def_span(param_impl.def_id);
|
|
let param_trait_span = tcx.def_span(param_trait.def_id);
|
|
|
|
let mut err = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
param_impl_span,
|
|
E0053,
|
|
"{} `{}` has an incompatible generic parameter for trait `{}`",
|
|
impl_item.descr(),
|
|
trait_item.name,
|
|
&tcx.def_path_str(tcx.parent(trait_item.def_id))
|
|
);
|
|
|
|
let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
|
|
Const { .. } => {
|
|
format!(
|
|
"{} const parameter of type `{}`",
|
|
prefix,
|
|
tcx.type_of(param.def_id).instantiate_identity()
|
|
)
|
|
}
|
|
Type { .. } => format!("{prefix} type parameter"),
|
|
Lifetime { .. } => span_bug!(
|
|
tcx.def_span(param.def_id),
|
|
"lifetime params are expected to be filtered by `ty_const_params_of`"
|
|
),
|
|
};
|
|
|
|
let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
|
|
err.span_label(trait_header_span, "");
|
|
err.span_label(param_trait_span, make_param_message("expected", param_trait));
|
|
|
|
let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
|
|
err.span_label(impl_header_span, "");
|
|
err.span_label(param_impl_span, make_param_message("found", param_impl));
|
|
|
|
let reported = err.emit_unless(delay);
|
|
return Err(reported);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Use `tcx.compare_impl_const` instead
|
|
pub(super) fn compare_impl_const_raw(
|
|
tcx: TyCtxt<'_>,
|
|
(impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let impl_const_item = tcx.associated_item(impl_const_item_def);
|
|
let trait_const_item = tcx.associated_item(trait_const_item_def);
|
|
let impl_trait_ref =
|
|
tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap().instantiate_identity();
|
|
debug!(?impl_trait_ref);
|
|
|
|
compare_number_of_generics(tcx, impl_const_item, trait_const_item, false)?;
|
|
compare_generic_param_kinds(tcx, impl_const_item, trait_const_item, false)?;
|
|
check_region_bounds_on_impl_item(tcx, impl_const_item, trait_const_item, false)?;
|
|
compare_const_predicate_entailment(tcx, impl_const_item, trait_const_item, impl_trait_ref)
|
|
}
|
|
|
|
/// The equivalent of [compare_method_predicate_entailment], but for associated constants
|
|
/// instead of associated functions.
|
|
// FIXME(generic_const_items): If possible extract the common parts of `compare_{type,const}_predicate_entailment`.
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
fn compare_const_predicate_entailment<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_ct: ty::AssocItem,
|
|
trait_ct: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let impl_ct_def_id = impl_ct.def_id.expect_local();
|
|
let impl_ct_span = tcx.def_span(impl_ct_def_id);
|
|
|
|
// The below is for the most part highly similar to the procedure
|
|
// for methods above. It is simpler in many respects, especially
|
|
// because we shouldn't really have to deal with lifetimes or
|
|
// predicates. In fact some of this should probably be put into
|
|
// shared functions because of DRY violations...
|
|
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ct.def_id).rebase_onto(
|
|
tcx,
|
|
impl_ct.container_id(tcx),
|
|
impl_trait_ref.args,
|
|
);
|
|
|
|
// Create a parameter environment that represents the implementation's
|
|
// associated const.
|
|
let impl_ty = tcx.type_of(impl_ct_def_id).instantiate_identity();
|
|
|
|
let trait_ty = tcx.type_of(trait_ct.def_id).instantiate(tcx, trait_to_impl_args);
|
|
let code = ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_ct_def_id,
|
|
trait_item_def_id: trait_ct.def_id,
|
|
kind: impl_ct.kind,
|
|
};
|
|
let mut cause = ObligationCause::new(impl_ct_span, impl_ct_def_id, code.clone());
|
|
|
|
let impl_ct_predicates = tcx.predicates_of(impl_ct.def_id);
|
|
let trait_ct_predicates = tcx.predicates_of(trait_ct.def_id);
|
|
|
|
// The predicates declared by the impl definition, the trait and the
|
|
// associated const in the trait are assumed.
|
|
let impl_predicates = tcx.predicates_of(impl_ct_predicates.parent.unwrap());
|
|
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
|
|
hybrid_preds.extend(
|
|
trait_ct_predicates
|
|
.instantiate_own(tcx, trait_to_impl_args)
|
|
.map(|(predicate, _)| predicate),
|
|
);
|
|
|
|
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
|
|
let param_env = traits::normalize_param_env_or_error(
|
|
tcx,
|
|
param_env,
|
|
ObligationCause::misc(impl_ct_span, impl_ct_def_id),
|
|
);
|
|
|
|
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
|
|
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
|
|
|
|
let impl_ct_own_bounds = impl_ct_predicates.instantiate_own_identity();
|
|
for (predicate, span) in impl_ct_own_bounds {
|
|
let cause = ObligationCause::misc(span, impl_ct_def_id);
|
|
let predicate = ocx.normalize(&cause, param_env, predicate);
|
|
|
|
let cause = ObligationCause::new(span, impl_ct_def_id, code.clone());
|
|
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
|
|
}
|
|
|
|
// There is no "body" here, so just pass dummy id.
|
|
let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
|
|
debug!(?impl_ty);
|
|
|
|
let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
|
|
debug!(?trait_ty);
|
|
|
|
let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);
|
|
|
|
if let Err(terr) = err {
|
|
debug!(?impl_ty, ?trait_ty);
|
|
|
|
// Locate the Span containing just the type of the offending impl
|
|
let (ty, _) = tcx.hir().expect_impl_item(impl_ct_def_id).expect_const();
|
|
cause.span = ty.span;
|
|
|
|
let mut diag = struct_span_code_err!(
|
|
tcx.dcx(),
|
|
cause.span,
|
|
E0326,
|
|
"implemented const `{}` has an incompatible type for trait",
|
|
trait_ct.name
|
|
);
|
|
|
|
let trait_c_span = trait_ct.def_id.as_local().map(|trait_ct_def_id| {
|
|
// Add a label to the Span containing just the type of the const
|
|
let (ty, _) = tcx.hir().expect_trait_item(trait_ct_def_id).expect_const();
|
|
ty.span
|
|
});
|
|
|
|
infcx.err_ctxt().note_type_err(
|
|
&mut diag,
|
|
&cause,
|
|
trait_c_span.map(|span| (span, Cow::from("type in trait"), false)),
|
|
Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
|
|
expected: trait_ty.into(),
|
|
found: impl_ty.into(),
|
|
}))),
|
|
terr,
|
|
false,
|
|
);
|
|
return Err(diag.emit());
|
|
};
|
|
|
|
// Check that all obligations are satisfied by the implementation's
|
|
// version.
|
|
let errors = ocx.select_all_or_error();
|
|
if !errors.is_empty() {
|
|
return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
|
|
}
|
|
|
|
let outlives_env = OutlivesEnvironment::new(param_env);
|
|
ocx.resolve_regions_and_report_errors(impl_ct_def_id, &outlives_env)
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
pub(super) fn compare_impl_ty<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_ty: ty::AssocItem,
|
|
trait_ty: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) {
|
|
let _: Result<(), ErrorGuaranteed> = try {
|
|
compare_number_of_generics(tcx, impl_ty, trait_ty, false)?;
|
|
compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
|
|
check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
|
|
compare_type_predicate_entailment(tcx, impl_ty, trait_ty, impl_trait_ref)?;
|
|
check_type_bounds(tcx, trait_ty, impl_ty, impl_trait_ref)?;
|
|
};
|
|
}
|
|
|
|
/// The equivalent of [compare_method_predicate_entailment], but for associated types
|
|
/// instead of associated functions.
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
fn compare_type_predicate_entailment<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_ty: ty::AssocItem,
|
|
trait_ty: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
let impl_def_id = impl_ty.container_id(tcx);
|
|
let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id).rebase_onto(
|
|
tcx,
|
|
impl_def_id,
|
|
impl_trait_ref.args,
|
|
);
|
|
|
|
let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
|
|
let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
|
|
|
|
let impl_ty_own_bounds = impl_ty_predicates.instantiate_own_identity();
|
|
// If there are no bounds, then there are no const conditions, so no need to check that here.
|
|
if impl_ty_own_bounds.len() == 0 {
|
|
// Nothing to check.
|
|
return Ok(());
|
|
}
|
|
|
|
// This `DefId` should be used for the `body_id` field on each
|
|
// `ObligationCause` (and the `FnCtxt`). This is what
|
|
// `regionck_item` expects.
|
|
let impl_ty_def_id = impl_ty.def_id.expect_local();
|
|
debug!(?trait_to_impl_args);
|
|
|
|
// The predicates declared by the impl definition, the trait and the
|
|
// associated type in the trait are assumed.
|
|
let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
|
|
let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
|
|
hybrid_preds.extend(
|
|
trait_ty_predicates
|
|
.instantiate_own(tcx, trait_to_impl_args)
|
|
.map(|(predicate, _)| predicate),
|
|
);
|
|
debug!(?hybrid_preds);
|
|
|
|
let impl_ty_span = tcx.def_span(impl_ty_def_id);
|
|
let normalize_cause = ObligationCause::misc(impl_ty_span, impl_ty_def_id);
|
|
|
|
let is_conditionally_const = tcx.is_conditionally_const(impl_ty.def_id);
|
|
if is_conditionally_const {
|
|
// Augment the hybrid param-env with the const conditions
|
|
// of the impl header and the trait assoc type.
|
|
hybrid_preds.extend(
|
|
tcx.const_conditions(impl_ty_predicates.parent.unwrap())
|
|
.instantiate_identity(tcx)
|
|
.into_iter()
|
|
.chain(
|
|
tcx.const_conditions(trait_ty.def_id).instantiate_own(tcx, trait_to_impl_args),
|
|
)
|
|
.map(|(trait_ref, _)| {
|
|
trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
|
|
}),
|
|
);
|
|
}
|
|
|
|
let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
|
|
let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
|
|
debug!(caller_bounds=?param_env.caller_bounds());
|
|
|
|
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
|
|
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
|
|
|
|
for (predicate, span) in impl_ty_own_bounds {
|
|
let cause = ObligationCause::misc(span, impl_ty_def_id);
|
|
let predicate = ocx.normalize(&cause, param_env, predicate);
|
|
|
|
let cause =
|
|
ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_ty.def_id.expect_local(),
|
|
trait_item_def_id: trait_ty.def_id,
|
|
kind: impl_ty.kind,
|
|
});
|
|
ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
|
|
}
|
|
|
|
if is_conditionally_const {
|
|
// Validate the const conditions of the impl associated type.
|
|
let impl_ty_own_const_conditions =
|
|
tcx.const_conditions(impl_ty.def_id).instantiate_own_identity();
|
|
for (const_condition, span) in impl_ty_own_const_conditions {
|
|
let normalize_cause = traits::ObligationCause::misc(span, impl_ty_def_id);
|
|
let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);
|
|
|
|
let cause =
|
|
ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
|
|
impl_item_def_id: impl_ty_def_id,
|
|
trait_item_def_id: trait_ty.def_id,
|
|
kind: impl_ty.kind,
|
|
});
|
|
ocx.register_obligation(traits::Obligation::new(
|
|
tcx,
|
|
cause,
|
|
param_env,
|
|
const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
|
|
));
|
|
}
|
|
}
|
|
|
|
// Check that all obligations are satisfied by the implementation's
|
|
// version.
|
|
let errors = ocx.select_all_or_error();
|
|
if !errors.is_empty() {
|
|
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
|
|
return Err(reported);
|
|
}
|
|
|
|
// Finally, resolve all regions. This catches wily misuses of
|
|
// lifetime parameters.
|
|
let outlives_env = OutlivesEnvironment::new(param_env);
|
|
ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
|
|
}
|
|
|
|
/// Validate that `ProjectionCandidate`s created for this associated type will
|
|
/// be valid.
|
|
///
|
|
/// Usually given
|
|
///
|
|
/// trait X { type Y: Copy } impl X for T { type Y = S; }
|
|
///
|
|
/// We are able to normalize `<T as X>::Y` to `S`, and so when we check the
|
|
/// impl is well-formed we have to prove `S: Copy`.
|
|
///
|
|
/// For default associated types the normalization is not possible (the value
|
|
/// from the impl could be overridden). We also can't normalize generic
|
|
/// associated types (yet) because they contain bound parameters.
|
|
#[instrument(level = "debug", skip(tcx))]
|
|
pub(super) fn check_type_bounds<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ty: ty::AssocItem,
|
|
impl_ty: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
|
|
// other `Foo` impls are incoherent.
|
|
tcx.ensure().coherent_trait(impl_trait_ref.def_id)?;
|
|
|
|
let param_env = tcx.param_env(impl_ty.def_id);
|
|
debug!(?param_env);
|
|
|
|
let container_id = impl_ty.container_id(tcx);
|
|
let impl_ty_def_id = impl_ty.def_id.expect_local();
|
|
let impl_ty_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id);
|
|
let rebased_args = impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);
|
|
|
|
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
|
|
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
|
|
|
|
// A synthetic impl Trait for RPITIT desugaring or assoc type for effects desugaring has no HIR,
|
|
// which we currently use to get the span for an impl's associated type. Instead, for these,
|
|
// use the def_span for the synthesized associated type.
|
|
let impl_ty_span = if impl_ty.is_impl_trait_in_trait() {
|
|
tcx.def_span(impl_ty_def_id)
|
|
} else {
|
|
match tcx.hir_node_by_def_id(impl_ty_def_id) {
|
|
hir::Node::TraitItem(hir::TraitItem {
|
|
kind: hir::TraitItemKind::Type(_, Some(ty)),
|
|
..
|
|
}) => ty.span,
|
|
hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Type(ty), .. }) => ty.span,
|
|
item => span_bug!(
|
|
tcx.def_span(impl_ty_def_id),
|
|
"cannot call `check_type_bounds` on item: {item:?}",
|
|
),
|
|
}
|
|
};
|
|
let assumed_wf_types = ocx.assumed_wf_types_and_report_errors(param_env, impl_ty_def_id)?;
|
|
|
|
let normalize_cause = ObligationCause::new(
|
|
impl_ty_span,
|
|
impl_ty_def_id,
|
|
ObligationCauseCode::CheckAssociatedTypeBounds {
|
|
impl_item_def_id: impl_ty.def_id.expect_local(),
|
|
trait_item_def_id: trait_ty.def_id,
|
|
},
|
|
);
|
|
let mk_cause = |span: Span| {
|
|
let code = ObligationCauseCode::WhereClause(trait_ty.def_id, span);
|
|
ObligationCause::new(impl_ty_span, impl_ty_def_id, code)
|
|
};
|
|
|
|
let mut obligations: Vec<_> = tcx
|
|
.explicit_item_bounds(trait_ty.def_id)
|
|
.iter_instantiated_copied(tcx, rebased_args)
|
|
.map(|(concrete_ty_bound, span)| {
|
|
debug!(?concrete_ty_bound);
|
|
traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
|
|
})
|
|
.collect();
|
|
|
|
// Only in a const implementation do we need to check that the `~const` item bounds hold.
|
|
if tcx.is_conditionally_const(impl_ty_def_id) {
|
|
obligations.extend(
|
|
tcx.explicit_implied_const_bounds(trait_ty.def_id)
|
|
.iter_instantiated_copied(tcx, rebased_args)
|
|
.map(|(c, span)| {
|
|
traits::Obligation::new(
|
|
tcx,
|
|
mk_cause(span),
|
|
param_env,
|
|
c.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
|
|
)
|
|
}),
|
|
);
|
|
}
|
|
debug!(item_bounds=?obligations);
|
|
|
|
// Normalize predicates with the assumption that the GAT may always normalize
|
|
// to its definition type. This should be the param-env we use to *prove* the
|
|
// predicate too, but we don't do that because of performance issues.
|
|
// See <https://github.com/rust-lang/rust/pull/117542#issue-1976337685>.
|
|
let trait_projection_ty = Ty::new_projection_from_args(tcx, trait_ty.def_id, rebased_args);
|
|
let impl_identity_ty = tcx.type_of(impl_ty.def_id).instantiate_identity();
|
|
let normalize_param_env = param_env_with_gat_bounds(tcx, impl_ty, impl_trait_ref);
|
|
for mut obligation in util::elaborate(tcx, obligations) {
|
|
let normalized_predicate = if infcx.next_trait_solver() {
|
|
obligation.predicate.fold_with(&mut ReplaceTy {
|
|
tcx,
|
|
from: trait_projection_ty,
|
|
to: impl_identity_ty,
|
|
})
|
|
} else {
|
|
ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate)
|
|
};
|
|
debug!(?normalized_predicate);
|
|
obligation.predicate = normalized_predicate;
|
|
|
|
ocx.register_obligation(obligation);
|
|
}
|
|
// Check that all obligations are satisfied by the implementation's
|
|
// version.
|
|
let errors = ocx.select_all_or_error();
|
|
if !errors.is_empty() {
|
|
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
|
|
return Err(reported);
|
|
}
|
|
|
|
// Finally, resolve all regions. This catches wily misuses of
|
|
// lifetime parameters.
|
|
let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_def_id, &assumed_wf_types);
|
|
let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
|
|
ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
|
|
}
|
|
|
|
struct ReplaceTy<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
from: Ty<'tcx>,
|
|
to: Ty<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceTy<'tcx> {
|
|
fn cx(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
if self.from == ty { self.to } else { ty.super_fold_with(self) }
|
|
}
|
|
}
|
|
|
|
/// Install projection predicates that allow GATs to project to their own
|
|
/// definition types. This is not allowed in general in cases of default
|
|
/// associated types in trait definitions, or when specialization is involved,
|
|
/// but is needed when checking these definition types actually satisfy the
|
|
/// trait bounds of the GAT.
|
|
///
|
|
/// # How it works
|
|
///
|
|
/// ```ignore (example)
|
|
/// impl<A, B> Foo<u32> for (A, B) {
|
|
/// type Bar<C> = Wrapper<A, B, C>
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// - `impl_trait_ref` would be `<(A, B) as Foo<u32>>`
|
|
/// - `normalize_impl_ty_args` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
|
|
/// - `normalize_impl_ty` would be `Wrapper<A, B, ^0.0>`
|
|
/// - `rebased_args` would be `[(A, B), u32, ^0.0]`, combining the args from
|
|
/// the *trait* with the generic associated type parameters (as bound vars).
|
|
///
|
|
/// A note regarding the use of bound vars here:
|
|
/// Imagine as an example
|
|
/// ```
|
|
/// trait Family {
|
|
/// type Member<C: Eq>;
|
|
/// }
|
|
///
|
|
/// impl Family for VecFamily {
|
|
/// type Member<C: Eq> = i32;
|
|
/// }
|
|
/// ```
|
|
/// Here, we would generate
|
|
/// ```ignore (pseudo-rust)
|
|
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
|
|
/// ```
|
|
///
|
|
/// when we really would like to generate
|
|
/// ```ignore (pseudo-rust)
|
|
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
|
|
/// ```
|
|
///
|
|
/// But, this is probably fine, because although the first clause can be used with types `C` that
|
|
/// do not implement `Eq`, for it to cause some kind of problem, there would have to be a
|
|
/// `VecFamily::Member<X>` for some type `X` where `!(X: Eq)`, that appears in the value of type
|
|
/// `Member<C: Eq> = ....` That type would fail a well-formedness check that we ought to be doing
|
|
/// elsewhere, which would check that any `<T as Family>::Member<X>` meets the bounds declared in
|
|
/// the trait (notably, that `X: Eq` and `T: Family`).
|
|
fn param_env_with_gat_bounds<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
impl_ty: ty::AssocItem,
|
|
impl_trait_ref: ty::TraitRef<'tcx>,
|
|
) -> ty::ParamEnv<'tcx> {
|
|
let param_env = tcx.param_env(impl_ty.def_id);
|
|
let container_id = impl_ty.container_id(tcx);
|
|
let mut predicates = param_env.caller_bounds().to_vec();
|
|
|
|
// for RPITITs, we should install predicates that allow us to project all
|
|
// of the RPITITs associated with the same body. This is because checking
|
|
// the item bounds of RPITITs often involves nested RPITITs having to prove
|
|
// bounds about themselves.
|
|
let impl_tys_to_install = match impl_ty.opt_rpitit_info {
|
|
None => vec![impl_ty],
|
|
Some(
|
|
ty::ImplTraitInTraitData::Impl { fn_def_id }
|
|
| ty::ImplTraitInTraitData::Trait { fn_def_id, .. },
|
|
) => tcx
|
|
.associated_types_for_impl_traits_in_associated_fn(fn_def_id)
|
|
.iter()
|
|
.map(|def_id| tcx.associated_item(*def_id))
|
|
.collect(),
|
|
};
|
|
|
|
for impl_ty in impl_tys_to_install {
|
|
let trait_ty = match impl_ty.container {
|
|
ty::AssocItemContainer::Trait => impl_ty,
|
|
ty::AssocItemContainer::Impl => tcx.associated_item(impl_ty.trait_item_def_id.unwrap()),
|
|
};
|
|
|
|
let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
|
|
smallvec::SmallVec::with_capacity(tcx.generics_of(impl_ty.def_id).own_params.len());
|
|
// Extend the impl's identity args with late-bound GAT vars
|
|
let normalize_impl_ty_args = ty::GenericArgs::identity_for_item(tcx, container_id)
|
|
.extend_to(tcx, impl_ty.def_id, |param, _| match param.kind {
|
|
GenericParamDefKind::Type { .. } => {
|
|
let kind = ty::BoundTyKind::Param(param.def_id, param.name);
|
|
let bound_var = ty::BoundVariableKind::Ty(kind);
|
|
bound_vars.push(bound_var);
|
|
Ty::new_bound(tcx, ty::INNERMOST, ty::BoundTy {
|
|
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
|
|
kind,
|
|
})
|
|
.into()
|
|
}
|
|
GenericParamDefKind::Lifetime => {
|
|
let kind = ty::BoundRegionKind::Named(param.def_id, param.name);
|
|
let bound_var = ty::BoundVariableKind::Region(kind);
|
|
bound_vars.push(bound_var);
|
|
ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion {
|
|
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
|
|
kind,
|
|
})
|
|
.into()
|
|
}
|
|
GenericParamDefKind::Const { .. } => {
|
|
let bound_var = ty::BoundVariableKind::Const;
|
|
bound_vars.push(bound_var);
|
|
ty::Const::new_bound(
|
|
tcx,
|
|
ty::INNERMOST,
|
|
ty::BoundVar::from_usize(bound_vars.len() - 1),
|
|
)
|
|
.into()
|
|
}
|
|
});
|
|
// When checking something like
|
|
//
|
|
// trait X { type Y: PartialEq<<Self as X>::Y> }
|
|
// impl X for T { default type Y = S; }
|
|
//
|
|
// We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
|
|
// we want <T as X>::Y to normalize to S. This is valid because we are
|
|
// checking the default value specifically here. Add this equality to the
|
|
// ParamEnv for normalization specifically.
|
|
let normalize_impl_ty =
|
|
tcx.type_of(impl_ty.def_id).instantiate(tcx, normalize_impl_ty_args);
|
|
let rebased_args =
|
|
normalize_impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);
|
|
let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars);
|
|
|
|
match normalize_impl_ty.kind() {
|
|
ty::Alias(ty::Projection, proj)
|
|
if proj.def_id == trait_ty.def_id && proj.args == rebased_args =>
|
|
{
|
|
// Don't include this predicate if the projected type is
|
|
// exactly the same as the projection. This can occur in
|
|
// (somewhat dubious) code like this:
|
|
//
|
|
// impl<T> X for T where T: X { type Y = <T as X>::Y; }
|
|
}
|
|
_ => predicates.push(
|
|
ty::Binder::bind_with_vars(
|
|
ty::ProjectionPredicate {
|
|
projection_term: ty::AliasTerm::new_from_args(
|
|
tcx,
|
|
trait_ty.def_id,
|
|
rebased_args,
|
|
),
|
|
term: normalize_impl_ty.into(),
|
|
},
|
|
bound_vars,
|
|
)
|
|
.upcast(tcx),
|
|
),
|
|
};
|
|
}
|
|
|
|
ty::ParamEnv::new(tcx.mk_clauses(&predicates))
|
|
}
|
|
|
|
/// Manually check here that `async fn foo()` wasn't matched against `fn foo()`,
|
|
/// and extract a better error if so.
|
|
fn try_report_async_mismatch<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
infcx: &InferCtxt<'tcx>,
|
|
errors: &[FulfillmentError<'tcx>],
|
|
trait_m: ty::AssocItem,
|
|
impl_m: ty::AssocItem,
|
|
impl_sig: ty::FnSig<'tcx>,
|
|
) -> Result<(), ErrorGuaranteed> {
|
|
if !tcx.asyncness(trait_m.def_id).is_async() {
|
|
return Ok(());
|
|
}
|
|
|
|
let ty::Alias(ty::Projection, ty::AliasTy { def_id: async_future_def_id, .. }) =
|
|
*tcx.fn_sig(trait_m.def_id).skip_binder().skip_binder().output().kind()
|
|
else {
|
|
bug!("expected `async fn` to return an RPITIT");
|
|
};
|
|
|
|
for error in errors {
|
|
if let ObligationCauseCode::WhereClause(def_id, _) = *error.root_obligation.cause.code()
|
|
&& def_id == async_future_def_id
|
|
&& let Some(proj) = error.root_obligation.predicate.as_projection_clause()
|
|
&& let Some(proj) = proj.no_bound_vars()
|
|
&& infcx.can_eq(
|
|
error.root_obligation.param_env,
|
|
proj.term.expect_type(),
|
|
impl_sig.output(),
|
|
)
|
|
{
|
|
// FIXME: We should suggest making the fn `async`, but extracting
|
|
// the right span is a bit difficult.
|
|
return Err(tcx.sess.dcx().emit_err(MethodShouldReturnFuture {
|
|
span: tcx.def_span(impl_m.def_id),
|
|
method_name: trait_m.name,
|
|
trait_item_span: tcx.hir().span_if_local(trait_m.def_id),
|
|
}));
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|