1
Fork 0
rust/src/libsyntax/ext/tt/macro_rules.rs
Oliver Scherer 33bf81eec0 Ease the transition to requiring features by just warning if there's no feature list
while we could make this change (it's all unstable after all), there are crates.io crates that use the feature and that the compiler depends upon. We can instead roll out this feature while still supporting the old way.
2019-02-11 15:08:17 +01:00

1157 lines
47 KiB
Rust

use crate::{ast, attr};
use crate::edition::Edition;
use crate::errors::FatalError;
use crate::ext::base::{DummyResult, ExtCtxt, MacResult, SyntaxExtension};
use crate::ext::base::{NormalTT, TTMacroExpander};
use crate::ext::expand::{AstFragment, AstFragmentKind};
use crate::ext::tt::macro_parser::{Success, Error, Failure};
use crate::ext::tt::macro_parser::{MatchedSeq, MatchedNonterminal};
use crate::ext::tt::macro_parser::{parse, parse_failure_msg};
use crate::ext::tt::quoted;
use crate::ext::tt::transcribe::transcribe;
use crate::feature_gate::Features;
use crate::parse::{Directory, ParseSess};
use crate::parse::parser::Parser;
use crate::parse::token::{self, NtTT};
use crate::parse::token::Token::*;
use crate::symbol::Symbol;
use crate::tokenstream::{DelimSpan, TokenStream, TokenTree};
use syntax_pos::{Span, DUMMY_SP, symbol::Ident};
use log::debug;
use rustc_data_structures::fx::{FxHashMap};
use std::borrow::Cow;
use std::collections::hash_map::Entry;
use rustc_data_structures::sync::Lrc;
use crate::errors::Applicability;
const VALID_FRAGMENT_NAMES_MSG: &str = "valid fragment specifiers are \
`ident`, `block`, `stmt`, `expr`, `pat`, `ty`, `lifetime`, `literal`, \
`path`, `meta`, `tt`, `item` and `vis`";
pub struct ParserAnyMacro<'a> {
parser: Parser<'a>,
/// Span of the expansion site of the macro this parser is for
site_span: Span,
/// The ident of the macro we're parsing
macro_ident: ast::Ident,
arm_span: Span,
}
impl<'a> ParserAnyMacro<'a> {
pub fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
let ParserAnyMacro { site_span, macro_ident, ref mut parser, arm_span } = *self;
let fragment = panictry!(parser.parse_ast_fragment(kind, true).map_err(|mut e| {
if parser.token == token::Eof && e.message().ends_with(", found `<eof>`") {
if !e.span.is_dummy() { // early end of macro arm (#52866)
e.replace_span_with(parser.sess.source_map().next_point(parser.span));
}
let msg = &e.message[0];
e.message[0] = (
format!(
"macro expansion ends with an incomplete expression: {}",
msg.0.replace(", found `<eof>`", ""),
),
msg.1,
);
}
if e.span.is_dummy() { // Get around lack of span in error (#30128)
e.replace_span_with(site_span);
if parser.sess.source_map().span_to_filename(arm_span).is_real() {
e.span_label(arm_span, "in this macro arm");
}
} else if !parser.sess.source_map().span_to_filename(parser.span).is_real() {
e.span_label(site_span, "in this macro invocation");
}
e
}));
// We allow semicolons at the end of expressions -- e.g., the semicolon in
// `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
// but `m!()` is allowed in expression positions (cf. issue #34706).
if kind == AstFragmentKind::Expr && parser.token == token::Semi {
parser.bump();
}
// Make sure we don't have any tokens left to parse so we don't silently drop anything.
let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
parser.ensure_complete_parse(&path, kind.name(), site_span);
fragment
}
}
struct MacroRulesMacroExpander {
name: ast::Ident,
lhses: Vec<quoted::TokenTree>,
rhses: Vec<quoted::TokenTree>,
valid: bool,
}
impl TTMacroExpander for MacroRulesMacroExpander {
fn expand<'cx>(
&self,
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
input: TokenStream,
def_span: Option<Span>,
) -> Box<dyn MacResult+'cx> {
if !self.valid {
return DummyResult::any(sp);
}
generic_extension(cx,
sp,
def_span,
self.name,
input,
&self.lhses,
&self.rhses)
}
}
fn trace_macros_note(cx: &mut ExtCtxt<'_>, sp: Span, message: String) {
let sp = sp.macro_backtrace().last().map(|trace| trace.call_site).unwrap_or(sp);
cx.expansions.entry(sp).or_default().push(message);
}
/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(cx: &'cx mut ExtCtxt<'_>,
sp: Span,
def_span: Option<Span>,
name: ast::Ident,
arg: TokenStream,
lhses: &[quoted::TokenTree],
rhses: &[quoted::TokenTree])
-> Box<dyn MacResult+'cx> {
if cx.trace_macros() {
trace_macros_note(cx, sp, format!("expanding `{}! {{ {} }}`", name, arg));
}
// Which arm's failure should we report? (the one furthest along)
let mut best_fail_spot = DUMMY_SP;
let mut best_fail_tok = None;
let mut best_fail_text = None;
for (i, lhs) in lhses.iter().enumerate() { // try each arm's matchers
let lhs_tt = match *lhs {
quoted::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
_ => cx.span_bug(sp, "malformed macro lhs")
};
match TokenTree::parse(cx, lhs_tt, arg.clone()) {
Success(named_matches) => {
let rhs = match rhses[i] {
// ignore delimiters
quoted::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
_ => cx.span_bug(sp, "malformed macro rhs"),
};
let arm_span = rhses[i].span();
let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
// rhs has holes ( `$id` and `$(...)` that need filled)
let mut tts = transcribe(cx, Some(named_matches), rhs);
// Replace all the tokens for the corresponding positions in the macro, to maintain
// proper positions in error reporting, while maintaining the macro_backtrace.
if rhs_spans.len() == tts.len() {
tts = tts.map_enumerated(|i, mut tt| {
let mut sp = rhs_spans[i];
sp = sp.with_ctxt(tt.span().ctxt());
tt.set_span(sp);
tt
});
}
if cx.trace_macros() {
trace_macros_note(cx, sp, format!("to `{}`", tts));
}
let directory = Directory {
path: Cow::from(cx.current_expansion.module.directory.as_path()),
ownership: cx.current_expansion.directory_ownership,
};
let mut p = Parser::new(cx.parse_sess(), tts, Some(directory), true, false);
p.root_module_name = cx.current_expansion.module.mod_path.last()
.map(|id| id.as_str().to_string());
p.process_potential_macro_variable();
// Let the context choose how to interpret the result.
// Weird, but useful for X-macros.
return Box::new(ParserAnyMacro {
parser: p,
// Pass along the original expansion site and the name of the macro
// so we can print a useful error message if the parse of the expanded
// macro leaves unparsed tokens.
site_span: sp,
macro_ident: name,
arm_span,
})
}
Failure(sp, tok, t) => if sp.lo() >= best_fail_spot.lo() {
best_fail_spot = sp;
best_fail_tok = Some(tok);
best_fail_text = Some(t);
},
Error(err_sp, ref msg) => {
cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..])
}
}
}
let best_fail_msg = parse_failure_msg(best_fail_tok.expect("ran no matchers"));
let span = best_fail_spot.substitute_dummy(sp);
let mut err = cx.struct_span_err(span, &best_fail_msg);
err.span_label(span, best_fail_text.unwrap_or(&best_fail_msg));
if let Some(sp) = def_span {
if cx.source_map().span_to_filename(sp).is_real() && !sp.is_dummy() {
err.span_label(cx.source_map().def_span(sp), "when calling this macro");
}
}
// Check whether there's a missing comma in this macro call, like `println!("{}" a);`
if let Some((arg, comma_span)) = arg.add_comma() {
for lhs in lhses { // try each arm's matchers
let lhs_tt = match *lhs {
quoted::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
_ => continue,
};
match TokenTree::parse(cx, lhs_tt, arg.clone()) {
Success(_) => {
if comma_span.is_dummy() {
err.note("you might be missing a comma");
} else {
err.span_suggestion_short(
comma_span,
"missing comma here",
", ".to_string(),
Applicability::MachineApplicable,
);
}
}
_ => {}
}
}
}
err.emit();
cx.trace_macros_diag();
DummyResult::any(sp)
}
// Note that macro-by-example's input is also matched against a token tree:
// $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!
/// Converts a `macro_rules!` invocation into a syntax extension.
pub fn compile(
sess: &ParseSess,
features: &Features,
def: &ast::Item,
edition: Edition
) -> SyntaxExtension {
let lhs_nm = ast::Ident::with_empty_ctxt(Symbol::gensym("lhs"));
let rhs_nm = ast::Ident::with_empty_ctxt(Symbol::gensym("rhs"));
// Parse the macro_rules! invocation
let body = match def.node {
ast::ItemKind::MacroDef(ref body) => body,
_ => unreachable!(),
};
// The pattern that macro_rules matches.
// The grammar for macro_rules! is:
// $( $lhs:tt => $rhs:tt );+
// ...quasiquoting this would be nice.
// These spans won't matter, anyways
let argument_gram = vec![
quoted::TokenTree::Sequence(DelimSpan::dummy(), Lrc::new(quoted::SequenceRepetition {
tts: vec![
quoted::TokenTree::MetaVarDecl(DUMMY_SP, lhs_nm, ast::Ident::from_str("tt")),
quoted::TokenTree::Token(DUMMY_SP, token::FatArrow),
quoted::TokenTree::MetaVarDecl(DUMMY_SP, rhs_nm, ast::Ident::from_str("tt")),
],
separator: Some(if body.legacy { token::Semi } else { token::Comma }),
op: quoted::KleeneOp::OneOrMore,
num_captures: 2,
})),
// to phase into semicolon-termination instead of semicolon-separation
quoted::TokenTree::Sequence(DelimSpan::dummy(), Lrc::new(quoted::SequenceRepetition {
tts: vec![quoted::TokenTree::Token(DUMMY_SP, token::Semi)],
separator: None,
op: quoted::KleeneOp::ZeroOrMore,
num_captures: 0
})),
];
let argument_map = match parse(sess, body.stream(), &argument_gram, None, true) {
Success(m) => m,
Failure(sp, tok, t) => {
let s = parse_failure_msg(tok);
let sp = sp.substitute_dummy(def.span);
let mut err = sess.span_diagnostic.struct_span_fatal(sp, &s);
err.span_label(sp, t);
err.emit();
FatalError.raise();
}
Error(sp, s) => {
sess.span_diagnostic.span_fatal(sp.substitute_dummy(def.span), &s).raise();
}
};
let mut valid = true;
// Extract the arguments:
let lhses = match *argument_map[&lhs_nm] {
MatchedSeq(ref s, _) => {
s.iter().map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
let tt = quoted::parse(
tt.clone().into(),
true,
sess,
features,
&def.attrs,
edition,
def.id,
)
.pop()
.unwrap();
valid &= check_lhs_nt_follows(sess, features, &def.attrs, &tt);
return tt;
}
}
sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
}).collect::<Vec<quoted::TokenTree>>()
}
_ => sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
};
let rhses = match *argument_map[&rhs_nm] {
MatchedSeq(ref s, _) => {
s.iter().map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
return quoted::parse(
tt.clone().into(),
false,
sess,
features,
&def.attrs,
edition,
def.id,
).pop()
.unwrap();
}
}
sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
}).collect::<Vec<quoted::TokenTree>>()
}
_ => sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs")
};
for rhs in &rhses {
valid &= check_rhs(sess, rhs);
}
// don't abort iteration early, so that errors for multiple lhses can be reported
for lhs in &lhses {
valid &= check_lhs_no_empty_seq(sess, &[lhs.clone()]);
valid &= check_lhs_duplicate_matcher_bindings(
sess,
&[lhs.clone()],
&mut FxHashMap::default(),
def.id
);
}
let expander: Box<_> = Box::new(MacroRulesMacroExpander {
name: def.ident,
lhses,
rhses,
valid,
});
if body.legacy {
let allow_internal_unstable = attr::find_by_name(&def.attrs, "allow_internal_unstable")
.map_or(Vec::new(), |attr| attr
.meta_item_list()
.map(|list| list.iter()
.map(|it| it.name().unwrap_or_else(|| sess.span_diagnostic.span_bug(
it.span, "allow internal unstable expects feature names",
)))
.collect()
)
.unwrap_or_else(|| {
sess.span_diagnostic.span_warn(
attr.span, "allow_internal_unstable expects list of feature names. In the \
future this will become a hard error. Please use `allow_internal_unstable(\
foo, bar)` to only allow the `foo` and `bar` features",
);
vec![Symbol::intern("allow_internal_unstable_backcompat_hack")]
})
);
let allow_internal_unsafe = attr::contains_name(&def.attrs, "allow_internal_unsafe");
let mut local_inner_macros = false;
if let Some(macro_export) = attr::find_by_name(&def.attrs, "macro_export") {
if let Some(l) = macro_export.meta_item_list() {
local_inner_macros = attr::list_contains_name(&l, "local_inner_macros");
}
}
let unstable_feature = attr::find_stability(&sess,
&def.attrs, def.span).and_then(|stability| {
if let attr::StabilityLevel::Unstable { issue, .. } = stability.level {
Some((stability.feature, issue))
} else {
None
}
});
NormalTT {
expander,
def_info: Some((def.id, def.span)),
allow_internal_unstable,
allow_internal_unsafe,
local_inner_macros,
unstable_feature,
edition,
}
} else {
let is_transparent = attr::contains_name(&def.attrs, "rustc_transparent_macro");
SyntaxExtension::DeclMacro {
expander,
def_info: Some((def.id, def.span)),
is_transparent,
edition,
}
}
}
fn check_lhs_nt_follows(sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
lhs: &quoted::TokenTree) -> bool {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
if let quoted::TokenTree::Delimited(_, ref tts) = *lhs {
check_matcher(sess, features, attrs, &tts.tts)
} else {
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
sess.span_diagnostic.span_err(lhs.span(), msg);
false
}
// we don't abort on errors on rejection, the driver will do that for us
// after parsing/expansion. we can report every error in every macro this way.
}
/// Check that the lhs contains no repetition which could match an empty token
/// tree, because then the matcher would hang indefinitely.
fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[quoted::TokenTree]) -> bool {
use quoted::TokenTree;
for tt in tts {
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => (),
TokenTree::Delimited(_, ref del) => if !check_lhs_no_empty_seq(sess, &del.tts) {
return false;
},
TokenTree::Sequence(span, ref seq) => {
if seq.separator.is_none() && seq.tts.iter().all(|seq_tt| {
match *seq_tt {
TokenTree::MetaVarDecl(_, _, id) => id.name == "vis",
TokenTree::Sequence(_, ref sub_seq) =>
sub_seq.op == quoted::KleeneOp::ZeroOrMore
|| sub_seq.op == quoted::KleeneOp::ZeroOrOne,
_ => false,
}
}) {
let sp = span.entire();
sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
return false;
}
if !check_lhs_no_empty_seq(sess, &seq.tts) {
return false;
}
}
}
}
true
}
/// Check that the LHS contains no duplicate matcher bindings. e.g. `$a:expr, $a:expr` would be
/// illegal, since it would be ambiguous which `$a` to use if we ever needed to.
fn check_lhs_duplicate_matcher_bindings(
sess: &ParseSess,
tts: &[quoted::TokenTree],
metavar_names: &mut FxHashMap<Ident, Span>,
node_id: ast::NodeId,
) -> bool {
use self::quoted::TokenTree;
use crate::early_buffered_lints::BufferedEarlyLintId;
for tt in tts {
match *tt {
TokenTree::MetaVarDecl(span, name, _kind) => {
if let Some(&prev_span) = metavar_names.get(&name) {
// FIXME(mark-i-m): in a few cycles, make this a hard error.
// sess.span_diagnostic
// .struct_span_err(span, "duplicate matcher binding")
// .span_note(prev_span, "previous declaration was here")
// .emit();
sess.buffer_lint(
BufferedEarlyLintId::DuplicateMacroMatcherBindingName,
crate::source_map::MultiSpan::from(vec![prev_span, span]),
node_id,
"duplicate matcher binding"
);
return false;
} else {
metavar_names.insert(name, span);
}
}
TokenTree::Delimited(_, ref del) => {
if !check_lhs_duplicate_matcher_bindings(sess, &del.tts, metavar_names, node_id) {
return false;
}
},
TokenTree::Sequence(_, ref seq) => {
if !check_lhs_duplicate_matcher_bindings(sess, &seq.tts, metavar_names, node_id) {
return false;
}
}
_ => {}
}
}
true
}
fn check_rhs(sess: &ParseSess, rhs: &quoted::TokenTree) -> bool {
match *rhs {
quoted::TokenTree::Delimited(..) => return true,
_ => sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited")
}
false
}
fn check_matcher(sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
matcher: &[quoted::TokenTree]) -> bool {
let first_sets = FirstSets::new(matcher);
let empty_suffix = TokenSet::empty();
let err = sess.span_diagnostic.err_count();
check_matcher_core(sess, features, attrs, &first_sets, matcher, &empty_suffix);
err == sess.span_diagnostic.err_count()
}
// `The FirstSets` for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its *first* set.
//
// (Hypothetically, sequences should be uniquely identifiable via their
// spans, though perhaps that is false, e.g., for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`.
//
// If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to
// use a slow path).
first: FxHashMap<Span, Option<TokenSet>>,
}
impl FirstSets {
fn new(tts: &[quoted::TokenTree]) -> FirstSets {
use quoted::TokenTree;
let mut sets = FirstSets { first: FxHashMap::default() };
build_recur(&mut sets, tts);
return sets;
// walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence
// substructure we find within `tts`.
fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
let mut first = TokenSet::empty();
for tt in tts.iter().rev() {
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
first.replace_with(tt.clone());
}
TokenTree::Delimited(span, ref delimited) => {
build_recur(sets, &delimited.tts[..]);
first.replace_with(delimited.open_tt(span.open));
}
TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts[..]);
match sets.first.entry(sp.entire()) {
Entry::Vacant(vac) => {
vac.insert(Some(subfirst.clone()));
}
Entry::Occupied(mut occ) => {
// if there is already an entry, then a span must have collided.
// This should not happen with typical macro_rules macros,
// but syntax extensions need not maintain distinct spans,
// so distinct syntax trees can be assigned the same span.
// In such a case, the map cannot be trusted; so mark this
// entry as unusable.
occ.insert(None);
}
}
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(ref sep), true) = (seq_rep.separator.clone(),
subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sp.entire(), sep.clone()));
}
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty
|| seq_rep.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.op == quoted::KleeneOp::ZeroOrOne
{
// If sequence is potentially empty, then
// union them (preserving first emptiness).
first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
} else {
// Otherwise, sequence guaranteed
// non-empty; replace first.
first = subfirst;
}
}
}
}
first
}
}
// walks forward over `tts` until all potential FIRST tokens are
// identified.
fn first(&self, tts: &[quoted::TokenTree]) -> TokenSet {
use quoted::TokenTree;
let mut first = TokenSet::empty();
for tt in tts.iter() {
assert!(first.maybe_empty);
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
first.add_one(tt.clone());
return first;
}
TokenTree::Delimited(span, ref delimited) => {
first.add_one(delimited.open_tt(span.open));
return first;
}
TokenTree::Sequence(sp, ref seq_rep) => {
match self.first.get(&sp.entire()) {
Some(&Some(ref subfirst)) => {
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(ref sep), true) = (seq_rep.separator.clone(),
subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sp.entire(), sep.clone()));
}
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty
|| seq_rep.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.op == quoted::KleeneOp::ZeroOrOne
{
// continue scanning for more first
// tokens, but also make sure we
// restore empty-tracking state
first.maybe_empty = true;
continue;
} else {
return first;
}
}
Some(&None) => {
panic!("assume all sequences have (unique) spans for now");
}
None => {
panic!("We missed a sequence during FirstSets construction");
}
}
}
}
}
// we only exit the loop if `tts` was empty or if every
// element of `tts` matches the empty sequence.
assert!(first.maybe_empty);
first
}
}
// A set of `quoted::TokenTree`s, which may include `TokenTree::Match`s
// (for macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet {
tokens: Vec<quoted::TokenTree>,
maybe_empty: bool,
}
impl TokenSet {
// Returns a set for the empty sequence.
fn empty() -> Self { TokenSet { tokens: Vec::new(), maybe_empty: true } }
// Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok].
fn singleton(tok: quoted::TokenTree) -> Self {
TokenSet { tokens: vec![tok], maybe_empty: false }
}
// Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tok: quoted::TokenTree) {
self.tokens.clear();
self.tokens.push(tok);
self.maybe_empty = false;
}
// Changes self to be the empty set `{}`; meant for use when
// the particular token does not matter, but we want to
// record that it occurs.
fn replace_with_irrelevant(&mut self) {
self.tokens.clear();
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`, marking sequence as non-empy.
fn add_one(&mut self, tok: quoted::TokenTree) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tok: quoted::TokenTree) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
}
// Adds all elements of `other` to this.
//
// (Since this is a set, we filter out duplicates.)
//
// If `other` is potentially empty, then preserves the previous
// setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) {
for tok in &other.tokens {
if !self.tokens.contains(tok) {
self.tokens.push(tok.clone());
}
}
if !other.maybe_empty {
self.maybe_empty = false;
}
}
}
// Checks that `matcher` is internally consistent and that it
// can legally by followed by a token N, for all N in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core(sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
first_sets: &FirstSets,
matcher: &[quoted::TokenTree],
follow: &TokenSet) -> TokenSet {
use quoted::TokenTree;
let mut last = TokenSet::empty();
// 2. For each token and suffix [T, SUFFIX] in M:
// ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
// then ensure T can also be followed by any element of FOLLOW.
'each_token: for i in 0..matcher.len() {
let token = &matcher[i];
let suffix = &matcher[i+1..];
let build_suffix_first = || {
let mut s = first_sets.first(suffix);
if s.maybe_empty { s.add_all(follow); }
s
};
// (we build `suffix_first` on demand below; you can tell
// which cases are supposed to fall through by looking for the
// initialization of this variable.)
let suffix_first;
// First, update `last` so that it corresponds to the set
// of NT tokens that might end the sequence `... token`.
match *token {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
let can_be_followed_by_any;
if let Err(bad_frag) = has_legal_fragment_specifier(sess, features, attrs, token) {
let msg = format!("invalid fragment specifier `{}`", bad_frag);
sess.span_diagnostic.struct_span_err(token.span(), &msg)
.help(VALID_FRAGMENT_NAMES_MSG)
.emit();
// (This eliminates false positives and duplicates
// from error messages.)
can_be_followed_by_any = true;
} else {
can_be_followed_by_any = token_can_be_followed_by_any(token);
}
if can_be_followed_by_any {
// don't need to track tokens that work with any,
last.replace_with_irrelevant();
// ... and don't need to check tokens that can be
// followed by anything against SUFFIX.
continue 'each_token;
} else {
last.replace_with(token.clone());
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(span, ref d) => {
let my_suffix = TokenSet::singleton(d.close_tt(span.close));
check_matcher_core(sess, features, attrs, first_sets, &d.tts, &my_suffix);
// don't track non NT tokens
last.replace_with_irrelevant();
// also, we don't need to check delimited sequences
// against SUFFIX
continue 'each_token;
}
TokenTree::Sequence(sp, ref seq_rep) => {
suffix_first = build_suffix_first();
// The trick here: when we check the interior, we want
// to include the separator (if any) as a potential
// (but not guaranteed) element of FOLLOW. So in that
// case, we make a temp copy of suffix and stuff
// delimiter in there.
//
// FIXME: Should I first scan suffix_first to see if
// delimiter is already in it before I go through the
// work of cloning it? But then again, this way I may
// get a "tighter" span?
let mut new;
let my_suffix = if let Some(ref u) = seq_rep.separator {
new = suffix_first.clone();
new.add_one_maybe(TokenTree::Token(sp.entire(), u.clone()));
&new
} else {
&suffix_first
};
// At this point, `suffix_first` is built, and
// `my_suffix` is some TokenSet that we can use
// for checking the interior of `seq_rep`.
let next = check_matcher_core(sess,
features,
attrs,
first_sets,
&seq_rep.tts,
my_suffix);
if next.maybe_empty {
last.add_all(&next);
} else {
last = next;
}
// the recursive call to check_matcher_core already ran the 'each_last
// check below, so we can just keep going forward here.
continue 'each_token;
}
}
// (`suffix_first` guaranteed initialized once reaching here.)
// Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`.
'each_last: for token in &last.tokens {
if let TokenTree::MetaVarDecl(_, ref name, ref frag_spec) = *token {
for next_token in &suffix_first.tokens {
match is_in_follow(next_token, &frag_spec.as_str()) {
IsInFollow::Invalid(msg, help) => {
sess.span_diagnostic.struct_span_err(next_token.span(), &msg)
.help(help).emit();
// don't bother reporting every source of
// conflict for a particular element of `last`.
continue 'each_last;
}
IsInFollow::Yes => {}
IsInFollow::No(ref possible) => {
let may_be = if last.tokens.len() == 1 &&
suffix_first.tokens.len() == 1
{
"is"
} else {
"may be"
};
let sp = next_token.span();
let mut err = sess.span_diagnostic.struct_span_err(
sp,
&format!("`${name}:{frag}` {may_be} followed by `{next}`, which \
is not allowed for `{frag}` fragments",
name=name,
frag=frag_spec,
next=quoted_tt_to_string(next_token),
may_be=may_be),
);
err.span_label(
sp,
format!("not allowed after `{}` fragments", frag_spec),
);
let msg = "allowed there are: ";
match &possible[..] {
&[] => {}
&[t] => {
err.note(&format!(
"only {} is allowed after `{}` fragments",
t,
frag_spec,
));
}
ts => {
err.note(&format!(
"{}{} or {}",
msg,
ts[..ts.len() - 1].iter().map(|s| *s)
.collect::<Vec<_>>().join(", "),
ts[ts.len() - 1],
));
}
}
err.emit();
}
}
}
}
}
}
last
}
fn token_can_be_followed_by_any(tok: &quoted::TokenTree) -> bool {
if let quoted::TokenTree::MetaVarDecl(_, _, frag_spec) = *tok {
frag_can_be_followed_by_any(&frag_spec.as_str())
} else {
// (Non NT's can always be followed by anthing in matchers.)
true
}
}
/// True if a fragment of type `frag` can be followed by any sort of
/// token. We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn frag_can_be_followed_by_any(frag: &str) -> bool {
match frag {
"item" | // always terminated by `}` or `;`
"block" | // exactly one token tree
"ident" | // exactly one token tree
"literal" | // exactly one token tree
"meta" | // exactly one token tree
"lifetime" | // exactly one token tree
"tt" => // exactly one token tree
true,
_ =>
false,
}
}
enum IsInFollow {
Yes,
No(Vec<&'static str>),
Invalid(String, &'static str),
}
/// True if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded number of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
// when changing this do not forget to update doc/book/macros.md!
fn is_in_follow(tok: &quoted::TokenTree, frag: &str) -> IsInFollow {
use quoted::TokenTree;
if let TokenTree::Token(_, token::CloseDelim(_)) = *tok {
// closing a token tree can never be matched by any fragment;
// iow, we always require that `(` and `)` match, etc.
IsInFollow::Yes
} else {
match frag {
"item" => {
// since items *must* be followed by either a `;` or a `}`, we can
// accept anything after them
IsInFollow::Yes
},
"block" => {
// anything can follow block, the braces provide an easy boundary to
// maintain
IsInFollow::Yes
},
"stmt" | "expr" => {
let tokens = vec!["`=>`", "`,`", "`;`"];
match *tok {
TokenTree::Token(_, ref tok) => match *tok {
FatArrow | Comma | Semi => IsInFollow::Yes,
_ => IsInFollow::No(tokens),
},
_ => IsInFollow::No(tokens),
}
},
"pat" => {
let tokens = vec!["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
match *tok {
TokenTree::Token(_, ref tok) => match *tok {
FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
Ident(i, false) if i.name == "if" || i.name == "in" => IsInFollow::Yes,
_ => IsInFollow::No(tokens),
},
_ => IsInFollow::No(tokens),
}
},
"path" | "ty" => {
let tokens = vec![
"`{`", "`[`", "`=>`", "`,`", "`>`","`=`", "`:`", "`;`", "`|`", "`as`",
"`where`",
];
match *tok {
TokenTree::Token(_, ref tok) => match *tok {
OpenDelim(token::DelimToken::Brace) |
OpenDelim(token::DelimToken::Bracket) |
Comma | FatArrow | Colon | Eq | Gt | BinOp(token::Shr) | Semi |
BinOp(token::Or) => IsInFollow::Yes,
Ident(i, false) if i.name == "as" || i.name == "where" => IsInFollow::Yes,
_ => IsInFollow::No(tokens),
},
TokenTree::MetaVarDecl(_, _, frag) if frag.name == "block" => IsInFollow::Yes,
_ => IsInFollow::No(tokens),
}
},
"ident" | "lifetime" => {
// being a single token, idents and lifetimes are harmless
IsInFollow::Yes
},
"literal" => {
// literals may be of a single token, or two tokens (negative numbers)
IsInFollow::Yes
},
"meta" | "tt" => {
// being either a single token or a delimited sequence, tt is
// harmless
IsInFollow::Yes
},
"vis" => {
// Explicitly disallow `priv`, on the off chance it comes back.
let tokens = vec!["`,`", "an ident", "a type"];
match *tok {
TokenTree::Token(_, ref tok) => match *tok {
Comma => IsInFollow::Yes,
Ident(i, is_raw) if is_raw || i.name != "priv" => IsInFollow::Yes,
ref tok => if tok.can_begin_type() {
IsInFollow::Yes
} else {
IsInFollow::No(tokens)
}
},
TokenTree::MetaVarDecl(_, _, frag) if frag.name == "ident"
|| frag.name == "ty"
|| frag.name == "path" => IsInFollow::Yes,
_ => IsInFollow::No(tokens),
}
},
"" => IsInFollow::Yes, // keywords::Invalid
_ => IsInFollow::Invalid(format!("invalid fragment specifier `{}`", frag),
VALID_FRAGMENT_NAMES_MSG),
}
}
}
fn has_legal_fragment_specifier(sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
tok: &quoted::TokenTree) -> Result<(), String> {
debug!("has_legal_fragment_specifier({:?})", tok);
if let quoted::TokenTree::MetaVarDecl(_, _, ref frag_spec) = *tok {
let frag_name = frag_spec.as_str();
let frag_span = tok.span();
if !is_legal_fragment_specifier(sess, features, attrs, &frag_name, frag_span) {
return Err(frag_name.to_string());
}
}
Ok(())
}
fn is_legal_fragment_specifier(_sess: &ParseSess,
_features: &Features,
_attrs: &[ast::Attribute],
frag_name: &str,
_frag_span: Span) -> bool {
/*
* If new fragment specifiers are invented in nightly, `_sess`,
* `_features`, `_attrs`, and `_frag_span` will be useful here
* for checking against feature gates. See past versions of
* this function.
*/
match frag_name {
"item" | "block" | "stmt" | "expr" | "pat" | "lifetime" |
"path" | "ty" | "ident" | "meta" | "tt" | "vis" | "literal" |
"" => true,
_ => false,
}
}
fn quoted_tt_to_string(tt: &quoted::TokenTree) -> String {
match *tt {
quoted::TokenTree::Token(_, ref tok) => crate::print::pprust::token_to_string(tok),
quoted::TokenTree::MetaVar(_, name) => format!("${}", name),
quoted::TokenTree::MetaVarDecl(_, name, kind) => format!("${}:{}", name, kind),
_ => panic!("unexpected quoted::TokenTree::{{Sequence or Delimited}} \
in follow set checker"),
}
}