
This makes it easier for contributors on aarch64 workstations (e.g. Macs) to notice when these assertions have been violated.
2179 lines
78 KiB
Rust
2179 lines
78 KiB
Rust
//! Defines how the compiler represents types internally.
|
|
//!
|
|
//! Two important entities in this module are:
|
|
//!
|
|
//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
|
|
//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
|
|
//!
|
|
//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
|
|
//!
|
|
//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
|
|
|
|
#![allow(rustc::usage_of_ty_tykind)]
|
|
|
|
pub use self::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable};
|
|
pub use self::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor};
|
|
pub use self::AssocItemContainer::*;
|
|
pub use self::BorrowKind::*;
|
|
pub use self::IntVarValue::*;
|
|
pub use self::Variance::*;
|
|
use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
|
|
use crate::metadata::ModChild;
|
|
use crate::middle::privacy::EffectiveVisibilities;
|
|
use crate::mir::{Body, CoroutineLayout};
|
|
use crate::query::Providers;
|
|
use crate::traits::{self, Reveal};
|
|
use crate::ty;
|
|
use crate::ty::fast_reject::SimplifiedType;
|
|
use crate::ty::util::Discr;
|
|
pub use adt::*;
|
|
pub use assoc::*;
|
|
pub use generic_args::*;
|
|
pub use generics::*;
|
|
pub use intrinsic::IntrinsicDef;
|
|
use rustc_ast as ast;
|
|
use rustc_ast::expand::StrippedCfgItem;
|
|
use rustc_ast::node_id::NodeMap;
|
|
pub use rustc_ast_ir::{try_visit, Movability, Mutability};
|
|
use rustc_attr as attr;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
|
|
use rustc_data_structures::intern::Interned;
|
|
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
|
|
use rustc_data_structures::steal::Steal;
|
|
use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
|
|
use rustc_data_structures::unord::UnordMap;
|
|
use rustc_errors::{Diag, ErrorGuaranteed, StashKey};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res};
|
|
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap, LocalDefIdSet};
|
|
use rustc_index::IndexVec;
|
|
use rustc_macros::HashStable;
|
|
use rustc_query_system::ich::StableHashingContext;
|
|
use rustc_serialize::{Decodable, Encodable};
|
|
use rustc_session::lint::LintBuffer;
|
|
pub use rustc_session::lint::RegisteredTools;
|
|
use rustc_span::hygiene::MacroKind;
|
|
use rustc_span::symbol::{kw, sym, Ident, Symbol};
|
|
use rustc_span::{hygiene, ExpnId, ExpnKind, Span};
|
|
use rustc_target::abi::{Align, FieldIdx, Integer, IntegerType, VariantIdx};
|
|
pub use rustc_target::abi::{ReprFlags, ReprOptions};
|
|
pub use rustc_type_ir::{DebugWithInfcx, InferCtxtLike, WithInfcx};
|
|
pub use vtable::*;
|
|
|
|
use std::assert_matches::assert_matches;
|
|
use std::fmt::Debug;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
use std::num::NonZero;
|
|
use std::ptr::NonNull;
|
|
use std::{fmt, str};
|
|
|
|
pub use crate::ty::diagnostics::*;
|
|
pub use rustc_type_ir::ConstKind::{
|
|
Bound as BoundCt, Error as ErrorCt, Expr as ExprCt, Infer as InferCt, Param as ParamCt,
|
|
Placeholder as PlaceholderCt, Unevaluated, Value,
|
|
};
|
|
pub use rustc_type_ir::*;
|
|
|
|
pub use self::closure::{
|
|
is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo,
|
|
CapturedPlace, ClosureTypeInfo, MinCaptureInformationMap, MinCaptureList,
|
|
RootVariableMinCaptureList, UpvarCapture, UpvarId, UpvarPath, CAPTURE_STRUCT_LOCAL,
|
|
};
|
|
pub use self::consts::{
|
|
Const, ConstData, ConstInt, ConstKind, Expr, ScalarInt, UnevaluatedConst, ValTree,
|
|
};
|
|
pub use self::context::{
|
|
tls, CtxtInterners, CurrentGcx, DeducedParamAttrs, Feed, FreeRegionInfo, GlobalCtxt, Lift,
|
|
TyCtxt, TyCtxtFeed,
|
|
};
|
|
pub use self::instance::{Instance, InstanceDef, ShortInstance, UnusedGenericParams};
|
|
pub use self::list::List;
|
|
pub use self::parameterized::ParameterizedOverTcx;
|
|
pub use self::predicate::{
|
|
Clause, ClauseKind, CoercePredicate, ExistentialPredicate, ExistentialProjection,
|
|
ExistentialTraitRef, NormalizesTo, OutlivesPredicate, PolyCoercePredicate,
|
|
PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef,
|
|
PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate,
|
|
PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate,
|
|
RegionOutlivesPredicate, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitPredicate,
|
|
TraitRef, TypeOutlivesPredicate,
|
|
};
|
|
pub use self::region::{
|
|
BoundRegion, BoundRegionKind, BoundRegionKind::*, EarlyParamRegion, LateParamRegion, Region,
|
|
RegionKind, RegionVid,
|
|
};
|
|
pub use self::rvalue_scopes::RvalueScopes;
|
|
pub use self::sty::{
|
|
AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
|
|
ClosureArgs, ClosureArgsParts, CoroutineArgs, CoroutineArgsParts, CoroutineClosureArgs,
|
|
CoroutineClosureArgsParts, CoroutineClosureSignature, FnSig, GenSig, InlineConstArgs,
|
|
InlineConstArgsParts, ParamConst, ParamTy, PolyFnSig, TyKind, TypeAndMut, UpvarArgs,
|
|
VarianceDiagInfo,
|
|
};
|
|
pub use self::trait_def::TraitDef;
|
|
pub use self::typeck_results::{
|
|
CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity,
|
|
TypeckResults, UserType, UserTypeAnnotationIndex,
|
|
};
|
|
|
|
pub mod _match;
|
|
pub mod abstract_const;
|
|
pub mod adjustment;
|
|
pub mod cast;
|
|
pub mod codec;
|
|
pub mod error;
|
|
pub mod fast_reject;
|
|
pub mod flags;
|
|
pub mod fold;
|
|
pub mod inhabitedness;
|
|
pub mod layout;
|
|
pub mod normalize_erasing_regions;
|
|
pub mod print;
|
|
pub mod relate;
|
|
pub mod trait_def;
|
|
pub mod util;
|
|
pub mod visit;
|
|
pub mod vtable;
|
|
pub mod walk;
|
|
|
|
mod adt;
|
|
mod assoc;
|
|
mod closure;
|
|
mod consts;
|
|
mod context;
|
|
mod diagnostics;
|
|
mod erase_regions;
|
|
mod generic_args;
|
|
mod generics;
|
|
mod impls_ty;
|
|
mod instance;
|
|
mod intrinsic;
|
|
mod list;
|
|
mod opaque_types;
|
|
mod parameterized;
|
|
mod predicate;
|
|
mod region;
|
|
mod rvalue_scopes;
|
|
mod structural_impls;
|
|
#[allow(hidden_glob_reexports)]
|
|
mod sty;
|
|
mod typeck_results;
|
|
|
|
// Data types
|
|
|
|
pub struct ResolverOutputs {
|
|
pub global_ctxt: ResolverGlobalCtxt,
|
|
pub ast_lowering: ResolverAstLowering,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct ResolverGlobalCtxt {
|
|
pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
|
|
/// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
|
|
pub expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
|
|
pub effective_visibilities: EffectiveVisibilities,
|
|
pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
|
|
pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
|
|
pub module_children: LocalDefIdMap<Vec<ModChild>>,
|
|
pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
|
|
pub main_def: Option<MainDefinition>,
|
|
pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
|
|
/// A list of proc macro LocalDefIds, written out in the order in which
|
|
/// they are declared in the static array generated by proc_macro_harness.
|
|
pub proc_macros: Vec<LocalDefId>,
|
|
/// Mapping from ident span to path span for paths that don't exist as written, but that
|
|
/// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
|
|
pub confused_type_with_std_module: FxHashMap<Span, Span>,
|
|
pub doc_link_resolutions: FxHashMap<LocalDefId, DocLinkResMap>,
|
|
pub doc_link_traits_in_scope: FxHashMap<LocalDefId, Vec<DefId>>,
|
|
pub all_macro_rules: FxHashMap<Symbol, Res<ast::NodeId>>,
|
|
pub stripped_cfg_items: Steal<Vec<StrippedCfgItem>>,
|
|
}
|
|
|
|
/// Resolutions that should only be used for lowering.
|
|
/// This struct is meant to be consumed by lowering.
|
|
#[derive(Debug)]
|
|
pub struct ResolverAstLowering {
|
|
pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
|
|
|
|
/// Resolutions for nodes that have a single resolution.
|
|
pub partial_res_map: NodeMap<hir::def::PartialRes>,
|
|
/// Resolutions for import nodes, which have multiple resolutions in different namespaces.
|
|
pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
|
|
/// Resolutions for labels (node IDs of their corresponding blocks or loops).
|
|
pub label_res_map: NodeMap<ast::NodeId>,
|
|
/// Resolutions for lifetimes.
|
|
pub lifetimes_res_map: NodeMap<LifetimeRes>,
|
|
/// Lifetime parameters that lowering will have to introduce.
|
|
pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,
|
|
|
|
pub next_node_id: ast::NodeId,
|
|
|
|
pub node_id_to_def_id: NodeMap<LocalDefId>,
|
|
|
|
pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
|
|
/// List functions and methods for which lifetime elision was successful.
|
|
pub lifetime_elision_allowed: FxHashSet<ast::NodeId>,
|
|
|
|
/// Lints that were emitted by the resolver and early lints.
|
|
pub lint_buffer: Steal<LintBuffer>,
|
|
|
|
/// Information about functions signatures for delegation items expansion
|
|
pub has_self: LocalDefIdSet,
|
|
pub fn_parameter_counts: LocalDefIdMap<usize>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct MainDefinition {
|
|
pub res: Res<ast::NodeId>,
|
|
pub is_import: bool,
|
|
pub span: Span,
|
|
}
|
|
|
|
impl MainDefinition {
|
|
pub fn opt_fn_def_id(self) -> Option<DefId> {
|
|
if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
|
|
}
|
|
}
|
|
|
|
/// The "header" of an impl is everything outside the body: a Self type, a trait
|
|
/// ref (in the case of a trait impl), and a set of predicates (from the
|
|
/// bounds / where-clauses).
|
|
#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
|
|
pub struct ImplHeader<'tcx> {
|
|
pub impl_def_id: DefId,
|
|
pub impl_args: ty::GenericArgsRef<'tcx>,
|
|
pub self_ty: Ty<'tcx>,
|
|
pub trait_ref: Option<TraitRef<'tcx>>,
|
|
pub predicates: Vec<Predicate<'tcx>>,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
|
|
pub struct ImplTraitHeader<'tcx> {
|
|
pub trait_ref: ty::EarlyBinder<ty::TraitRef<'tcx>>,
|
|
pub polarity: ImplPolarity,
|
|
pub unsafety: hir::Unsafety,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)]
|
|
pub enum ImplSubject<'tcx> {
|
|
Trait(TraitRef<'tcx>),
|
|
Inherent(Ty<'tcx>),
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub enum ImplPolarity {
|
|
/// `impl Trait for Type`
|
|
Positive,
|
|
/// `impl !Trait for Type`
|
|
Negative,
|
|
/// `#[rustc_reservation_impl] impl Trait for Type`
|
|
///
|
|
/// This is a "stability hack", not a real Rust feature.
|
|
/// See #64631 for details.
|
|
Reservation,
|
|
}
|
|
|
|
impl fmt::Display for ImplPolarity {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::Positive => f.write_str("positive"),
|
|
Self::Negative => f.write_str("negative"),
|
|
Self::Reservation => f.write_str("reservation"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Polarity for a trait predicate. May either be negative or positive.
|
|
/// Distinguished from [`ImplPolarity`] since we never compute goals with
|
|
/// "reservation" level.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub enum PredicatePolarity {
|
|
/// `Type: Trait`
|
|
Positive,
|
|
/// `Type: !Trait`
|
|
Negative,
|
|
}
|
|
|
|
impl PredicatePolarity {
|
|
/// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`.
|
|
pub fn flip(&self) -> PredicatePolarity {
|
|
match self {
|
|
PredicatePolarity::Positive => PredicatePolarity::Negative,
|
|
PredicatePolarity::Negative => PredicatePolarity::Positive,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for PredicatePolarity {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::Positive => f.write_str("positive"),
|
|
Self::Negative => f.write_str("negative"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub enum Asyncness {
|
|
Yes,
|
|
No,
|
|
}
|
|
|
|
impl Asyncness {
|
|
pub fn is_async(self) -> bool {
|
|
matches!(self, Asyncness::Yes)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)]
|
|
pub enum Visibility<Id = LocalDefId> {
|
|
/// Visible everywhere (including in other crates).
|
|
Public,
|
|
/// Visible only in the given crate-local module.
|
|
Restricted(Id),
|
|
}
|
|
|
|
impl Visibility {
|
|
pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
|
|
match self {
|
|
ty::Visibility::Restricted(restricted_id) => {
|
|
if restricted_id.is_top_level_module() {
|
|
"pub(crate)".to_string()
|
|
} else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() {
|
|
"pub(self)".to_string()
|
|
} else {
|
|
format!("pub({})", tcx.item_name(restricted_id.to_def_id()))
|
|
}
|
|
}
|
|
ty::Visibility::Public => "pub".to_string(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
|
|
pub enum BoundConstness {
|
|
/// `Type: Trait`
|
|
NotConst,
|
|
/// `Type: const Trait`
|
|
Const,
|
|
/// `Type: ~const Trait`
|
|
///
|
|
/// Requires resolving to const only when we are in a const context.
|
|
ConstIfConst,
|
|
}
|
|
|
|
impl BoundConstness {
|
|
pub fn as_str(self) -> &'static str {
|
|
match self {
|
|
Self::NotConst => "",
|
|
Self::Const => "const",
|
|
Self::ConstIfConst => "~const",
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for BoundConstness {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::NotConst => f.write_str("normal"),
|
|
Self::Const => f.write_str("const"),
|
|
Self::ConstIfConst => f.write_str("~const"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub struct ClosureSizeProfileData<'tcx> {
|
|
/// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
|
|
pub before_feature_tys: Ty<'tcx>,
|
|
/// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
|
|
pub after_feature_tys: Ty<'tcx>,
|
|
}
|
|
|
|
impl TyCtxt<'_> {
|
|
#[inline]
|
|
pub fn opt_parent(self, id: DefId) -> Option<DefId> {
|
|
self.def_key(id).parent.map(|index| DefId { index, ..id })
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn parent(self, id: DefId) -> DefId {
|
|
match self.opt_parent(id) {
|
|
Some(id) => id,
|
|
// not `unwrap_or_else` to avoid breaking caller tracking
|
|
None => bug!("{id:?} doesn't have a parent"),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
|
|
self.opt_parent(id.to_def_id()).map(DefId::expect_local)
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId {
|
|
self.parent(id.into().to_def_id()).expect_local()
|
|
}
|
|
|
|
pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
|
|
if descendant.krate != ancestor.krate {
|
|
return false;
|
|
}
|
|
|
|
while descendant != ancestor {
|
|
match self.opt_parent(descendant) {
|
|
Some(parent) => descendant = parent,
|
|
None => return false,
|
|
}
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<Id> Visibility<Id> {
|
|
pub fn is_public(self) -> bool {
|
|
matches!(self, Visibility::Public)
|
|
}
|
|
|
|
pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
|
|
match self {
|
|
Visibility::Public => Visibility::Public,
|
|
Visibility::Restricted(id) => Visibility::Restricted(f(id)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Id: Into<DefId>> Visibility<Id> {
|
|
pub fn to_def_id(self) -> Visibility<DefId> {
|
|
self.map_id(Into::into)
|
|
}
|
|
|
|
/// Returns `true` if an item with this visibility is accessible from the given module.
|
|
pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool {
|
|
match self {
|
|
// Public items are visible everywhere.
|
|
Visibility::Public => true,
|
|
Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()),
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if this visibility is at least as accessible as the given visibility
|
|
pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool {
|
|
match vis {
|
|
Visibility::Public => self.is_public(),
|
|
Visibility::Restricted(id) => self.is_accessible_from(id, tcx),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Visibility<DefId> {
|
|
pub fn expect_local(self) -> Visibility {
|
|
self.map_id(|id| id.expect_local())
|
|
}
|
|
|
|
/// Returns `true` if this item is visible anywhere in the local crate.
|
|
pub fn is_visible_locally(self) -> bool {
|
|
match self {
|
|
Visibility::Public => true,
|
|
Visibility::Restricted(def_id) => def_id.is_local(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The crate variances map is computed during typeck and contains the
|
|
/// variance of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.variances_of()` to get the variance for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CrateVariancesMap<'tcx> {
|
|
/// For each item with generics, maps to a vector of the variance
|
|
/// of its generics. If an item has no generics, it will have no
|
|
/// entry.
|
|
pub variances: DefIdMap<&'tcx [ty::Variance]>,
|
|
}
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub struct CReaderCacheKey {
|
|
pub cnum: Option<CrateNum>,
|
|
pub pos: usize,
|
|
}
|
|
|
|
/// Use this rather than `TyKind`, whenever possible.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
|
|
#[rustc_diagnostic_item = "Ty"]
|
|
#[rustc_pass_by_value]
|
|
pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>);
|
|
|
|
impl<'tcx> IntoKind for Ty<'tcx> {
|
|
type Kind = TyKind<'tcx>;
|
|
|
|
fn kind(self) -> TyKind<'tcx> {
|
|
*self.kind()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> rustc_type_ir::visit::Flags for Ty<'tcx> {
|
|
fn flags(&self) -> TypeFlags {
|
|
self.0.flags
|
|
}
|
|
|
|
fn outer_exclusive_binder(&self) -> DebruijnIndex {
|
|
self.0.outer_exclusive_binder
|
|
}
|
|
}
|
|
|
|
impl EarlyParamRegion {
|
|
/// Does this early bound region have a name? Early bound regions normally
|
|
/// always have names except when using anonymous lifetimes (`'_`).
|
|
pub fn has_name(&self) -> bool {
|
|
self.name != kw::UnderscoreLifetime && self.name != kw::Empty
|
|
}
|
|
}
|
|
|
|
/// The crate outlives map is computed during typeck and contains the
|
|
/// outlives of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CratePredicatesMap<'tcx> {
|
|
/// For each struct with outlive bounds, maps to a vector of the
|
|
/// predicate of its outlive bounds. If an item has no outlives
|
|
/// bounds, it will have no entry.
|
|
pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub struct Term<'tcx> {
|
|
ptr: NonNull<()>,
|
|
marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where
|
|
&'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend
|
|
{
|
|
}
|
|
#[cfg(parallel_compiler)]
|
|
unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where
|
|
&'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync
|
|
{
|
|
}
|
|
unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {}
|
|
unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {}
|
|
|
|
impl Debug for Term<'_> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
let data = if let Some(ty) = self.ty() {
|
|
format!("Term::Ty({ty:?})")
|
|
} else if let Some(ct) = self.ct() {
|
|
format!("Term::Ct({ct:?})")
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
f.write_str(&data)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
|
|
fn from(ty: Ty<'tcx>) -> Self {
|
|
TermKind::Ty(ty).pack()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
|
|
fn from(c: Const<'tcx>) -> Self {
|
|
TermKind::Const(c).pack()
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
self.unpack().hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> {
|
|
fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
|
|
self,
|
|
folder: &mut F,
|
|
) -> Result<Self, F::Error> {
|
|
Ok(self.unpack().try_fold_with(folder)?.pack())
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> {
|
|
fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
|
|
self.unpack().visit_with(visitor)
|
|
}
|
|
}
|
|
|
|
impl<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<E> for Term<'tcx> {
|
|
fn encode(&self, e: &mut E) {
|
|
self.unpack().encode(e)
|
|
}
|
|
}
|
|
|
|
impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<D> for Term<'tcx> {
|
|
fn decode(d: &mut D) -> Self {
|
|
let res: TermKind<'tcx> = Decodable::decode(d);
|
|
res.pack()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Term<'tcx> {
|
|
#[inline]
|
|
pub fn unpack(self) -> TermKind<'tcx> {
|
|
let ptr =
|
|
unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
|
|
// SAFETY: use of `Interned::new_unchecked` here is ok because these
|
|
// pointers were originally created from `Interned` types in `pack()`,
|
|
// and this is just going in the other direction.
|
|
unsafe {
|
|
match self.ptr.addr().get() & TAG_MASK {
|
|
TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
|
|
ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
|
|
))),
|
|
CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
|
|
ptr.cast::<WithCachedTypeInfo<ty::ConstData<'tcx>>>().as_ref(),
|
|
))),
|
|
_ => core::intrinsics::unreachable(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty(&self) -> Option<Ty<'tcx>> {
|
|
if let TermKind::Ty(ty) = self.unpack() { Some(ty) } else { None }
|
|
}
|
|
|
|
pub fn ct(&self) -> Option<Const<'tcx>> {
|
|
if let TermKind::Const(c) = self.unpack() { Some(c) } else { None }
|
|
}
|
|
|
|
pub fn into_arg(self) -> GenericArg<'tcx> {
|
|
match self.unpack() {
|
|
TermKind::Ty(ty) => ty.into(),
|
|
TermKind::Const(c) => c.into(),
|
|
}
|
|
}
|
|
|
|
/// This function returns the inner `AliasTy` for a `ty::Alias` or `ConstKind::Unevaluated`.
|
|
pub fn to_alias_ty(&self, tcx: TyCtxt<'tcx>) -> Option<AliasTy<'tcx>> {
|
|
match self.unpack() {
|
|
TermKind::Ty(ty) => match *ty.kind() {
|
|
ty::Alias(_kind, alias_ty) => Some(alias_ty),
|
|
_ => None,
|
|
},
|
|
TermKind::Const(ct) => match ct.kind() {
|
|
ConstKind::Unevaluated(uv) => Some(AliasTy::new(tcx, uv.def, uv.args)),
|
|
_ => None,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn is_infer(&self) -> bool {
|
|
match self.unpack() {
|
|
TermKind::Ty(ty) => ty.is_ty_var(),
|
|
TermKind::Const(ct) => ct.is_ct_infer(),
|
|
}
|
|
}
|
|
}
|
|
|
|
const TAG_MASK: usize = 0b11;
|
|
const TYPE_TAG: usize = 0b00;
|
|
const CONST_TAG: usize = 0b01;
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable, TypeVisitable)]
|
|
pub enum TermKind<'tcx> {
|
|
Ty(Ty<'tcx>),
|
|
Const(Const<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> TermKind<'tcx> {
|
|
#[inline]
|
|
fn pack(self) -> Term<'tcx> {
|
|
let (tag, ptr) = match self {
|
|
TermKind::Ty(ty) => {
|
|
// Ensure we can use the tag bits.
|
|
assert_eq!(mem::align_of_val(&*ty.0.0) & TAG_MASK, 0);
|
|
(TYPE_TAG, NonNull::from(ty.0.0).cast())
|
|
}
|
|
TermKind::Const(ct) => {
|
|
// Ensure we can use the tag bits.
|
|
assert_eq!(mem::align_of_val(&*ct.0.0) & TAG_MASK, 0);
|
|
(CONST_TAG, NonNull::from(ct.0.0).cast())
|
|
}
|
|
};
|
|
|
|
Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum ParamTerm {
|
|
Ty(ParamTy),
|
|
Const(ParamConst),
|
|
}
|
|
|
|
impl ParamTerm {
|
|
pub fn index(self) -> usize {
|
|
match self {
|
|
ParamTerm::Ty(ty) => ty.index as usize,
|
|
ParamTerm::Const(ct) => ct.index as usize,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
|
|
pub enum TermVid {
|
|
Ty(ty::TyVid),
|
|
Const(ty::ConstVid),
|
|
}
|
|
|
|
impl From<ty::TyVid> for TermVid {
|
|
fn from(value: ty::TyVid) -> Self {
|
|
TermVid::Ty(value)
|
|
}
|
|
}
|
|
|
|
impl From<ty::ConstVid> for TermVid {
|
|
fn from(value: ty::ConstVid) -> Self {
|
|
TermVid::Const(value)
|
|
}
|
|
}
|
|
|
|
/// Represents the bounds declared on a particular set of type
|
|
/// parameters. Should eventually be generalized into a flag list of
|
|
/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
|
|
/// `GenericPredicates` by using the `instantiate` method. Note that this method
|
|
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
|
|
/// the `GenericPredicates` are expressed in terms of the bound type
|
|
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
|
|
/// represented a set of bounds for some particular instantiation,
|
|
/// meaning that the generic parameters have been instantiated with
|
|
/// their values.
|
|
///
|
|
/// Example:
|
|
/// ```ignore (illustrative)
|
|
/// struct Foo<T, U: Bar<T>> { ... }
|
|
/// ```
|
|
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
|
|
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
|
|
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
|
|
/// [usize:Bar<isize>]]`.
|
|
#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
|
|
pub struct InstantiatedPredicates<'tcx> {
|
|
pub predicates: Vec<Clause<'tcx>>,
|
|
pub spans: Vec<Span>,
|
|
}
|
|
|
|
impl<'tcx> InstantiatedPredicates<'tcx> {
|
|
pub fn empty() -> InstantiatedPredicates<'tcx> {
|
|
InstantiatedPredicates { predicates: vec![], spans: vec![] }
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.predicates.is_empty()
|
|
}
|
|
|
|
pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter {
|
|
self.into_iter()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> {
|
|
type Item = (Clause<'tcx>, Span);
|
|
|
|
type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
debug_assert_eq!(self.predicates.len(), self.spans.len());
|
|
std::iter::zip(self.predicates, self.spans)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> {
|
|
type Item = (Clause<'tcx>, Span);
|
|
|
|
type IntoIter = std::iter::Zip<
|
|
std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>,
|
|
std::iter::Copied<std::slice::Iter<'a, Span>>,
|
|
>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
debug_assert_eq!(self.predicates.len(), self.spans.len());
|
|
std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied())
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub struct OpaqueTypeKey<'tcx> {
|
|
pub def_id: LocalDefId,
|
|
pub args: GenericArgsRef<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> OpaqueTypeKey<'tcx> {
|
|
pub fn iter_captured_args(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
) -> impl Iterator<Item = (usize, GenericArg<'tcx>)> {
|
|
std::iter::zip(self.args, tcx.variances_of(self.def_id)).enumerate().filter_map(
|
|
|(i, (arg, v))| match (arg.unpack(), v) {
|
|
(_, ty::Invariant) => Some((i, arg)),
|
|
(ty::GenericArgKind::Lifetime(_), ty::Bivariant) => None,
|
|
_ => bug!("unexpected opaque type arg variance"),
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn fold_captured_lifetime_args(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
mut f: impl FnMut(Region<'tcx>) -> Region<'tcx>,
|
|
) -> Self {
|
|
let Self { def_id, args } = self;
|
|
let args = std::iter::zip(args, tcx.variances_of(def_id)).map(|(arg, v)| {
|
|
match (arg.unpack(), v) {
|
|
(ty::GenericArgKind::Lifetime(_), ty::Bivariant) => arg,
|
|
(ty::GenericArgKind::Lifetime(lt), _) => f(lt).into(),
|
|
_ => arg,
|
|
}
|
|
});
|
|
let args = tcx.mk_args_from_iter(args);
|
|
Self { def_id, args }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct OpaqueHiddenType<'tcx> {
|
|
/// The span of this particular definition of the opaque type. So
|
|
/// for example:
|
|
///
|
|
/// ```ignore (incomplete snippet)
|
|
/// type Foo = impl Baz;
|
|
/// fn bar() -> Foo {
|
|
/// // ^^^ This is the span we are looking for!
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In cases where the fn returns `(impl Trait, impl Trait)` or
|
|
/// other such combinations, the result is currently
|
|
/// over-approximated, but better than nothing.
|
|
pub span: Span,
|
|
|
|
/// The type variable that represents the value of the opaque type
|
|
/// that we require. In other words, after we compile this function,
|
|
/// we will be created a constraint like:
|
|
/// ```ignore (pseudo-rust)
|
|
/// Foo<'a, T> = ?C
|
|
/// ```
|
|
/// where `?C` is the value of this type variable. =) It may
|
|
/// naturally refer to the type and lifetime parameters in scope
|
|
/// in this function, though ultimately it should only reference
|
|
/// those that are arguments to `Foo` in the constraint above. (In
|
|
/// other words, `?C` should not include `'b`, even though it's a
|
|
/// lifetime parameter on `foo`.)
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> OpaqueHiddenType<'tcx> {
|
|
pub fn build_mismatch_error(
|
|
&self,
|
|
other: &Self,
|
|
opaque_def_id: LocalDefId,
|
|
tcx: TyCtxt<'tcx>,
|
|
) -> Result<Diag<'tcx>, ErrorGuaranteed> {
|
|
// We used to cancel here for slightly better error messages, but
|
|
// cancelling stashed diagnostics is no longer allowed because it
|
|
// causes problems when tracking whether errors have actually
|
|
// occurred.
|
|
tcx.sess.dcx().try_steal_modify_and_emit_err(
|
|
tcx.def_span(opaque_def_id),
|
|
StashKey::OpaqueHiddenTypeMismatch,
|
|
|_err| {},
|
|
);
|
|
(self.ty, other.ty).error_reported()?;
|
|
// Found different concrete types for the opaque type.
|
|
let sub_diag = if self.span == other.span {
|
|
TypeMismatchReason::ConflictType { span: self.span }
|
|
} else {
|
|
TypeMismatchReason::PreviousUse { span: self.span }
|
|
};
|
|
Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
|
|
self_ty: self.ty,
|
|
other_ty: other.ty,
|
|
other_span: other.span,
|
|
sub: sub_diag,
|
|
}))
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(tcx), ret)]
|
|
pub fn remap_generic_params_to_declaration_params(
|
|
self,
|
|
opaque_type_key: OpaqueTypeKey<'tcx>,
|
|
tcx: TyCtxt<'tcx>,
|
|
// typeck errors have subpar spans for opaque types, so delay error reporting until borrowck.
|
|
ignore_errors: bool,
|
|
) -> Self {
|
|
let OpaqueTypeKey { def_id, args } = opaque_type_key;
|
|
|
|
// Use args to build up a reverse map from regions to their
|
|
// identity mappings. This is necessary because of `impl
|
|
// Trait` lifetimes are computed by replacing existing
|
|
// lifetimes with 'static and remapping only those used in the
|
|
// `impl Trait` return type, resulting in the parameters
|
|
// shifting.
|
|
let id_args = GenericArgs::identity_for_item(tcx, def_id);
|
|
debug!(?id_args);
|
|
|
|
// This zip may have several times the same lifetime in `args` paired with a different
|
|
// lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour:
|
|
// it will pick the last one, which is the one we introduced in the impl-trait desugaring.
|
|
let map = args.iter().zip(id_args).collect();
|
|
debug!("map = {:#?}", map);
|
|
|
|
// Convert the type from the function into a type valid outside
|
|
// the function, by replacing invalid regions with 'static,
|
|
// after producing an error for each of them.
|
|
self.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span, ignore_errors))
|
|
}
|
|
}
|
|
|
|
/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
|
|
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
|
|
/// regions/types/consts within the same universe simply have an unknown relationship to one
|
|
/// another.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
#[derive(HashStable, TyEncodable, TyDecodable)]
|
|
pub struct Placeholder<T> {
|
|
pub universe: UniverseIndex,
|
|
pub bound: T,
|
|
}
|
|
|
|
pub type PlaceholderRegion = Placeholder<BoundRegion>;
|
|
|
|
impl PlaceholderLike for PlaceholderRegion {
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound.var
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::BrAnon } }
|
|
}
|
|
}
|
|
|
|
pub type PlaceholderType = Placeholder<BoundTy>;
|
|
|
|
impl PlaceholderLike for PlaceholderType {
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound.var
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
|
|
#[derive(TyEncodable, TyDecodable)]
|
|
pub struct BoundConst<'tcx> {
|
|
pub var: BoundVar,
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
pub type PlaceholderConst = Placeholder<BoundVar>;
|
|
|
|
impl PlaceholderLike for PlaceholderConst {
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: var }
|
|
}
|
|
}
|
|
|
|
/// When interacting with the type system we must provide information about the
|
|
/// environment. `ParamEnv` is the type that represents this information. See the
|
|
/// [dev guide chapter][param_env_guide] for more information.
|
|
///
|
|
/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
|
|
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
|
|
pub struct ParamEnv<'tcx> {
|
|
/// This packs both caller bounds and the reveal enum into one pointer.
|
|
///
|
|
/// Caller bounds are `Obligation`s that the caller must satisfy. This is
|
|
/// basically the set of bounds on the in-scope type parameters, translated
|
|
/// into `Obligation`s, and elaborated and normalized.
|
|
///
|
|
/// Use the `caller_bounds()` method to access.
|
|
///
|
|
/// Typically, this is `Reveal::UserFacing`, but during codegen we
|
|
/// want `Reveal::All`.
|
|
///
|
|
/// Note: This is packed, use the reveal() method to access it.
|
|
packed: CopyTaggedPtr<&'tcx List<Clause<'tcx>>, ParamTag, true>,
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct ParamTag {
|
|
reveal: traits::Reveal,
|
|
}
|
|
|
|
impl_tag! {
|
|
impl Tag for ParamTag;
|
|
ParamTag { reveal: traits::Reveal::UserFacing },
|
|
ParamTag { reveal: traits::Reveal::All },
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.debug_struct("ParamEnv")
|
|
.field("caller_bounds", &self.caller_bounds())
|
|
.field("reveal", &self.reveal())
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
self.caller_bounds().hash_stable(hcx, hasher);
|
|
self.reveal().hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for ParamEnv<'tcx> {
|
|
fn try_fold_with<F: ty::fold::FallibleTypeFolder<TyCtxt<'tcx>>>(
|
|
self,
|
|
folder: &mut F,
|
|
) -> Result<Self, F::Error> {
|
|
Ok(ParamEnv::new(
|
|
self.caller_bounds().try_fold_with(folder)?,
|
|
self.reveal().try_fold_with(folder)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for ParamEnv<'tcx> {
|
|
fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
|
|
try_visit!(self.caller_bounds().visit_with(visitor));
|
|
self.reveal().visit_with(visitor)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ParamEnv<'tcx> {
|
|
/// Construct a trait environment suitable for contexts where
|
|
/// there are no where-clauses in scope. Hidden types (like `impl
|
|
/// Trait`) are left hidden. In majority of cases it is incorrect
|
|
/// to use an empty environment. See the [dev guide section][param_env_guide]
|
|
/// for information on what a `ParamEnv` is and how to acquire one.
|
|
///
|
|
/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
|
|
#[inline]
|
|
pub fn empty() -> Self {
|
|
Self::new(List::empty(), Reveal::UserFacing)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn caller_bounds(self) -> &'tcx List<Clause<'tcx>> {
|
|
self.packed.pointer()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn reveal(self) -> traits::Reveal {
|
|
self.packed.tag().reveal
|
|
}
|
|
|
|
/// Construct a trait environment with no where-clauses in scope
|
|
/// where the values of all `impl Trait` and other hidden types
|
|
/// are revealed. This is suitable for monomorphized, post-typeck
|
|
/// environments like codegen or doing optimizations.
|
|
///
|
|
/// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
|
|
/// or invoke `param_env.with_reveal_all()`.
|
|
#[inline]
|
|
pub fn reveal_all() -> Self {
|
|
Self::new(List::empty(), Reveal::All)
|
|
}
|
|
|
|
/// Construct a trait environment with the given set of predicates.
|
|
#[inline]
|
|
pub fn new(caller_bounds: &'tcx List<Clause<'tcx>>, reveal: Reveal) -> Self {
|
|
ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, ParamTag { reveal }) }
|
|
}
|
|
|
|
pub fn with_user_facing(mut self) -> Self {
|
|
self.packed.set_tag(ParamTag { reveal: Reveal::UserFacing, ..self.packed.tag() });
|
|
self
|
|
}
|
|
|
|
/// Returns a new parameter environment with the same clauses, but
|
|
/// which "reveals" the true results of projections in all cases
|
|
/// (even for associated types that are specializable). This is
|
|
/// the desired behavior during codegen and certain other special
|
|
/// contexts; normally though we want to use `Reveal::UserFacing`,
|
|
/// which is the default.
|
|
/// All opaque types in the caller_bounds of the `ParamEnv`
|
|
/// will be normalized to their underlying types.
|
|
/// See PR #65989 and issue #65918 for more details
|
|
pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
|
|
if self.packed.tag().reveal == traits::Reveal::All {
|
|
return self;
|
|
}
|
|
|
|
ParamEnv::new(tcx.reveal_opaque_types_in_bounds(self.caller_bounds()), Reveal::All)
|
|
}
|
|
|
|
/// Returns this same environment but with no caller bounds.
|
|
#[inline]
|
|
pub fn without_caller_bounds(self) -> Self {
|
|
Self::new(List::empty(), self.reveal())
|
|
}
|
|
|
|
/// Creates a pair of param-env and value for use in queries.
|
|
pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
|
|
ParamEnvAnd { param_env: self, value }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
|
|
#[derive(HashStable)]
|
|
pub struct ParamEnvAnd<'tcx, T> {
|
|
pub param_env: ParamEnv<'tcx>,
|
|
pub value: T,
|
|
}
|
|
|
|
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
|
|
pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
|
|
(self.param_env, self.value)
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
|
|
pub struct Destructor {
|
|
/// The `DefId` of the destructor method
|
|
pub did: DefId,
|
|
/// The constness of the destructor method
|
|
pub constness: hir::Constness,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct VariantFlags(u8);
|
|
bitflags! {
|
|
impl VariantFlags: u8 {
|
|
const NO_VARIANT_FLAGS = 0;
|
|
/// Indicates whether the field list of this variant is `#[non_exhaustive]`.
|
|
const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
|
|
/// Indicates whether this variant was obtained as part of recovering from
|
|
/// a syntactic error. May be incomplete or bogus.
|
|
const IS_RECOVERED = 1 << 1;
|
|
/// Indicates whether this variant has unnamed fields.
|
|
const HAS_UNNAMED_FIELDS = 1 << 2;
|
|
}
|
|
}
|
|
rustc_data_structures::external_bitflags_debug! { VariantFlags }
|
|
|
|
/// Definition of a variant -- a struct's fields or an enum variant.
|
|
#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct VariantDef {
|
|
/// `DefId` that identifies the variant itself.
|
|
/// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
|
|
pub def_id: DefId,
|
|
/// `DefId` that identifies the variant's constructor.
|
|
/// If this variant is a struct variant, then this is `None`.
|
|
pub ctor: Option<(CtorKind, DefId)>,
|
|
/// Variant or struct name, maybe empty for anonymous adt (struct or union).
|
|
pub name: Symbol,
|
|
/// Discriminant of this variant.
|
|
pub discr: VariantDiscr,
|
|
/// Fields of this variant.
|
|
pub fields: IndexVec<FieldIdx, FieldDef>,
|
|
/// Flags of the variant (e.g. is field list non-exhaustive)?
|
|
flags: VariantFlags,
|
|
}
|
|
|
|
impl VariantDef {
|
|
/// Creates a new `VariantDef`.
|
|
///
|
|
/// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
|
|
/// represents an enum variant).
|
|
///
|
|
/// `ctor_did` is the `DefId` that identifies the constructor of unit or
|
|
/// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
|
|
///
|
|
/// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
|
|
/// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
|
|
/// to go through the redirect of checking the ctor's attributes - but compiling a small crate
|
|
/// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
|
|
/// built-in trait), and we do not want to load attributes twice.
|
|
///
|
|
/// If someone speeds up attribute loading to not be a performance concern, they can
|
|
/// remove this hack and use the constructor `DefId` everywhere.
|
|
pub fn new(
|
|
name: Symbol,
|
|
variant_did: Option<DefId>,
|
|
ctor: Option<(CtorKind, DefId)>,
|
|
discr: VariantDiscr,
|
|
fields: IndexVec<FieldIdx, FieldDef>,
|
|
adt_kind: AdtKind,
|
|
parent_did: DefId,
|
|
recovered: bool,
|
|
is_field_list_non_exhaustive: bool,
|
|
has_unnamed_fields: bool,
|
|
) -> Self {
|
|
debug!(
|
|
"VariantDef::new(name = {:?}, variant_did = {:?}, ctor = {:?}, discr = {:?},
|
|
fields = {:?}, adt_kind = {:?}, parent_did = {:?}, has_unnamed_fields = {:?})",
|
|
name, variant_did, ctor, discr, fields, adt_kind, parent_did, has_unnamed_fields,
|
|
);
|
|
|
|
let mut flags = VariantFlags::NO_VARIANT_FLAGS;
|
|
if is_field_list_non_exhaustive {
|
|
flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
|
|
}
|
|
|
|
if recovered {
|
|
flags |= VariantFlags::IS_RECOVERED;
|
|
}
|
|
|
|
if has_unnamed_fields {
|
|
flags |= VariantFlags::HAS_UNNAMED_FIELDS;
|
|
}
|
|
|
|
VariantDef { def_id: variant_did.unwrap_or(parent_did), ctor, name, discr, fields, flags }
|
|
}
|
|
|
|
/// Is this field list non-exhaustive?
|
|
#[inline]
|
|
pub fn is_field_list_non_exhaustive(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
|
|
}
|
|
|
|
/// Was this variant obtained as part of recovering from a syntactic error?
|
|
#[inline]
|
|
pub fn is_recovered(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::IS_RECOVERED)
|
|
}
|
|
|
|
/// Does this variant contains unnamed fields
|
|
#[inline]
|
|
pub fn has_unnamed_fields(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::HAS_UNNAMED_FIELDS)
|
|
}
|
|
|
|
/// Computes the `Ident` of this variant by looking up the `Span`
|
|
pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
|
|
Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn ctor_kind(&self) -> Option<CtorKind> {
|
|
self.ctor.map(|(kind, _)| kind)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn ctor_def_id(&self) -> Option<DefId> {
|
|
self.ctor.map(|(_, def_id)| def_id)
|
|
}
|
|
|
|
/// Returns the one field in this variant.
|
|
///
|
|
/// `panic!`s if there are no fields or multiple fields.
|
|
#[inline]
|
|
pub fn single_field(&self) -> &FieldDef {
|
|
assert!(self.fields.len() == 1);
|
|
|
|
&self.fields[FieldIdx::from_u32(0)]
|
|
}
|
|
|
|
/// Returns the last field in this variant, if present.
|
|
#[inline]
|
|
pub fn tail_opt(&self) -> Option<&FieldDef> {
|
|
self.fields.raw.last()
|
|
}
|
|
|
|
/// Returns the last field in this variant.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics, if the variant has no fields.
|
|
#[inline]
|
|
pub fn tail(&self) -> &FieldDef {
|
|
self.tail_opt().expect("expected unsized ADT to have a tail field")
|
|
}
|
|
}
|
|
|
|
impl PartialEq for VariantDef {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// There should be only one `VariantDef` for each `def_id`, therefore
|
|
// it is fine to implement `PartialEq` only based on `def_id`.
|
|
//
|
|
// Below, we exhaustively destructure `self` and `other` so that if the
|
|
// definition of `VariantDef` changes, a compile-error will be produced,
|
|
// reminding us to revisit this assumption.
|
|
|
|
let Self { def_id: lhs_def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = &self;
|
|
let Self { def_id: rhs_def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = other;
|
|
|
|
let res = lhs_def_id == rhs_def_id;
|
|
|
|
// Double check that implicit assumption detailed above.
|
|
if cfg!(debug_assertions) && res {
|
|
let deep = self.ctor == other.ctor
|
|
&& self.name == other.name
|
|
&& self.discr == other.discr
|
|
&& self.fields == other.fields
|
|
&& self.flags == other.flags;
|
|
assert!(deep, "VariantDef for the same def-id has differing data");
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl Eq for VariantDef {}
|
|
|
|
impl Hash for VariantDef {
|
|
#[inline]
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
// There should be only one `VariantDef` for each `def_id`, therefore
|
|
// it is fine to implement `Hash` only based on `def_id`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `VariantDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = &self;
|
|
def_id.hash(s)
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
|
|
pub enum VariantDiscr {
|
|
/// Explicit value for this variant, i.e., `X = 123`.
|
|
/// The `DefId` corresponds to the embedded constant.
|
|
Explicit(DefId),
|
|
|
|
/// The previous variant's discriminant plus one.
|
|
/// For efficiency reasons, the distance from the
|
|
/// last `Explicit` discriminant is being stored,
|
|
/// or `0` for the first variant, if it has none.
|
|
Relative(u32),
|
|
}
|
|
|
|
#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct FieldDef {
|
|
pub did: DefId,
|
|
pub name: Symbol,
|
|
pub vis: Visibility<DefId>,
|
|
}
|
|
|
|
impl PartialEq for FieldDef {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// There should be only one `FieldDef` for each `did`, therefore it is
|
|
// fine to implement `PartialEq` only based on `did`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `FieldDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { did: lhs_did, name: _, vis: _ } = &self;
|
|
|
|
let Self { did: rhs_did, name: _, vis: _ } = other;
|
|
|
|
let res = lhs_did == rhs_did;
|
|
|
|
// Double check that implicit assumption detailed above.
|
|
if cfg!(debug_assertions) && res {
|
|
let deep = self.name == other.name && self.vis == other.vis;
|
|
assert!(deep, "FieldDef for the same def-id has differing data");
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl Eq for FieldDef {}
|
|
|
|
impl Hash for FieldDef {
|
|
#[inline]
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
// There should be only one `FieldDef` for each `did`, therefore it is
|
|
// fine to implement `Hash` only based on `did`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `FieldDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { did, name: _, vis: _ } = &self;
|
|
|
|
did.hash(s)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FieldDef {
|
|
/// Returns the type of this field. The resulting type is not normalized. The `arg` is
|
|
/// typically obtained via the second field of [`TyKind::Adt`].
|
|
pub fn ty(&self, tcx: TyCtxt<'tcx>, arg: GenericArgsRef<'tcx>) -> Ty<'tcx> {
|
|
tcx.type_of(self.did).instantiate(tcx, arg)
|
|
}
|
|
|
|
/// Computes the `Ident` of this variant by looking up the `Span`
|
|
pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
|
|
Ident::new(self.name, tcx.def_ident_span(self.did).unwrap())
|
|
}
|
|
|
|
/// Returns whether the field is unnamed
|
|
pub fn is_unnamed(&self) -> bool {
|
|
self.name == rustc_span::symbol::kw::Underscore
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub enum ImplOverlapKind {
|
|
/// These impls are always allowed to overlap.
|
|
Permitted {
|
|
/// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
|
|
marker: bool,
|
|
},
|
|
/// These impls are allowed to overlap, but that raises
|
|
/// an issue #33140 future-compatibility warning.
|
|
///
|
|
/// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
|
|
/// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
|
|
///
|
|
/// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
|
|
/// that difference, making what reduces to the following set of impls:
|
|
///
|
|
/// ```compile_fail,(E0119)
|
|
/// trait Trait {}
|
|
/// impl Trait for dyn Send + Sync {}
|
|
/// impl Trait for dyn Sync + Send {}
|
|
/// ```
|
|
///
|
|
/// Obviously, once we made these types be identical, that code causes a coherence
|
|
/// error and a fairly big headache for us. However, luckily for us, the trait
|
|
/// `Trait` used in this case is basically a marker trait, and therefore having
|
|
/// overlapping impls for it is sound.
|
|
///
|
|
/// To handle this, we basically regard the trait as a marker trait, with an additional
|
|
/// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
|
|
/// it has the following restrictions:
|
|
///
|
|
/// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
|
|
/// positive impls.
|
|
/// 2. The trait-ref of both impls must be equal.
|
|
/// 3. The trait-ref of both impls must be a trait object type consisting only of
|
|
/// marker traits.
|
|
/// 4. Neither of the impls can have any where-clauses.
|
|
///
|
|
/// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
|
|
Issue33140,
|
|
}
|
|
|
|
/// Useful source information about where a desugared associated type for an
|
|
/// RPITIT originated from.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)]
|
|
pub enum ImplTraitInTraitData {
|
|
Trait { fn_def_id: DefId, opaque_def_id: DefId },
|
|
Impl { fn_def_id: DefId },
|
|
}
|
|
|
|
impl<'tcx> TyCtxt<'tcx> {
|
|
pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
|
|
self.typeck(self.hir().body_owner_def_id(body))
|
|
}
|
|
|
|
pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
|
|
self.associated_items(id)
|
|
.in_definition_order()
|
|
.filter(move |item| item.kind == AssocKind::Fn && item.defaultness(self).has_value())
|
|
}
|
|
|
|
pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions {
|
|
let mut flags = ReprFlags::empty();
|
|
let mut size = None;
|
|
let mut max_align: Option<Align> = None;
|
|
let mut min_pack: Option<Align> = None;
|
|
|
|
// Generate a deterministically-derived seed from the item's path hash
|
|
// to allow for cross-crate compilation to actually work
|
|
let mut field_shuffle_seed =
|
|
self.def_path_hash(did.to_def_id()).0.to_smaller_hash().as_u64();
|
|
|
|
// If the user defined a custom seed for layout randomization, xor the item's
|
|
// path hash with the user defined seed, this will allowing determinism while
|
|
// still allowing users to further randomize layout generation for e.g. fuzzing
|
|
if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed {
|
|
field_shuffle_seed ^= user_seed;
|
|
}
|
|
|
|
for attr in self.get_attrs(did, sym::repr) {
|
|
for r in attr::parse_repr_attr(self.sess, attr) {
|
|
flags.insert(match r {
|
|
attr::ReprRust => ReprFlags::empty(),
|
|
attr::ReprC => ReprFlags::IS_C,
|
|
attr::ReprPacked(pack) => {
|
|
min_pack = Some(if let Some(min_pack) = min_pack {
|
|
min_pack.min(pack)
|
|
} else {
|
|
pack
|
|
});
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
|
|
attr::ReprSimd => ReprFlags::IS_SIMD,
|
|
attr::ReprInt(i) => {
|
|
size = Some(match i {
|
|
attr::IntType::SignedInt(x) => match x {
|
|
ast::IntTy::Isize => IntegerType::Pointer(true),
|
|
ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true),
|
|
ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true),
|
|
ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true),
|
|
ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true),
|
|
ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true),
|
|
},
|
|
attr::IntType::UnsignedInt(x) => match x {
|
|
ast::UintTy::Usize => IntegerType::Pointer(false),
|
|
ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false),
|
|
ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false),
|
|
ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false),
|
|
ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false),
|
|
ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false),
|
|
},
|
|
});
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprAlign(align) => {
|
|
max_align = max_align.max(Some(align));
|
|
ReprFlags::empty()
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// If `-Z randomize-layout` was enabled for the type definition then we can
|
|
// consider performing layout randomization
|
|
if self.sess.opts.unstable_opts.randomize_layout {
|
|
flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
|
|
}
|
|
|
|
// This is here instead of layout because the choice must make it into metadata.
|
|
if !self.consider_optimizing(|| format!("Reorder fields of {:?}", self.def_path_str(did))) {
|
|
flags.insert(ReprFlags::IS_LINEAR);
|
|
}
|
|
|
|
ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
|
|
}
|
|
|
|
/// Look up the name of a definition across crates. This does not look at HIR.
|
|
pub fn opt_item_name(self, def_id: DefId) -> Option<Symbol> {
|
|
if let Some(cnum) = def_id.as_crate_root() {
|
|
Some(self.crate_name(cnum))
|
|
} else {
|
|
let def_key = self.def_key(def_id);
|
|
match def_key.disambiguated_data.data {
|
|
// The name of a constructor is that of its parent.
|
|
rustc_hir::definitions::DefPathData::Ctor => self
|
|
.opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
|
|
_ => def_key.get_opt_name(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look up the name of a definition across crates. This does not look at HIR.
|
|
///
|
|
/// This method will ICE if the corresponding item does not have a name. In these cases, use
|
|
/// [`opt_item_name`] instead.
|
|
///
|
|
/// [`opt_item_name`]: Self::opt_item_name
|
|
pub fn item_name(self, id: DefId) -> Symbol {
|
|
self.opt_item_name(id).unwrap_or_else(|| {
|
|
bug!("item_name: no name for {:?}", self.def_path(id));
|
|
})
|
|
}
|
|
|
|
/// Look up the name and span of a definition.
|
|
///
|
|
/// See [`item_name`][Self::item_name] for more information.
|
|
pub fn opt_item_ident(self, def_id: DefId) -> Option<Ident> {
|
|
let def = self.opt_item_name(def_id)?;
|
|
let span = self
|
|
.def_ident_span(def_id)
|
|
.unwrap_or_else(|| bug!("missing ident span for {def_id:?}"));
|
|
Some(Ident::new(def, span))
|
|
}
|
|
|
|
pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
|
|
if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
|
|
Some(self.associated_item(def_id))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// If the def-id is an associated type that was desugared from a
|
|
/// return-position `impl Trait` from a trait, then provide the source info
|
|
/// about where that RPITIT came from.
|
|
pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> {
|
|
if let DefKind::AssocTy = self.def_kind(def_id) {
|
|
self.associated_item(def_id).opt_rpitit_info
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> {
|
|
variant.fields.iter_enumerated().find_map(|(i, field)| {
|
|
self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i)
|
|
})
|
|
}
|
|
|
|
/// Returns `true` if the impls are the same polarity and the trait either
|
|
/// has no items or is annotated `#[marker]` and prevents item overrides.
|
|
#[instrument(level = "debug", skip(self), ret)]
|
|
pub fn impls_are_allowed_to_overlap(
|
|
self,
|
|
def_id1: DefId,
|
|
def_id2: DefId,
|
|
) -> Option<ImplOverlapKind> {
|
|
let impl1 = self.impl_trait_header(def_id1).unwrap();
|
|
let impl2 = self.impl_trait_header(def_id2).unwrap();
|
|
|
|
let trait_ref1 = impl1.trait_ref.skip_binder();
|
|
let trait_ref2 = impl2.trait_ref.skip_binder();
|
|
|
|
// If either trait impl references an error, they're allowed to overlap,
|
|
// as one of them essentially doesn't exist.
|
|
if trait_ref1.references_error() || trait_ref2.references_error() {
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
|
|
match (impl1.polarity, impl2.polarity) {
|
|
(ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
|
|
// `#[rustc_reservation_impl]` impls don't overlap with anything
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Negative)
|
|
| (ImplPolarity::Negative, ImplPolarity::Positive) => {
|
|
// `impl AutoTrait for Type` + `impl !AutoTrait for Type`
|
|
return None;
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Positive)
|
|
| (ImplPolarity::Negative, ImplPolarity::Negative) => {}
|
|
};
|
|
|
|
let is_marker_overlap = {
|
|
let is_marker_impl =
|
|
|trait_ref: TraitRef<'_>| -> bool { self.trait_def(trait_ref.def_id).is_marker };
|
|
is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2)
|
|
};
|
|
|
|
if is_marker_overlap {
|
|
Some(ImplOverlapKind::Permitted { marker: true })
|
|
} else {
|
|
if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
|
|
if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
|
|
if self_ty1 == self_ty2 {
|
|
return Some(ImplOverlapKind::Issue33140);
|
|
} else {
|
|
debug!("found {self_ty1:?} != {self_ty2:?}");
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns `ty::VariantDef` if `res` refers to a struct,
|
|
/// or variant or their constructors, panics otherwise.
|
|
pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
|
|
match res {
|
|
Res::Def(DefKind::Variant, did) => {
|
|
let enum_did = self.parent(did);
|
|
self.adt_def(enum_did).variant_with_id(did)
|
|
}
|
|
Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
|
|
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
|
|
let variant_did = self.parent(variant_ctor_did);
|
|
let enum_did = self.parent(variant_did);
|
|
self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
|
|
}
|
|
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
|
|
let struct_did = self.parent(ctor_did);
|
|
self.adt_def(struct_did).non_enum_variant()
|
|
}
|
|
_ => bug!("expect_variant_res used with unexpected res {:?}", res),
|
|
}
|
|
}
|
|
|
|
/// Returns the possibly-auto-generated MIR of a [`ty::InstanceDef`].
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
|
|
match instance {
|
|
ty::InstanceDef::Item(def) => {
|
|
debug!("calling def_kind on def: {:?}", def);
|
|
let def_kind = self.def_kind(def);
|
|
debug!("returned from def_kind: {:?}", def_kind);
|
|
match def_kind {
|
|
DefKind::Const
|
|
| DefKind::Static { .. }
|
|
| DefKind::AssocConst
|
|
| DefKind::Ctor(..)
|
|
| DefKind::AnonConst
|
|
| DefKind::InlineConst => self.mir_for_ctfe(def),
|
|
// If the caller wants `mir_for_ctfe` of a function they should not be using
|
|
// `instance_mir`, so we'll assume const fn also wants the optimized version.
|
|
_ => self.optimized_mir(def),
|
|
}
|
|
}
|
|
ty::InstanceDef::VTableShim(..)
|
|
| ty::InstanceDef::ReifyShim(..)
|
|
| ty::InstanceDef::Intrinsic(..)
|
|
| ty::InstanceDef::FnPtrShim(..)
|
|
| ty::InstanceDef::Virtual(..)
|
|
| ty::InstanceDef::ClosureOnceShim { .. }
|
|
| ty::InstanceDef::ConstructCoroutineInClosureShim { .. }
|
|
| ty::InstanceDef::CoroutineKindShim { .. }
|
|
| ty::InstanceDef::DropGlue(..)
|
|
| ty::InstanceDef::CloneShim(..)
|
|
| ty::InstanceDef::ThreadLocalShim(..)
|
|
| ty::InstanceDef::FnPtrAddrShim(..) => self.mir_shims(instance),
|
|
}
|
|
}
|
|
|
|
// FIXME(@lcnr): Remove this function.
|
|
pub fn get_attrs_unchecked(self, did: DefId) -> &'tcx [ast::Attribute] {
|
|
if let Some(did) = did.as_local() {
|
|
self.hir().attrs(self.local_def_id_to_hir_id(did))
|
|
} else {
|
|
self.item_attrs(did)
|
|
}
|
|
}
|
|
|
|
/// Gets all attributes with the given name.
|
|
pub fn get_attrs(
|
|
self,
|
|
did: impl Into<DefId>,
|
|
attr: Symbol,
|
|
) -> impl Iterator<Item = &'tcx ast::Attribute> {
|
|
let did: DefId = did.into();
|
|
let filter_fn = move |a: &&ast::Attribute| a.has_name(attr);
|
|
if let Some(did) = did.as_local() {
|
|
self.hir().attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
|
|
} else {
|
|
debug_assert!(rustc_feature::encode_cross_crate(attr));
|
|
self.item_attrs(did).iter().filter(filter_fn)
|
|
}
|
|
}
|
|
|
|
pub fn get_attrs_by_path<'attr>(
|
|
self,
|
|
did: DefId,
|
|
attr: &'attr [Symbol],
|
|
) -> impl Iterator<Item = &'tcx ast::Attribute> + 'attr
|
|
where
|
|
'tcx: 'attr,
|
|
{
|
|
let filter_fn = move |a: &&ast::Attribute| a.path_matches(attr);
|
|
if let Some(did) = did.as_local() {
|
|
self.hir().attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
|
|
} else {
|
|
self.item_attrs(did).iter().filter(filter_fn)
|
|
}
|
|
}
|
|
|
|
pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx ast::Attribute> {
|
|
if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
|
|
let did: DefId = did.into();
|
|
bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
|
|
} else {
|
|
self.get_attrs(did, attr).next()
|
|
}
|
|
}
|
|
|
|
/// Determines whether an item is annotated with an attribute.
|
|
pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool {
|
|
self.get_attrs(did, attr).next().is_some()
|
|
}
|
|
|
|
/// Returns `true` if this is an `auto trait`.
|
|
pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
|
|
self.trait_def(trait_def_id).has_auto_impl
|
|
}
|
|
|
|
/// Returns `true` if this is coinductive, either because it is
|
|
/// an auto trait or because it has the `#[rustc_coinductive]` attribute.
|
|
pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool {
|
|
self.trait_def(trait_def_id).is_coinductive
|
|
}
|
|
|
|
/// Returns `true` if this is a trait alias.
|
|
pub fn trait_is_alias(self, trait_def_id: DefId) -> bool {
|
|
self.def_kind(trait_def_id) == DefKind::TraitAlias
|
|
}
|
|
|
|
/// Returns layout of a coroutine. Layout might be unavailable if the
|
|
/// coroutine is tainted by errors.
|
|
///
|
|
/// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`,
|
|
/// e.g. `args.as_coroutine().kind_ty()`.
|
|
pub fn coroutine_layout(
|
|
self,
|
|
def_id: DefId,
|
|
coroutine_kind_ty: Ty<'tcx>,
|
|
) -> Option<&'tcx CoroutineLayout<'tcx>> {
|
|
let mir = self.optimized_mir(def_id);
|
|
// Regular coroutine
|
|
if coroutine_kind_ty.is_unit() {
|
|
mir.coroutine_layout_raw()
|
|
} else {
|
|
// If we have a `Coroutine` that comes from an coroutine-closure,
|
|
// then it may be a by-move or by-ref body.
|
|
let ty::Coroutine(_, identity_args) =
|
|
*self.type_of(def_id).instantiate_identity().kind()
|
|
else {
|
|
unreachable!();
|
|
};
|
|
let identity_kind_ty = identity_args.as_coroutine().kind_ty();
|
|
// If the types differ, then we must be getting the by-move body of
|
|
// a by-ref coroutine.
|
|
if identity_kind_ty == coroutine_kind_ty {
|
|
mir.coroutine_layout_raw()
|
|
} else {
|
|
assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce));
|
|
assert_matches!(
|
|
identity_kind_ty.to_opt_closure_kind(),
|
|
Some(ClosureKind::Fn | ClosureKind::FnMut)
|
|
);
|
|
mir.coroutine_by_move_body().unwrap().coroutine_layout_raw()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
|
|
/// If it implements no trait, returns `None`.
|
|
pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
|
|
self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id)
|
|
}
|
|
|
|
/// If the given `DefId` describes an item belonging to a trait,
|
|
/// returns the `DefId` of the trait that the trait item belongs to;
|
|
/// otherwise, returns `None`.
|
|
pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
|
|
if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
|
|
let parent = self.parent(def_id);
|
|
if let DefKind::Trait | DefKind::TraitAlias = self.def_kind(parent) {
|
|
return Some(parent);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// If the given `DefId` describes a method belonging to an impl, returns the
|
|
/// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
|
|
pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
|
|
if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
|
|
let parent = self.parent(def_id);
|
|
if let DefKind::Impl { .. } = self.def_kind(parent) {
|
|
return Some(parent);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Check if the given `DefId` is `#\[automatically_derived\]`, *and*
|
|
/// whether it was produced by expanding a builtin derive macro.
|
|
pub fn is_builtin_derived(self, def_id: DefId) -> bool {
|
|
if self.is_automatically_derived(def_id)
|
|
&& let Some(def_id) = def_id.as_local()
|
|
&& let outer = self.def_span(def_id).ctxt().outer_expn_data()
|
|
&& matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _))
|
|
&& self.has_attr(outer.macro_def_id.unwrap(), sym::rustc_builtin_macro)
|
|
{
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Check if the given `DefId` is `#\[automatically_derived\]`.
|
|
pub fn is_automatically_derived(self, def_id: DefId) -> bool {
|
|
self.has_attr(def_id, sym::automatically_derived)
|
|
}
|
|
|
|
/// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
|
|
/// with the name of the crate containing the impl.
|
|
pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> {
|
|
if let Some(impl_def_id) = impl_def_id.as_local() {
|
|
Ok(self.def_span(impl_def_id))
|
|
} else {
|
|
Err(self.crate_name(impl_def_id.krate))
|
|
}
|
|
}
|
|
|
|
/// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
|
|
/// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
|
|
/// definition's parent/scope to perform comparison.
|
|
pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
|
|
// We could use `Ident::eq` here, but we deliberately don't. The name
|
|
// comparison fails frequently, and we want to avoid the expensive
|
|
// `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
|
|
use_name.name == def_name.name
|
|
&& use_name
|
|
.span
|
|
.ctxt()
|
|
.hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
|
|
}
|
|
|
|
pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
|
|
ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
|
|
ident
|
|
}
|
|
|
|
// FIXME(vincenzopalazzo): move the HirId to a LocalDefId
|
|
pub fn adjust_ident_and_get_scope(
|
|
self,
|
|
mut ident: Ident,
|
|
scope: DefId,
|
|
block: hir::HirId,
|
|
) -> (Ident, DefId) {
|
|
let scope = ident
|
|
.span
|
|
.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
|
|
.and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
|
|
.unwrap_or_else(|| self.parent_module(block).to_def_id());
|
|
(ident, scope)
|
|
}
|
|
|
|
/// Returns corrected span if the debuginfo for `span` should be collapsed to the outermost
|
|
/// expansion site (with collapse_debuginfo attribute if the corresponding feature enabled).
|
|
/// Only applies when `Span` is the result of macro expansion.
|
|
///
|
|
/// - If the `collapse_debuginfo` feature is enabled then debuginfo is not collapsed by default
|
|
/// and only when a (some enclosing) macro definition is annotated with `#[collapse_debuginfo]`.
|
|
/// - If `collapse_debuginfo` is not enabled, then debuginfo is collapsed by default.
|
|
///
|
|
/// When `-Zdebug-macros` is provided then debuginfo will never be collapsed.
|
|
pub fn collapsed_debuginfo(self, span: Span, upto: Span) -> Span {
|
|
if self.sess.opts.unstable_opts.debug_macros || !span.from_expansion() {
|
|
return span;
|
|
}
|
|
hygiene::walk_chain_collapsed(span, upto, self.features().collapse_debuginfo)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_const_fn_raw(self, def_id: DefId) -> bool {
|
|
matches!(
|
|
self.def_kind(def_id),
|
|
DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(..) | DefKind::Closure
|
|
) && self.constness(def_id) == hir::Constness::Const
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_const_default_method(self, def_id: DefId) -> bool {
|
|
matches!(self.trait_of_item(def_id), Some(trait_id) if self.has_attr(trait_id, sym::const_trait))
|
|
}
|
|
|
|
pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool {
|
|
if self.def_kind(def_id) != DefKind::AssocFn {
|
|
return false;
|
|
}
|
|
|
|
let Some(item) = self.opt_associated_item(def_id) else {
|
|
return false;
|
|
};
|
|
if item.container != ty::AssocItemContainer::ImplContainer {
|
|
return false;
|
|
}
|
|
|
|
let Some(trait_item_def_id) = item.trait_item_def_id else {
|
|
return false;
|
|
};
|
|
|
|
return !self
|
|
.associated_types_for_impl_traits_in_associated_fn(trait_item_def_id)
|
|
.is_empty();
|
|
}
|
|
}
|
|
|
|
pub fn int_ty(ity: ast::IntTy) -> IntTy {
|
|
match ity {
|
|
ast::IntTy::Isize => IntTy::Isize,
|
|
ast::IntTy::I8 => IntTy::I8,
|
|
ast::IntTy::I16 => IntTy::I16,
|
|
ast::IntTy::I32 => IntTy::I32,
|
|
ast::IntTy::I64 => IntTy::I64,
|
|
ast::IntTy::I128 => IntTy::I128,
|
|
}
|
|
}
|
|
|
|
pub fn uint_ty(uty: ast::UintTy) -> UintTy {
|
|
match uty {
|
|
ast::UintTy::Usize => UintTy::Usize,
|
|
ast::UintTy::U8 => UintTy::U8,
|
|
ast::UintTy::U16 => UintTy::U16,
|
|
ast::UintTy::U32 => UintTy::U32,
|
|
ast::UintTy::U64 => UintTy::U64,
|
|
ast::UintTy::U128 => UintTy::U128,
|
|
}
|
|
}
|
|
|
|
pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
|
|
match fty {
|
|
ast::FloatTy::F16 => FloatTy::F16,
|
|
ast::FloatTy::F32 => FloatTy::F32,
|
|
ast::FloatTy::F64 => FloatTy::F64,
|
|
ast::FloatTy::F128 => FloatTy::F128,
|
|
}
|
|
}
|
|
|
|
pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
|
|
match ity {
|
|
IntTy::Isize => ast::IntTy::Isize,
|
|
IntTy::I8 => ast::IntTy::I8,
|
|
IntTy::I16 => ast::IntTy::I16,
|
|
IntTy::I32 => ast::IntTy::I32,
|
|
IntTy::I64 => ast::IntTy::I64,
|
|
IntTy::I128 => ast::IntTy::I128,
|
|
}
|
|
}
|
|
|
|
pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
|
|
match uty {
|
|
UintTy::Usize => ast::UintTy::Usize,
|
|
UintTy::U8 => ast::UintTy::U8,
|
|
UintTy::U16 => ast::UintTy::U16,
|
|
UintTy::U32 => ast::UintTy::U32,
|
|
UintTy::U64 => ast::UintTy::U64,
|
|
UintTy::U128 => ast::UintTy::U128,
|
|
}
|
|
}
|
|
|
|
pub fn provide(providers: &mut Providers) {
|
|
closure::provide(providers);
|
|
context::provide(providers);
|
|
erase_regions::provide(providers);
|
|
inhabitedness::provide(providers);
|
|
util::provide(providers);
|
|
print::provide(providers);
|
|
super::util::bug::provide(providers);
|
|
super::middle::provide(providers);
|
|
*providers = Providers {
|
|
trait_impls_of: trait_def::trait_impls_of_provider,
|
|
incoherent_impls: trait_def::incoherent_impls_provider,
|
|
const_param_default: consts::const_param_default,
|
|
vtable_allocation: vtable::vtable_allocation_provider,
|
|
..*providers
|
|
};
|
|
}
|
|
|
|
/// A map for the local crate mapping each type to a vector of its
|
|
/// inherent impls. This is not meant to be used outside of coherence;
|
|
/// rather, you should request the vector for a specific type via
|
|
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
|
|
/// (constructing this map requires touching the entire crate).
|
|
#[derive(Clone, Debug, Default, HashStable)]
|
|
pub struct CrateInherentImpls {
|
|
pub inherent_impls: LocalDefIdMap<Vec<DefId>>,
|
|
pub incoherent_impls: UnordMap<SimplifiedType, Vec<LocalDefId>>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
|
|
pub struct SymbolName<'tcx> {
|
|
/// `&str` gives a consistent ordering, which ensures reproducible builds.
|
|
pub name: &'tcx str,
|
|
}
|
|
|
|
impl<'tcx> SymbolName<'tcx> {
|
|
pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
|
|
SymbolName { name: tcx.arena.alloc_str(name) }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Display for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default, Copy, Clone)]
|
|
pub struct InferVarInfo {
|
|
/// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
|
|
/// obligation, where:
|
|
///
|
|
/// * `Foo` is not `Sized`
|
|
/// * `(): Foo` may be satisfied
|
|
pub self_in_trait: bool,
|
|
/// This is true if we identified that this Ty (`?T`) is found in a `<_ as
|
|
/// _>::AssocType = ?T`
|
|
pub output: bool,
|
|
}
|
|
|
|
/// The constituent parts of a type level constant of kind ADT or array.
|
|
#[derive(Copy, Clone, Debug, HashStable)]
|
|
pub struct DestructuredConst<'tcx> {
|
|
pub variant: Option<VariantIdx>,
|
|
pub fields: &'tcx [ty::Const<'tcx>],
|
|
}
|
|
|
|
// Some types are used a lot. Make sure they don't unintentionally get bigger.
|
|
#[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), target_pointer_width = "64"))]
|
|
mod size_asserts {
|
|
use super::*;
|
|
use rustc_data_structures::static_assert_size;
|
|
// tidy-alphabetical-start
|
|
static_assert_size!(PredicateKind<'_>, 32);
|
|
static_assert_size!(WithCachedTypeInfo<TyKind<'_>>, 56);
|
|
// tidy-alphabetical-end
|
|
}
|