1
Fork 0
rust/library/core/src/num/uint_macros.rs
Scott McMurray 2c0c9123fc Move {widening, carrying}_mul to an intrinsic with fallback MIR
Including implementing it for `u128`, so it can be defined in `uint_impl!`.

This way it works for all backends, including CTFE.
2024-12-27 08:17:40 -08:00

3490 lines
139 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

macro_rules! uint_impl {
(
Self = $SelfT:ty,
ActualT = $ActualT:ident,
SignedT = $SignedT:ident,
// These are all for use *only* in doc comments.
// As such, they're all passed as literals -- passing them as a string
// literal is fine if they need to be multiple code tokens.
// In non-comments, use the associated constants rather than these.
BITS = $BITS:literal,
BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
MAX = $MaxV:literal,
rot = $rot:literal,
rot_op = $rot_op:literal,
rot_result = $rot_result:literal,
swap_op = $swap_op:literal,
swapped = $swapped:literal,
reversed = $reversed:literal,
le_bytes = $le_bytes:literal,
be_bytes = $be_bytes:literal,
to_xe_bytes_doc = $to_xe_bytes_doc:expr,
from_xe_bytes_doc = $from_xe_bytes_doc:expr,
bound_condition = $bound_condition:literal,
) => {
/// The smallest value that can be represented by this integer type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: Self = 0;
/// The largest value that can be represented by this integer type
#[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
/// ```
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: Self = !0;
/// The size of this integer type in bits.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "int_bits_const", since = "1.53.0")]
pub const BITS: u32 = Self::MAX.count_ones();
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
/// assert_eq!(n.count_ones(), 3);
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
#[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
///
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
/// assert_eq!(zero.count_ones(), 0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[doc(alias = "popcount")]
#[doc(alias = "popcnt")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_ones(self) -> u32 {
return intrinsics::ctpop(self);
}
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
#[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
/// assert_eq!(max.count_zeros(), 0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_zeros(self) -> u32 {
(!self).count_ones()
}
/// Returns the number of leading zeros in the binary representation of `self`.
///
/// Depending on what you're doing with the value, you might also be interested in the
/// [`ilog2`] function which returns a consistent number, even if the type widens.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
/// assert_eq!(n.leading_zeros(), 2);
///
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
#[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
/// assert_eq!(max.leading_zeros(), 0);
/// ```
#[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_zeros(self) -> u32 {
return intrinsics::ctlz(self as $ActualT);
}
/// Returns the number of trailing zeros in the binary representation
/// of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
/// assert_eq!(n.trailing_zeros(), 3);
///
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
#[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
#[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_zeros(self) -> u32 {
return intrinsics::cttz(self);
}
/// Returns the number of leading ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
/// assert_eq!(n.leading_ones(), 2);
///
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
/// assert_eq!(zero.leading_ones(), 0);
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
#[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn leading_ones(self) -> u32 {
(!self).leading_zeros()
}
/// Returns the number of trailing ones in the binary representation
/// of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
/// assert_eq!(n.trailing_ones(), 3);
///
#[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
/// assert_eq!(zero.trailing_ones(), 0);
///
#[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
#[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
/// ```
#[stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn trailing_ones(self) -> u32 {
(!self).trailing_zeros()
}
/// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
///
/// This produces the same result as an `as` cast, but ensures that the bit-width remains
/// the same.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(integer_sign_cast)]
///
#[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
///
#[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
/// ```
#[unstable(feature = "integer_sign_cast", issue = "125882")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn cast_signed(self) -> $SignedT {
self as $SignedT
}
/// Shifts the bits to the left by a specified amount, `n`,
/// wrapping the truncated bits to the end of the resulting integer.
///
/// Please note this isn't the same operation as the `<<` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_result, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_left(self, n: u32) -> Self {
return intrinsics::rotate_left(self, n);
}
/// Shifts the bits to the right by a specified amount, `n`,
/// wrapping the truncated bits to the beginning of the resulting
/// integer.
///
/// Please note this isn't the same operation as the `>>` shifting operator!
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
#[doc = concat!("let m = ", $rot_op, ";")]
///
#[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn rotate_right(self, n: u32) -> Self {
return intrinsics::rotate_right(self, n);
}
/// Reverses the byte order of the integer.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
/// let m = n.swap_bytes();
///
#[doc = concat!("assert_eq!(m, ", $swapped, ");")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn swap_bytes(self) -> Self {
intrinsics::bswap(self as $ActualT) as Self
}
/// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
/// second least-significant bit becomes second most-significant bit, etc.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
/// let m = n.reverse_bits();
///
#[doc = concat!("assert_eq!(m, ", $reversed, ");")]
#[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
/// ```
#[stable(feature = "reverse_bits", since = "1.37.0")]
#[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn reverse_bits(self) -> Self {
intrinsics::bitreverse(self as $ActualT) as Self
}
/// Converts an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are
/// swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use]
#[inline(always)]
pub const fn from_be(x: Self) -> Self {
#[cfg(target_endian = "big")]
{
x
}
#[cfg(not(target_endian = "big"))]
{
x.swap_bytes()
}
}
/// Converts an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are
/// swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
/// } else {
#[doc = concat!(" assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use]
#[inline(always)]
pub const fn from_le(x: Self) -> Self {
#[cfg(target_endian = "little")]
{
x
}
#[cfg(not(target_endian = "little"))]
{
x.swap_bytes()
}
}
/// Converts `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are
/// swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn to_be(self) -> Self { // or not to be?
#[cfg(target_endian = "big")]
{
self
}
#[cfg(not(target_endian = "big"))]
{
self.swap_bytes()
}
}
/// Converts `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are
/// swapped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn to_le(self) -> Self {
#[cfg(target_endian = "little")]
{
self
}
#[cfg(not(target_endian = "little"))]
{
self.swap_bytes()
}
}
/// Checked integer addition. Computes `self + rhs`, returning `None`
/// if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!(
"assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
"Some(", stringify!($SelfT), "::MAX - 1));"
)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add(self, rhs: Self) -> Option<Self> {
// This used to use `overflowing_add`, but that means it ends up being
// a `wrapping_add`, losing some optimization opportunities. Notably,
// phrasing it this way helps `.checked_add(1)` optimize to a check
// against `MAX` and a `add nuw`.
// Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
// LLVM is happy to re-form the intrinsic later if useful.
if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
None
} else {
// SAFETY: Just checked it doesn't overflow
Some(unsafe { intrinsics::unchecked_add(self, rhs) })
}
}
/// Strict integer addition. Computes `self + rhs`, panicking
/// if overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_add(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_add(rhs);
if b { overflow_panic::add() } else { a }
}
/// Unchecked integer addition. Computes `self + rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_add(y)` is semantically equivalent to calling
/// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_add`].
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_add`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
#[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_add(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_add(self, rhs)
}
}
/// Checked addition with a signed integer. Computes `self + rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
let (a, b) = self.overflowing_add_signed(rhs);
if intrinsics::unlikely(b) { None } else { Some(a) }
}
/// Strict addition with a signed integer. Computes `self + rhs`,
/// panicking if overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
/// ```
///
/// The following panic because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
/// ```
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
let (a, b) = self.overflowing_add_signed(rhs);
if b { overflow_panic::add() } else { a }
}
/// Checked integer subtraction. Computes `self - rhs`, returning
/// `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
// Per PR#103299, there's no advantage to the `overflowing` intrinsic
// for *unsigned* subtraction and we just emit the manual check anyway.
// Thus, rather than using `overflowing_sub` that produces a wrapping
// subtraction, check it ourself so we can use an unchecked one.
if self < rhs {
None
} else {
// SAFETY: just checked this can't overflow
Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
}
}
/// Strict integer subtraction. Computes `self - rhs`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_sub(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_sub(rhs);
if b { overflow_panic::sub() } else { a }
}
/// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
/// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_sub`].
///
/// If you find yourself writing code like this:
///
/// ```
/// # let foo = 30_u32;
/// # let bar = 20;
/// if foo >= bar {
/// // SAFETY: just checked it will not overflow
/// let diff = unsafe { foo.unchecked_sub(bar) };
/// // ... use diff ...
/// }
/// ```
///
/// Consider changing it to
///
/// ```
/// # let foo = 30_u32;
/// # let bar = 20;
/// if let Some(diff) = foo.checked_sub(bar) {
/// // ... use diff ...
/// }
/// ```
///
/// As that does exactly the same thing -- including telling the optimizer
/// that the subtraction cannot overflow -- but avoids needing `unsafe`.
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_sub`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
#[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_sub(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_sub(self, rhs)
}
}
/// Checked subtraction with a signed integer. Computes `self - rhs`,
/// returning `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(mixed_integer_ops_unsigned_sub)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
/// ```
#[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
let (res, overflow) = self.overflowing_sub_signed(rhs);
if !overflow {
Some(res)
} else {
None
}
}
#[doc = concat!(
"Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
stringify!($SignedT), "`], returning `None` if overflow occurred."
)]
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(unsigned_signed_diff)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
#[doc = concat!(
"assert_eq!(",
stringify!($SelfT),
"::MAX.checked_signed_diff(",
stringify!($SignedT),
"::MAX as ",
stringify!($SelfT),
"), None);"
)]
#[doc = concat!(
"assert_eq!((",
stringify!($SignedT),
"::MAX as ",
stringify!($SelfT),
").checked_signed_diff(",
stringify!($SelfT),
"::MAX), Some(",
stringify!($SignedT),
"::MIN));"
)]
#[doc = concat!(
"assert_eq!((",
stringify!($SignedT),
"::MAX as ",
stringify!($SelfT),
" + 1).checked_signed_diff(0), None);"
)]
#[doc = concat!(
"assert_eq!(",
stringify!($SelfT),
"::MAX.checked_signed_diff(",
stringify!($SelfT),
"::MAX), Some(0));"
)]
/// ```
#[unstable(feature = "unsigned_signed_diff", issue = "126041")]
#[inline]
pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
let res = self.wrapping_sub(rhs) as $SignedT;
let overflow = (self >= rhs) == (res < 0);
if !overflow {
Some(res)
} else {
None
}
}
/// Checked integer multiplication. Computes `self * rhs`, returning
/// `None` if overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
let (a, b) = self.overflowing_mul(rhs);
if intrinsics::unlikely(b) { None } else { Some(a) }
}
/// Strict integer multiplication. Computes `self * rhs`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
/// ```
///
/// The following panics because of overflow:
///
/// ``` should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_mul(self, rhs: Self) -> Self {
let (a, b) = self.overflowing_mul(rhs);
if b { overflow_panic::mul() } else { a }
}
/// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
/// cannot occur.
///
/// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
/// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
///
/// If you're just trying to avoid the panic in debug mode, then **do not**
/// use this. Instead, you're looking for [`wrapping_mul`].
///
/// # Safety
///
/// This results in undefined behavior when
#[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
/// i.e. when [`checked_mul`] would return `None`.
///
/// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
#[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
#[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
#[stable(feature = "unchecked_math", since = "1.79.0")]
#[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
(
lhs: $SelfT = self,
rhs: $SelfT = rhs,
) => !lhs.overflowing_mul(rhs).1,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_mul(self, rhs)
}
}
/// Checked integer division. Computes `self / rhs`, returning `None`
/// if `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div(self, rhs: Self) -> Option<Self> {
if intrinsics::unlikely(rhs == 0) {
None
} else {
// SAFETY: div by zero has been checked above and unsigned types have no other
// failure modes for division
Some(unsafe { intrinsics::unchecked_div(self, rhs) })
}
}
/// Strict integer division. Computes `self / rhs`.
///
/// Strict division on unsigned types is just normal division. There's no
/// way overflow could ever happen. This function exists so that all
/// operations are accounted for in the strict operations.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn strict_div(self, rhs: Self) -> Self {
self / rhs
}
/// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
/// if `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
if intrinsics::unlikely(rhs == 0) {
None
} else {
Some(self.div_euclid(rhs))
}
}
/// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
///
/// Strict division on unsigned types is just normal division. There's no
/// way overflow could ever happen. This function exists so that all
/// operations are accounted for in the strict operations. Since, for the
/// positive integers, all common definitions of division are equal, this
/// is exactly equal to `self.strict_div(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
/// ```
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn strict_div_euclid(self, rhs: Self) -> Self {
self / rhs
}
/// Checked integer remainder. Computes `self % rhs`, returning `None`
/// if `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
if intrinsics::unlikely(rhs == 0) {
None
} else {
// SAFETY: div by zero has been checked above and unsigned types have no other
// failure modes for division
Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
}
}
/// Strict integer remainder. Computes `self % rhs`.
///
/// Strict remainder calculation on unsigned types is just the regular
/// remainder calculation. There's no way overflow could ever happen.
/// This function exists so that all operations are accounted for in the
/// strict operations.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn strict_rem(self, rhs: Self) -> Self {
self % rhs
}
/// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
/// if `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
if intrinsics::unlikely(rhs == 0) {
None
} else {
Some(self.rem_euclid(rhs))
}
}
/// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
///
/// Strict modulo calculation on unsigned types is just the regular
/// remainder calculation. There's no way overflow could ever happen.
/// This function exists so that all operations are accounted for in the
/// strict operations. Since, for the positive integers, all common
/// definitions of division are equal, this is exactly equal to
/// `self.strict_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
/// ```
///
/// The following panics because of division by zero:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
self % rhs
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// This method might not be optimized owing to implementation details;
/// `ilog2` can produce results more efficiently for base 2, and `ilog10`
/// can produce results more efficiently for base 10.
///
/// # Panics
///
/// This function will panic if `self` is zero, or if `base` is less than 2.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog(self, base: Self) -> u32 {
assert!(base >= 2, "base of integer logarithm must be at least 2");
if let Some(log) = self.checked_ilog(base) {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog2(self) -> u32 {
if let Some(log) = self.checked_ilog2() {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is zero.
///
/// # Example
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn ilog10(self) -> u32 {
if let Some(log) = self.checked_ilog10() {
log
} else {
int_log10::panic_for_nonpositive_argument()
}
}
/// Returns the logarithm of the number with respect to an arbitrary base,
/// rounded down.
///
/// Returns `None` if the number is zero, or if the base is not at least 2.
///
/// This method might not be optimized owing to implementation details;
/// `checked_ilog2` can produce results more efficiently for base 2, and
/// `checked_ilog10` can produce results more efficiently for base 10.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog(self, base: Self) -> Option<u32> {
if self <= 0 || base <= 1 {
None
} else if self < base {
Some(0)
} else {
// Since base >= self, n >= 1
let mut n = 1;
let mut r = base;
// Optimization for 128 bit wide integers.
if Self::BITS == 128 {
// The following is a correct lower bound for ⌊log(base,self)⌋ because
//
// log(base,self) = log(2,self) / log(2,base)
// ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
//
// hence
//
// ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
n = self.ilog2() / (base.ilog2() + 1);
r = base.pow(n);
}
while r <= self / base {
n += 1;
r *= base;
}
Some(n)
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// Returns `None` if the number is zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog2(self) -> Option<u32> {
match NonZero::new(self) {
Some(x) => Some(x.ilog2()),
None => None,
}
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// Returns `None` if the number is zero.
///
/// # Examples
///
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_ilog10(self) -> Option<u32> {
match NonZero::new(self) {
Some(x) => Some(x.ilog10()),
None => None,
}
}
/// Checked negation. Computes `-self`, returning `None` unless `self ==
/// 0`.
///
/// Note that negating any positive integer will overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_neg(self) -> Option<Self> {
let (a, b) = self.overflowing_neg();
if intrinsics::unlikely(b) { None } else { Some(a) }
}
/// Strict negation. Computes `-self`, panicking unless `self ==
/// 0`.
///
/// Note that negating any positive integer will overflow.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
///
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_neg(self) -> Self {
let (a, b) = self.overflowing_neg();
if b { overflow_panic::neg() } else { a }
}
/// Checked shift left. Computes `self << rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
// Not using overflowing_shl as that's a wrapping shift
if rhs < Self::BITS {
// SAFETY: just checked the RHS is in-range
Some(unsafe { self.unchecked_shl(rhs) })
} else {
None
}
}
/// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
/// than or equal to the number of bits in `self`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_shl(self, rhs: u32) -> Self {
let (a, b) = self.overflowing_shl(rhs);
if b { overflow_panic::shl() } else { a }
}
/// Unchecked shift left. Computes `self << rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shl`] would return `None`.
///
#[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
#[unstable(
feature = "unchecked_shifts",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
(
rhs: u32 = rhs,
) => rhs < <$ActualT>::BITS,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_shl(self, rhs)
}
}
/// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
///
/// If `rhs` is larger or equal to the number of bits in `self`,
/// the entire value is shifted out, and `0` is returned.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(unbounded_shifts)]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
/// ```
#[unstable(feature = "unbounded_shifts", issue = "129375")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
if rhs < Self::BITS {
// SAFETY:
// rhs is just checked to be in-range above
unsafe { self.unchecked_shl(rhs) }
} else {
0
}
}
/// Checked shift right. Computes `self >> rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
// Not using overflowing_shr as that's a wrapping shift
if rhs < Self::BITS {
// SAFETY: just checked the RHS is in-range
Some(unsafe { self.unchecked_shr(rhs) })
} else {
None
}
}
/// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
/// larger than or equal to the number of bits in `self`.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_shr(self, rhs: u32) -> Self {
let (a, b) = self.overflowing_shr(rhs);
if b { overflow_panic::shr() } else { a }
}
/// Unchecked shift right. Computes `self >> rhs`, assuming that
/// `rhs` is less than the number of bits in `self`.
///
/// # Safety
///
/// This results in undefined behavior if `rhs` is larger than
/// or equal to the number of bits in `self`,
/// i.e. when [`checked_shr`] would return `None`.
///
#[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
#[unstable(
feature = "unchecked_shifts",
reason = "niche optimization path",
issue = "85122",
)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
assert_unsafe_precondition!(
check_language_ub,
concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
(
rhs: u32 = rhs,
) => rhs < <$ActualT>::BITS,
);
// SAFETY: this is guaranteed to be safe by the caller.
unsafe {
intrinsics::unchecked_shr(self, rhs)
}
}
/// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
///
/// If `rhs` is larger or equal to the number of bits in `self`,
/// the entire value is shifted out, and `0` is returned.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(unbounded_shifts)]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
/// ```
#[unstable(feature = "unbounded_shifts", issue = "129375")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
if rhs < Self::BITS {
// SAFETY:
// rhs is just checked to be in-range above
unsafe { self.unchecked_shr(rhs) }
} else {
0
}
}
/// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
/// overflow occurred.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
if exp == 0 {
return Some(1);
}
let mut base = self;
let mut acc: Self = 1;
loop {
if (exp & 1) == 1 {
acc = try_opt!(acc.checked_mul(base));
// since exp!=0, finally the exp must be 1.
if exp == 1 {
return Some(acc);
}
}
exp /= 2;
base = try_opt!(base.checked_mul(base));
}
}
/// Strict exponentiation. Computes `self.pow(exp)`, panicking if
/// overflow occurred.
///
/// # Panics
///
/// ## Overflow behavior
///
/// This function will always panic on overflow, regardless of whether overflow checks are enabled.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(strict_overflow_ops)]
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
/// ```
///
/// The following panics because of overflow:
///
/// ```should_panic
/// #![feature(strict_overflow_ops)]
#[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
/// ```
#[unstable(feature = "strict_overflow_ops", issue = "118260")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn strict_pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc: Self = 1;
loop {
if (exp & 1) == 1 {
acc = acc.strict_mul(base);
// since exp!=0, finally the exp must be 1.
if exp == 1 {
return acc;
}
}
exp /= 2;
base = base.strict_mul(base);
}
}
/// Saturating integer addition. Computes `self + rhs`, saturating at
/// the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[inline(always)]
pub const fn saturating_add(self, rhs: Self) -> Self {
intrinsics::saturating_add(self, rhs)
}
/// Saturating addition with a signed integer. Computes `self + rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
let (res, overflow) = self.overflowing_add(rhs as Self);
if overflow == (rhs < 0) {
res
} else if overflow {
Self::MAX
} else {
0
}
}
/// Saturating integer subtraction. Computes `self - rhs`, saturating
/// at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
#[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[inline(always)]
pub const fn saturating_sub(self, rhs: Self) -> Self {
intrinsics::saturating_sub(self, rhs)
}
/// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
/// the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(mixed_integer_ops_unsigned_sub)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
/// ```
#[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
let (res, overflow) = self.overflowing_sub_signed(rhs);
if !overflow {
res
} else if rhs < 0 {
Self::MAX
} else {
0
}
}
/// Saturating integer multiplication. Computes `self * rhs`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_mul(self, rhs: Self) -> Self {
match self.checked_mul(rhs) {
Some(x) => x,
None => Self::MAX,
}
}
/// Saturating integer division. Computes `self / rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
///
/// ```
#[stable(feature = "saturating_div", since = "1.58.0")]
#[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn saturating_div(self, rhs: Self) -> Self {
// on unsigned types, there is no overflow in integer division
self.wrapping_div(rhs)
}
/// Saturating integer exponentiation. Computes `self.pow(exp)`,
/// saturating at the numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_pow(self, exp: u32) -> Self {
match self.checked_pow(exp) {
Some(x) => x,
None => Self::MAX,
}
}
/// Wrapping (modular) addition. Computes `self + rhs`,
/// wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
#[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_add(self, rhs: Self) -> Self {
intrinsics::wrapping_add(self, rhs)
}
/// Wrapping (modular) addition with a signed integer. Computes
/// `self + rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
self.wrapping_add(rhs as Self)
}
/// Wrapping (modular) subtraction. Computes `self - rhs`,
/// wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_sub(self, rhs: Self) -> Self {
intrinsics::wrapping_sub(self, rhs)
}
/// Wrapping (modular) subtraction with a signed integer. Computes
/// `self - rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(mixed_integer_ops_unsigned_sub)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
/// ```
#[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
self.wrapping_sub(rhs as Self)
}
/// Wrapping (modular) multiplication. Computes `self *
/// rhs`, wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// Please note that this example is shared between integer types.
/// Which explains why `u8` is used here.
///
/// ```
/// assert_eq!(10u8.wrapping_mul(12), 120);
/// assert_eq!(25u8.wrapping_mul(12), 44);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_mul(self, rhs: Self) -> Self {
intrinsics::wrapping_mul(self, rhs)
}
/// Wrapping (modular) division. Computes `self / rhs`.
///
/// Wrapped division on unsigned types is just normal division. There's
/// no way wrapping could ever happen. This function exists so that all
/// operations are accounted for in the wrapping operations.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn wrapping_div(self, rhs: Self) -> Self {
self / rhs
}
/// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
///
/// Wrapped division on unsigned types is just normal division. There's
/// no way wrapping could ever happen. This function exists so that all
/// operations are accounted for in the wrapping operations. Since, for
/// the positive integers, all common definitions of division are equal,
/// this is exactly equal to `self.wrapping_div(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
self / rhs
}
/// Wrapping (modular) remainder. Computes `self % rhs`.
///
/// Wrapped remainder calculation on unsigned types is just the regular
/// remainder calculation. There's no way wrapping could ever happen.
/// This function exists so that all operations are accounted for in the
/// wrapping operations.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn wrapping_rem(self, rhs: Self) -> Self {
self % rhs
}
/// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
///
/// Wrapped modulo calculation on unsigned types is just the regular
/// remainder calculation. There's no way wrapping could ever happen.
/// This function exists so that all operations are accounted for in the
/// wrapping operations. Since, for the positive integers, all common
/// definitions of division are equal, this is exactly equal to
/// `self.wrapping_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
self % rhs
}
/// Wrapping (modular) negation. Computes `-self`,
/// wrapping around at the boundary of the type.
///
/// Since unsigned types do not have negative equivalents
/// all applications of this function will wrap (except for `-0`).
/// For values smaller than the corresponding signed type's maximum
/// the result is the same as casting the corresponding signed value.
/// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
/// `MAX` is the corresponding signed type's maximum.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
#[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
#[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_neg(self) -> Self {
(0 as $SelfT).wrapping_sub(self)
}
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
/// where `mask` removes any high-order bits of `rhs` that
/// would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-left; the
/// RHS of a wrapping shift-left is restricted to the range
/// of the type, rather than the bits shifted out of the LHS
/// being returned to the other end. The primitive integer
/// types all implement a [`rotate_left`](Self::rotate_left) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_shl(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shl(rhs & (Self::BITS - 1))
}
}
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
/// where `mask` removes any high-order bits of `rhs` that
/// would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-right; the
/// RHS of a wrapping shift-right is restricted to the range
/// of the type, rather than the bits shifted out of the LHS
/// being returned to the other end. The primitive integer
/// types all implement a [`rotate_right`](Self::rotate_right) function,
/// which may be what you want instead.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
#[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
/// ```
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn wrapping_shr(self, rhs: u32) -> Self {
// SAFETY: the masking by the bitsize of the type ensures that we do not shift
// out of bounds
unsafe {
self.unchecked_shr(rhs & (Self::BITS - 1))
}
}
/// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
/// wrapping around at the boundary of the type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
/// assert_eq!(3u8.wrapping_pow(6), 217);
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc: Self = 1;
if intrinsics::is_val_statically_known(exp) {
while exp > 1 {
if (exp & 1) == 1 {
acc = acc.wrapping_mul(base);
}
exp /= 2;
base = base.wrapping_mul(base);
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary.
acc.wrapping_mul(base)
} else {
// This is faster than the above when the exponent is not known
// at compile time. We can't use the same code for the constant
// exponent case because LLVM is currently unable to unroll
// this loop.
loop {
if (exp & 1) == 1 {
acc = acc.wrapping_mul(base);
// since exp!=0, finally the exp must be 1.
if exp == 1 {
return acc;
}
}
exp /= 2;
base = base.wrapping_mul(base);
}
}
}
/// Calculates `self` + `rhs`.
///
/// Returns a tuple of the addition along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self` + `rhs` + `carry` and returns a tuple containing
/// the sum and the output carry.
///
/// Performs "ternary addition" of two integer operands and a carry-in
/// bit, and returns an output integer and a carry-out bit. This allows
/// chaining together multiple additions to create a wider addition, and
/// can be useful for bignum addition.
///
#[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
///
/// If the input carry is false, this method is equivalent to
/// [`overflowing_add`](Self::overflowing_add), and the output carry is
/// equal to the overflow flag. Note that although carry and overflow
/// flags are similar for unsigned integers, they are different for
/// signed integers.
///
/// # Examples
///
/// ```
/// #![feature(bigint_helper_methods)]
///
#[doc = concat!("// 3 MAX (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
#[doc = concat!("// + 5 7 (b = 5 × 2^", stringify!($BITS), " + 7)")]
/// // ---------
#[doc = concat!("// 9 6 (sum = 9 × 2^", stringify!($BITS), " + 6)")]
///
#[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
#[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
/// let carry0 = false;
///
/// let (sum0, carry1) = a0.carrying_add(b0, carry0);
/// assert_eq!(carry1, true);
/// let (sum1, carry2) = a1.carrying_add(b1, carry1);
/// assert_eq!(carry2, false);
///
/// assert_eq!((sum1, sum0), (9, 6));
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic, but this has been shown
// to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
let (a, b) = self.overflowing_add(rhs);
let (c, d) = a.overflowing_add(carry as $SelfT);
(c, b | d)
}
/// Calculates `self` + `rhs` with a signed `rhs`.
///
/// Returns a tuple of the addition along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
/// ```
#[stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
let (res, overflowed) = self.overflowing_add(rhs as Self);
(res, overflowed ^ (rhs < 0))
}
/// Calculates `self` - `rhs`.
///
/// Returns a tuple of the subtraction along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
/// containing the difference and the output borrow.
///
/// Performs "ternary subtraction" by subtracting both an integer
/// operand and a borrow-in bit from `self`, and returns an output
/// integer and a borrow-out bit. This allows chaining together multiple
/// subtractions to create a wider subtraction, and can be useful for
/// bignum subtraction.
///
/// # Examples
///
/// ```
/// #![feature(bigint_helper_methods)]
///
#[doc = concat!("// 9 6 (a = 9 × 2^", stringify!($BITS), " + 6)")]
#[doc = concat!("// - 5 7 (b = 5 × 2^", stringify!($BITS), " + 7)")]
/// // ---------
#[doc = concat!("// 3 MAX (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
///
#[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
#[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
/// let borrow0 = false;
///
/// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
/// assert_eq!(borrow1, true);
/// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
/// assert_eq!(borrow2, false);
///
#[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
// note: longer-term this should be done via an intrinsic, but this has been shown
// to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
let (a, b) = self.overflowing_sub(rhs);
let (c, d) = a.overflowing_sub(borrow as $SelfT);
(c, b | d)
}
/// Calculates `self` - `rhs` with a signed `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(mixed_integer_ops_unsigned_sub)]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
#[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
#[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
/// ```
#[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
let (res, overflow) = self.overflowing_sub(rhs as Self);
(res, overflow ^ (rhs < 0))
}
/// Computes the absolute difference between `self` and `other`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
#[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
/// ```
#[stable(feature = "int_abs_diff", since = "1.60.0")]
#[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn abs_diff(self, other: Self) -> Self {
if mem::size_of::<Self>() == 1 {
// Trick LLVM into generating the psadbw instruction when SSE2
// is available and this function is autovectorized for u8's.
(self as i32).wrapping_sub(other as i32).abs() as Self
} else {
if self < other {
other - self
} else {
self - other
}
}
}
/// Calculates the multiplication of `self` and `rhs`.
///
/// Returns a tuple of the multiplication along with a boolean
/// indicating whether an arithmetic overflow would occur. If an
/// overflow would have occurred then the wrapped value is returned.
///
/// # Examples
///
/// Basic usage:
///
/// Please note that this example is shared between integer types.
/// Which explains why `u32` is used here.
///
/// ```
/// assert_eq!(5u32.overflowing_mul(2), (10, false));
/// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
(a as Self, b)
}
/// Calculates the divisor when `self` is divided by `rhs`.
///
/// Returns a tuple of the divisor along with a boolean indicating
/// whether an arithmetic overflow would occur. Note that for unsigned
/// integers overflow never occurs, so the second value is always
/// `false`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
/// ```
#[inline(always)]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
(self / rhs, false)
}
/// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
///
/// Returns a tuple of the divisor along with a boolean indicating
/// whether an arithmetic overflow would occur. Note that for unsigned
/// integers overflow never occurs, so the second value is always
/// `false`.
/// Since, for the positive integers, all common
/// definitions of division are equal, this
/// is exactly equal to `self.overflowing_div(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
/// ```
#[inline(always)]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
(self / rhs, false)
}
/// Calculates the remainder when `self` is divided by `rhs`.
///
/// Returns a tuple of the remainder after dividing along with a boolean
/// indicating whether an arithmetic overflow would occur. Note that for
/// unsigned integers overflow never occurs, so the second value is
/// always `false`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
/// ```
#[inline(always)]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
(self % rhs, false)
}
/// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
///
/// Returns a tuple of the modulo after dividing along with a boolean
/// indicating whether an arithmetic overflow would occur. Note that for
/// unsigned integers overflow never occurs, so the second value is
/// always `false`.
/// Since, for the positive integers, all common
/// definitions of division are equal, this operation
/// is exactly equal to `self.overflowing_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
/// ```
#[inline(always)]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
(self % rhs, false)
}
/// Negates self in an overflowing fashion.
///
/// Returns `!self + 1` using wrapping operations to return the value
/// that represents the negation of this unsigned value. Note that for
/// positive unsigned values overflow always occurs, but negating 0 does
/// not overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
/// ```
#[inline(always)]
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn overflowing_neg(self) -> (Self, bool) {
((!self).wrapping_add(1), self != 0)
}
/// Shifts self left by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean
/// indicating whether the shift value was larger than or equal to the
/// number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then
/// used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
#[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shl(rhs), rhs >= Self::BITS)
}
/// Shifts self right by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean
/// indicating whether the shift value was larger than or equal to the
/// number of bits. If the shift value is too large, then value is
/// masked (N-1) where N is the number of bits, and this value is then
/// used to perform the shift.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
#[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
/// ```
#[stable(feature = "wrapping", since = "1.7.0")]
#[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
(self.wrapping_shr(rhs), rhs >= Self::BITS)
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// Returns a tuple of the exponentiation along with a bool indicating
/// whether an overflow happened.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
/// assert_eq!(3u8.overflowing_pow(6), (217, true));
/// ```
#[stable(feature = "no_panic_pow", since = "1.34.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
if exp == 0{
return (1,false);
}
let mut base = self;
let mut acc: Self = 1;
let mut overflown = false;
// Scratch space for storing results of overflowing_mul.
let mut r;
loop {
if (exp & 1) == 1 {
r = acc.overflowing_mul(base);
// since exp!=0, finally the exp must be 1.
if exp == 1 {
r.1 |= overflown;
return r;
}
acc = r.0;
overflown |= r.1;
}
exp /= 2;
r = base.overflowing_mul(base);
base = r.0;
overflown |= r.1;
}
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn pow(self, mut exp: u32) -> Self {
if exp == 0 {
return 1;
}
let mut base = self;
let mut acc = 1;
if intrinsics::is_val_statically_known(exp) {
while exp > 1 {
if (exp & 1) == 1 {
acc = acc * base;
}
exp /= 2;
base = base * base;
}
// since exp!=0, finally the exp must be 1.
// Deal with the final bit of the exponent separately, since
// squaring the base afterwards is not necessary and may cause a
// needless overflow.
acc * base
} else {
// This is faster than the above when the exponent is not known
// at compile time. We can't use the same code for the constant
// exponent case because LLVM is currently unable to unroll
// this loop.
loop {
if (exp & 1) == 1 {
acc = acc * base;
// since exp!=0, finally the exp must be 1.
if exp == 1 {
return acc;
}
}
exp /= 2;
base = base * base;
}
}
}
/// Returns the square root of the number, rounded down.
///
/// # Examples
///
/// Basic usage:
/// ```
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[stable(feature = "isqrt", since = "1.84.0")]
#[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
// Inform the optimizer what the range of outputs is. If testing
// `core` crashes with no panic message and a `num::int_sqrt::u*`
// test failed, it's because your edits caused these assertions or
// the assertions in `fn isqrt` of `nonzero.rs` to become false.
//
// SAFETY: Integer square root is a monotonically nondecreasing
// function, which means that increasing the input will never
// cause the output to decrease. Thus, since the input for unsigned
// integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
// bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
unsafe {
const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
crate::hint::assert_unchecked(result <= MAX_RESULT);
}
result
}
/// Performs Euclidean division.
///
/// Since, for the positive integers, all common
/// definitions of division are equal, this
/// is exactly equal to `self / rhs`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
/// ```
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn div_euclid(self, rhs: Self) -> Self {
self / rhs
}
/// Calculates the least remainder of `self (mod rhs)`.
///
/// Since, for the positive integers, all common
/// definitions of division are equal, this
/// is exactly equal to `self % rhs`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
/// ```
#[doc(alias = "modulo", alias = "mod")]
#[stable(feature = "euclidean_division", since = "1.38.0")]
#[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn rem_euclid(self, rhs: Self) -> Self {
self % rhs
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
///
/// This is the same as performing `self / rhs` for all unsigned integers.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(int_roundings)]
#[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
/// ```
#[unstable(feature = "int_roundings", issue = "88581")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
#[track_caller]
pub const fn div_floor(self, rhs: Self) -> Self {
self / rhs
}
/// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
/// ```
#[stable(feature = "int_roundings1", since = "1.73.0")]
#[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn div_ceil(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if r > 0 {
d + 1
} else {
d
}
}
/// Calculates the smallest value greater than or equal to `self` that
/// is a multiple of `rhs`.
///
/// # Panics
///
/// This function will panic if `rhs` is zero.
///
/// ## Overflow behavior
///
/// On overflow, this function will panic if overflow checks are enabled (default in debug
/// mode) and wrap if overflow checks are disabled (default in release mode).
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
/// ```
#[stable(feature = "int_roundings1", since = "1.73.0")]
#[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn next_multiple_of(self, rhs: Self) -> Self {
match self % rhs {
0 => self,
r => self + (rhs - r)
}
}
/// Calculates the smallest value greater than or equal to `self` that
/// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
/// operation would result in overflow.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
#[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
#[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
/// ```
#[stable(feature = "int_roundings1", since = "1.73.0")]
#[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
match try_opt!(self.checked_rem(rhs)) {
0 => Some(self),
// rhs - r cannot overflow because r is smaller than rhs
r => self.checked_add(rhs - r)
}
}
/// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
///
/// This function is equivalent to `self % rhs == 0`, except that it will not panic
/// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
/// `n.is_multiple_of(0) == false`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(unsigned_is_multiple_of)]
#[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
#[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
///
#[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
#[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
/// ```
#[unstable(feature = "unsigned_is_multiple_of", issue = "128101")]
#[must_use]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn is_multiple_of(self, rhs: Self) -> bool {
match rhs {
0 => self == 0,
_ => self % rhs == 0,
}
}
/// Returns `true` if and only if `self == 2^k` for some `k`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
#[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
#[inline(always)]
pub const fn is_power_of_two(self) -> bool {
self.count_ones() == 1
}
// Returns one less than next power of two.
// (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
//
// 8u8.one_less_than_next_power_of_two() == 7
// 6u8.one_less_than_next_power_of_two() == 7
//
// This method cannot overflow, as in the `next_power_of_two`
// overflow cases it instead ends up returning the maximum value
// of the type, and can return 0 for 0.
#[inline]
const fn one_less_than_next_power_of_two(self) -> Self {
if self <= 1 { return 0; }
let p = self - 1;
// SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
// That means the shift is always in-bounds, and some processors
// (such as intel pre-haswell) have more efficient ctlz
// intrinsics when the argument is non-zero.
let z = unsafe { intrinsics::ctlz_nonzero(p) };
<$SelfT>::MAX >> z
}
/// Returns the smallest power of two greater than or equal to `self`.
///
/// When return value overflows (i.e., `self > (1 << (N-1))` for type
/// `uN`), it panics in debug mode and the return value is wrapped to 0 in
/// release mode (the only situation in which this method can return 0).
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[rustc_inherit_overflow_checks]
pub const fn next_power_of_two(self) -> Self {
self.one_less_than_next_power_of_two() + 1
}
/// Returns the smallest power of two greater than or equal to `self`. If
/// the next power of two is greater than the type's maximum value,
/// `None` is returned, otherwise the power of two is wrapped in `Some`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn checked_next_power_of_two(self) -> Option<Self> {
self.one_less_than_next_power_of_two().checked_add(1)
}
/// Returns the smallest power of two greater than or equal to `n`. If
/// the next power of two is greater than the type's maximum value,
/// the return value is wrapped to `0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(wrapping_next_power_of_two)]
///
#[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
#[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
#[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
/// ```
#[inline]
#[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
reason = "needs decision on wrapping behavior")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub const fn wrapping_next_power_of_two(self) -> Self {
self.one_less_than_next_power_of_two().wrapping_add(1)
}
/// Returns the memory representation of this integer as a byte array in
/// big-endian (network) byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_be_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_be().to_ne_bytes()
}
/// Returns the memory representation of this integer as a byte array in
/// little-endian byte order.
///
#[doc = $to_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
#[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_le_bytes(self) -> [u8; mem::size_of::<Self>()] {
self.to_le().to_ne_bytes()
}
/// Returns the memory representation of this integer as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code
/// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
/// instead.
///
#[doc = $to_xe_bytes_doc]
///
/// [`to_be_bytes`]: Self::to_be_bytes
/// [`to_le_bytes`]: Self::to_le_bytes
///
/// # Examples
///
/// ```
#[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
/// assert_eq!(
/// bytes,
/// if cfg!(target_endian = "big") {
#[doc = concat!(" ", $be_bytes)]
/// } else {
#[doc = concat!(" ", $le_bytes)]
/// }
/// );
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute them to arrays of bytes
#[inline]
pub const fn to_ne_bytes(self) -> [u8; mem::size_of::<Self>()] {
// SAFETY: integers are plain old datatypes so we can always transmute them to
// arrays of bytes
unsafe { mem::transmute(self) }
}
/// Creates a native endian integer value from its representation
/// as a byte array in big endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_be_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_be(Self::from_ne_bytes(bytes))
}
/// Creates a native endian integer value from its representation
/// as a byte array in little endian.
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
#[inline]
pub const fn from_le_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
Self::from_le(Self::from_ne_bytes(bytes))
}
/// Creates a native endian integer value from its memory representation
/// as a byte array in native endianness.
///
/// As the target platform's native endianness is used, portable code
/// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
/// appropriate instead.
///
/// [`from_be_bytes`]: Self::from_be_bytes
/// [`from_le_bytes`]: Self::from_le_bytes
///
#[doc = $from_xe_bytes_doc]
///
/// # Examples
///
/// ```
#[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
#[doc = concat!(" ", $be_bytes, "")]
/// } else {
#[doc = concat!(" ", $le_bytes, "")]
/// });
#[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
/// ```
///
/// When starting from a slice rather than an array, fallible conversion APIs can be used:
///
/// ```
#[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
#[doc = concat!(" let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
/// *input = rest;
#[doc = concat!(" ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
/// }
/// ```
#[stable(feature = "int_to_from_bytes", since = "1.32.0")]
#[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
#[must_use]
// SAFETY: const sound because integers are plain old datatypes so we can always
// transmute to them
#[inline]
pub const fn from_ne_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
// SAFETY: integers are plain old datatypes so we can always transmute to them
unsafe { mem::transmute(bytes) }
}
/// Calculates the complete product `self * rhs` without the possibility to overflow.
///
/// This returns the low-order (wrapping) bits and the high-order (overflow) bits
/// of the result as two separate values, in that order.
///
/// If you also need to add a carry to the wide result, then you want
/// [`Self::carrying_mul`] instead.
///
/// # Examples
///
/// Basic usage:
///
/// Please note that this example is shared between integer types.
/// Which explains why `u32` is used here.
///
/// ```
/// #![feature(bigint_helper_methods)]
/// assert_eq!(5u32.widening_mul(2), (10, 0));
/// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
Self::carrying_mul(self, rhs, 0)
}
/// Calculates the "full multiplication" `self * rhs + carry`
/// without the possibility to overflow.
///
/// This returns the low-order (wrapping) bits and the high-order (overflow) bits
/// of the result as two separate values, in that order.
///
/// Performs "long multiplication" which takes in an extra amount to add, and may return an
/// additional amount of overflow. This allows for chaining together multiple
/// multiplications to create "big integers" which represent larger values.
///
/// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
///
/// # Examples
///
/// Basic usage:
///
/// Please note that this example is shared between integer types.
/// Which explains why `u32` is used here.
///
/// ```
/// #![feature(bigint_helper_methods)]
/// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
/// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
/// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
/// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
#[doc = concat!("assert_eq!(",
stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
"(0, ", stringify!($SelfT), "::MAX));"
)]
/// ```
///
/// This is the core operation needed for scalar multiplication when
/// implementing it for wider-than-native types.
///
/// ```
/// #![feature(bigint_helper_methods)]
/// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
/// let mut carry = 0;
/// for d in little_endian_digits.iter_mut() {
/// (*d, carry) = d.carrying_mul(multiplicand, carry);
/// }
/// if carry != 0 {
/// little_endian_digits.push(carry);
/// }
/// }
///
/// let mut v = vec![10, 20];
/// scalar_mul_eq(&mut v, 3);
/// assert_eq!(v, [30, 60]);
///
/// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
/// let mut v = vec![0x4321, 0x8765];
/// scalar_mul_eq(&mut v, 0xFEED);
/// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
/// ```
///
/// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
/// except that it gives the value of the overflow instead of just whether one happened:
///
/// ```
/// #![feature(bigint_helper_methods)]
/// let r = u8::carrying_mul(7, 13, 0);
/// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
/// let r = u8::carrying_mul(13, 42, 0);
/// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
/// ```
///
/// The value of the first field in the returned tuple matches what you'd get
/// by combining the [`wrapping_mul`](Self::wrapping_mul) and
/// [`wrapping_add`](Self::wrapping_add) methods:
///
/// ```
/// #![feature(bigint_helper_methods)]
/// assert_eq!(
/// 789_u16.carrying_mul(456, 123).0,
/// 789_u16.wrapping_mul(456).wrapping_add(123),
/// );
/// ```
#[unstable(feature = "bigint_helper_methods", issue = "85532")]
#[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
intrinsics::carrying_mul_add(self, rhs, 0, carry)
}
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
///
/// Returns the smallest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_promotable]
#[inline(always)]
#[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
#[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
pub const fn min_value() -> Self { Self::MIN }
/// New code should prefer to use
#[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
///
/// Returns the largest value that can be represented by this integer type.
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_promotable]
#[inline(always)]
#[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
#[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
pub const fn max_value() -> Self { Self::MAX }
}
}