
Consistently use 'supertrait'. A subset of places referred to 'super-trait', so this changes them to all use 'supertrait'. This matches 'supertype' and some other usages. An exception is 'auto-trait' which is consistently used in that manner.
2104 lines
78 KiB
Rust
2104 lines
78 KiB
Rust
//! Defines how the compiler represents types internally.
|
|
//!
|
|
//! Two important entities in this module are:
|
|
//!
|
|
//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
|
|
//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
|
|
//!
|
|
//! For more information, see ["The `ty` module: representing types"] in the ructc-dev-guide.
|
|
//!
|
|
//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
|
|
|
|
pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor};
|
|
pub use self::AssocItemContainer::*;
|
|
pub use self::BorrowKind::*;
|
|
pub use self::IntVarValue::*;
|
|
pub use self::Variance::*;
|
|
pub use adt::*;
|
|
pub use assoc::*;
|
|
pub use generics::*;
|
|
pub use vtable::*;
|
|
|
|
use crate::hir::exports::ExportMap;
|
|
use crate::ich::StableHashingContext;
|
|
use crate::middle::cstore::CrateStoreDyn;
|
|
use crate::mir::{Body, GeneratorLayout};
|
|
use crate::traits::{self, Reveal};
|
|
use crate::ty;
|
|
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
|
|
use crate::ty::util::Discr;
|
|
use rustc_ast as ast;
|
|
use rustc_attr as attr;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
|
|
use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
|
|
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalDefIdMap, CRATE_DEF_INDEX};
|
|
use rustc_hir::Node;
|
|
use rustc_macros::HashStable;
|
|
use rustc_span::symbol::{kw, Ident, Symbol};
|
|
use rustc_span::Span;
|
|
use rustc_target::abi::Align;
|
|
|
|
use std::cmp::Ordering;
|
|
use std::collections::BTreeMap;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::ops::ControlFlow;
|
|
use std::{fmt, ptr, str};
|
|
|
|
pub use crate::ty::diagnostics::*;
|
|
pub use rustc_type_ir::InferTy::*;
|
|
pub use rustc_type_ir::*;
|
|
|
|
pub use self::binding::BindingMode;
|
|
pub use self::binding::BindingMode::*;
|
|
pub use self::closure::{
|
|
is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo,
|
|
CapturedPlace, ClosureKind, MinCaptureInformationMap, MinCaptureList,
|
|
RootVariableMinCaptureList, UpvarBorrow, UpvarCapture, UpvarCaptureMap, UpvarId, UpvarListMap,
|
|
UpvarPath, CAPTURE_STRUCT_LOCAL,
|
|
};
|
|
pub use self::consts::{Const, ConstInt, ConstKind, InferConst, ScalarInt, Unevaluated, ValTree};
|
|
pub use self::context::{
|
|
tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
|
|
CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorInteriorTypeCause, GlobalCtxt,
|
|
Lift, OnDiskCache, TyCtxt, TypeckResults, UserType, UserTypeAnnotationIndex,
|
|
};
|
|
pub use self::instance::{Instance, InstanceDef};
|
|
pub use self::list::List;
|
|
pub use self::sty::BoundRegionKind::*;
|
|
pub use self::sty::RegionKind::*;
|
|
pub use self::sty::TyKind::*;
|
|
pub use self::sty::{
|
|
Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, BoundVariableKind,
|
|
CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, EarlyBoundRegion,
|
|
ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, FreeRegion, GenSig,
|
|
GeneratorSubsts, GeneratorSubstsParts, ParamConst, ParamTy, PolyExistentialProjection,
|
|
PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, ProjectionTy, Region, RegionKind,
|
|
RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts, VarianceDiagInfo, VarianceDiagMutKind,
|
|
};
|
|
pub use self::trait_def::TraitDef;
|
|
|
|
pub mod _match;
|
|
pub mod adjustment;
|
|
pub mod binding;
|
|
pub mod cast;
|
|
pub mod codec;
|
|
pub mod error;
|
|
pub mod fast_reject;
|
|
pub mod flags;
|
|
pub mod fold;
|
|
pub mod inhabitedness;
|
|
pub mod layout;
|
|
pub mod normalize_erasing_regions;
|
|
pub mod outlives;
|
|
pub mod print;
|
|
pub mod query;
|
|
pub mod relate;
|
|
pub mod subst;
|
|
pub mod trait_def;
|
|
pub mod util;
|
|
pub mod vtable;
|
|
pub mod walk;
|
|
|
|
mod adt;
|
|
mod assoc;
|
|
mod closure;
|
|
mod consts;
|
|
mod context;
|
|
mod diagnostics;
|
|
mod erase_regions;
|
|
mod generics;
|
|
mod instance;
|
|
mod list;
|
|
mod structural_impls;
|
|
mod sty;
|
|
|
|
// Data types
|
|
|
|
#[derive(Debug)]
|
|
pub struct ResolverOutputs {
|
|
pub definitions: rustc_hir::definitions::Definitions,
|
|
pub cstore: Box<CrateStoreDyn>,
|
|
pub visibilities: FxHashMap<LocalDefId, Visibility>,
|
|
pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
|
|
pub maybe_unused_trait_imports: FxHashSet<LocalDefId>,
|
|
pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
|
|
pub export_map: ExportMap,
|
|
pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
|
|
/// Extern prelude entries. The value is `true` if the entry was introduced
|
|
/// via `extern crate` item and not `--extern` option or compiler built-in.
|
|
pub extern_prelude: FxHashMap<Symbol, bool>,
|
|
pub main_def: Option<MainDefinition>,
|
|
pub trait_impls: BTreeMap<DefId, Vec<LocalDefId>>,
|
|
/// A list of proc macro LocalDefIds, written out in the order in which
|
|
/// they are declared in the static array generated by proc_macro_harness.
|
|
pub proc_macros: Vec<LocalDefId>,
|
|
/// Mapping from ident span to path span for paths that don't exist as written, but that
|
|
/// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
|
|
pub confused_type_with_std_module: FxHashMap<Span, Span>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct MainDefinition {
|
|
pub res: Res<ast::NodeId>,
|
|
pub is_import: bool,
|
|
pub span: Span,
|
|
}
|
|
|
|
impl MainDefinition {
|
|
pub fn opt_fn_def_id(self) -> Option<DefId> {
|
|
if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
|
|
}
|
|
}
|
|
|
|
/// The "header" of an impl is everything outside the body: a Self type, a trait
|
|
/// ref (in the case of a trait impl), and a set of predicates (from the
|
|
/// bounds / where-clauses).
|
|
#[derive(Clone, Debug, TypeFoldable)]
|
|
pub struct ImplHeader<'tcx> {
|
|
pub impl_def_id: DefId,
|
|
pub self_ty: Ty<'tcx>,
|
|
pub trait_ref: Option<TraitRef<'tcx>>,
|
|
pub predicates: Vec<Predicate<'tcx>>,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, TyEncodable, TyDecodable, HashStable, Debug)]
|
|
pub enum ImplPolarity {
|
|
/// `impl Trait for Type`
|
|
Positive,
|
|
/// `impl !Trait for Type`
|
|
Negative,
|
|
/// `#[rustc_reservation_impl] impl Trait for Type`
|
|
///
|
|
/// This is a "stability hack", not a real Rust feature.
|
|
/// See #64631 for details.
|
|
Reservation,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
|
|
pub enum Visibility {
|
|
/// Visible everywhere (including in other crates).
|
|
Public,
|
|
/// Visible only in the given crate-local module.
|
|
Restricted(DefId),
|
|
/// Not visible anywhere in the local crate. This is the visibility of private external items.
|
|
Invisible,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
|
|
pub enum BoundConstness {
|
|
/// `T: Trait`
|
|
NotConst,
|
|
/// `T: ~const Trait`
|
|
///
|
|
/// Requires resolving to const only when we are in a const context.
|
|
ConstIfConst,
|
|
}
|
|
|
|
impl fmt::Display for BoundConstness {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::NotConst => f.write_str("normal"),
|
|
Self::ConstIfConst => f.write_str("`~const`"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(
|
|
Clone,
|
|
Debug,
|
|
PartialEq,
|
|
Eq,
|
|
Copy,
|
|
Hash,
|
|
TyEncodable,
|
|
TyDecodable,
|
|
HashStable,
|
|
TypeFoldable
|
|
)]
|
|
pub struct ClosureSizeProfileData<'tcx> {
|
|
/// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
|
|
pub before_feature_tys: Ty<'tcx>,
|
|
/// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
|
|
pub after_feature_tys: Ty<'tcx>,
|
|
}
|
|
|
|
pub trait DefIdTree: Copy {
|
|
fn parent(self, id: DefId) -> Option<DefId>;
|
|
|
|
fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
|
|
if descendant.krate != ancestor.krate {
|
|
return false;
|
|
}
|
|
|
|
while descendant != ancestor {
|
|
match self.parent(descendant) {
|
|
Some(parent) => descendant = parent,
|
|
None => return false,
|
|
}
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<'tcx> DefIdTree for TyCtxt<'tcx> {
|
|
fn parent(self, id: DefId) -> Option<DefId> {
|
|
self.def_key(id).parent.map(|index| DefId { index, ..id })
|
|
}
|
|
}
|
|
|
|
impl Visibility {
|
|
pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
|
|
match visibility.node {
|
|
hir::VisibilityKind::Public => Visibility::Public,
|
|
hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
|
|
hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
|
|
// If there is no resolution, `resolve` will have already reported an error, so
|
|
// assume that the visibility is public to avoid reporting more privacy errors.
|
|
Res::Err => Visibility::Public,
|
|
def => Visibility::Restricted(def.def_id()),
|
|
},
|
|
hir::VisibilityKind::Inherited => {
|
|
Visibility::Restricted(tcx.parent_module(id).to_def_id())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if an item with this visibility is accessible from the given block.
|
|
pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
|
|
let restriction = match self {
|
|
// Public items are visible everywhere.
|
|
Visibility::Public => return true,
|
|
// Private items from other crates are visible nowhere.
|
|
Visibility::Invisible => return false,
|
|
// Restricted items are visible in an arbitrary local module.
|
|
Visibility::Restricted(other) if other.krate != module.krate => return false,
|
|
Visibility::Restricted(module) => module,
|
|
};
|
|
|
|
tree.is_descendant_of(module, restriction)
|
|
}
|
|
|
|
/// Returns `true` if this visibility is at least as accessible as the given visibility
|
|
pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
|
|
let vis_restriction = match vis {
|
|
Visibility::Public => return self == Visibility::Public,
|
|
Visibility::Invisible => return true,
|
|
Visibility::Restricted(module) => module,
|
|
};
|
|
|
|
self.is_accessible_from(vis_restriction, tree)
|
|
}
|
|
|
|
// Returns `true` if this item is visible anywhere in the local crate.
|
|
pub fn is_visible_locally(self) -> bool {
|
|
match self {
|
|
Visibility::Public => true,
|
|
Visibility::Restricted(def_id) => def_id.is_local(),
|
|
Visibility::Invisible => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The crate variances map is computed during typeck and contains the
|
|
/// variance of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.variances_of()` to get the variance for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CrateVariancesMap<'tcx> {
|
|
/// For each item with generics, maps to a vector of the variance
|
|
/// of its generics. If an item has no generics, it will have no
|
|
/// entry.
|
|
pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
|
|
}
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub struct CReaderCacheKey {
|
|
pub cnum: Option<CrateNum>,
|
|
pub pos: usize,
|
|
}
|
|
|
|
#[allow(rustc::usage_of_ty_tykind)]
|
|
pub struct TyS<'tcx> {
|
|
/// This field shouldn't be used directly and may be removed in the future.
|
|
/// Use `TyS::kind()` instead.
|
|
kind: TyKind<'tcx>,
|
|
/// This field shouldn't be used directly and may be removed in the future.
|
|
/// Use `TyS::flags()` instead.
|
|
flags: TypeFlags,
|
|
|
|
/// This is a kind of confusing thing: it stores the smallest
|
|
/// binder such that
|
|
///
|
|
/// (a) the binder itself captures nothing but
|
|
/// (b) all the late-bound things within the type are captured
|
|
/// by some sub-binder.
|
|
///
|
|
/// So, for a type without any late-bound things, like `u32`, this
|
|
/// will be *innermost*, because that is the innermost binder that
|
|
/// captures nothing. But for a type `&'D u32`, where `'D` is a
|
|
/// late-bound region with De Bruijn index `D`, this would be `D + 1`
|
|
/// -- the binder itself does not capture `D`, but `D` is captured
|
|
/// by an inner binder.
|
|
///
|
|
/// We call this concept an "exclusive" binder `D` because all
|
|
/// De Bruijn indices within the type are contained within `0..D`
|
|
/// (exclusive).
|
|
outer_exclusive_binder: ty::DebruijnIndex,
|
|
}
|
|
|
|
impl<'tcx> TyS<'tcx> {
|
|
/// A constructor used only for internal testing.
|
|
#[allow(rustc::usage_of_ty_tykind)]
|
|
pub fn make_for_test(
|
|
kind: TyKind<'tcx>,
|
|
flags: TypeFlags,
|
|
outer_exclusive_binder: ty::DebruijnIndex,
|
|
) -> TyS<'tcx> {
|
|
TyS { kind, flags, outer_exclusive_binder }
|
|
}
|
|
}
|
|
|
|
// `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
|
|
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
|
|
static_assert_size!(TyS<'_>, 40);
|
|
|
|
impl<'tcx> Ord for TyS<'tcx> {
|
|
fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
|
|
self.kind().cmp(other.kind())
|
|
}
|
|
}
|
|
|
|
impl<'tcx> PartialOrd for TyS<'tcx> {
|
|
fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
|
|
Some(self.kind().cmp(other.kind()))
|
|
}
|
|
}
|
|
|
|
impl<'tcx> PartialEq for TyS<'tcx> {
|
|
#[inline]
|
|
fn eq(&self, other: &TyS<'tcx>) -> bool {
|
|
ptr::eq(self, other)
|
|
}
|
|
}
|
|
impl<'tcx> Eq for TyS<'tcx> {}
|
|
|
|
impl<'tcx> Hash for TyS<'tcx> {
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
(self as *const TyS<'_>).hash(s)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
let ty::TyS {
|
|
ref kind,
|
|
|
|
// The other fields just provide fast access to information that is
|
|
// also contained in `kind`, so no need to hash them.
|
|
flags: _,
|
|
|
|
outer_exclusive_binder: _,
|
|
} = *self;
|
|
|
|
kind.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
#[rustc_diagnostic_item = "Ty"]
|
|
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
|
|
|
|
impl ty::EarlyBoundRegion {
|
|
/// Does this early bound region have a name? Early bound regions normally
|
|
/// always have names except when using anonymous lifetimes (`'_`).
|
|
pub fn has_name(&self) -> bool {
|
|
self.name != kw::UnderscoreLifetime
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
crate struct PredicateInner<'tcx> {
|
|
kind: Binder<'tcx, PredicateKind<'tcx>>,
|
|
flags: TypeFlags,
|
|
/// See the comment for the corresponding field of [TyS].
|
|
outer_exclusive_binder: ty::DebruijnIndex,
|
|
}
|
|
|
|
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
|
|
static_assert_size!(PredicateInner<'_>, 48);
|
|
|
|
#[derive(Clone, Copy, Lift)]
|
|
pub struct Predicate<'tcx> {
|
|
inner: &'tcx PredicateInner<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> PartialEq for Predicate<'tcx> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// `self.kind` is always interned.
|
|
ptr::eq(self.inner, other.inner)
|
|
}
|
|
}
|
|
|
|
impl Hash for Predicate<'_> {
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
(self.inner as *const PredicateInner<'_>).hash(s)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Eq for Predicate<'tcx> {}
|
|
|
|
impl<'tcx> Predicate<'tcx> {
|
|
/// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`.
|
|
#[inline]
|
|
pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> {
|
|
self.inner.kind
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
let PredicateInner {
|
|
ref kind,
|
|
|
|
// The other fields just provide fast access to information that is
|
|
// also contained in `kind`, so no need to hash them.
|
|
flags: _,
|
|
outer_exclusive_binder: _,
|
|
} = self.inner;
|
|
|
|
kind.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub enum PredicateKind<'tcx> {
|
|
/// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
|
|
/// the `Self` type of the trait reference and `A`, `B`, and `C`
|
|
/// would be the type parameters.
|
|
Trait(TraitPredicate<'tcx>),
|
|
|
|
/// `where 'a: 'b`
|
|
RegionOutlives(RegionOutlivesPredicate<'tcx>),
|
|
|
|
/// `where T: 'a`
|
|
TypeOutlives(TypeOutlivesPredicate<'tcx>),
|
|
|
|
/// `where <T as TraitRef>::Name == X`, approximately.
|
|
/// See the `ProjectionPredicate` struct for details.
|
|
Projection(ProjectionPredicate<'tcx>),
|
|
|
|
/// No syntax: `T` well-formed.
|
|
WellFormed(GenericArg<'tcx>),
|
|
|
|
/// Trait must be object-safe.
|
|
ObjectSafe(DefId),
|
|
|
|
/// No direct syntax. May be thought of as `where T: FnFoo<...>`
|
|
/// for some substitutions `...` and `T` being a closure type.
|
|
/// Satisfied (or refuted) once we know the closure's kind.
|
|
ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),
|
|
|
|
/// `T1 <: T2`
|
|
///
|
|
/// This obligation is created most often when we have two
|
|
/// unresolved type variables and hence don't have enough
|
|
/// information to process the subtyping obligation yet.
|
|
Subtype(SubtypePredicate<'tcx>),
|
|
|
|
/// `T1` coerced to `T2`
|
|
///
|
|
/// Like a subtyping obligation, this is created most often
|
|
/// when we have two unresolved type variables and hence
|
|
/// don't have enough information to process the coercion
|
|
/// obligation yet. At the moment, we actually process coercions
|
|
/// very much like subtyping and don't handle the full coercion
|
|
/// logic.
|
|
Coerce(CoercePredicate<'tcx>),
|
|
|
|
/// Constant initializer must evaluate successfully.
|
|
ConstEvaluatable(ty::Unevaluated<'tcx, ()>),
|
|
|
|
/// Constants must be equal. The first component is the const that is expected.
|
|
ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>),
|
|
|
|
/// Represents a type found in the environment that we can use for implied bounds.
|
|
///
|
|
/// Only used for Chalk.
|
|
TypeWellFormedFromEnv(Ty<'tcx>),
|
|
}
|
|
|
|
/// The crate outlives map is computed during typeck and contains the
|
|
/// outlives of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CratePredicatesMap<'tcx> {
|
|
/// For each struct with outlive bounds, maps to a vector of the
|
|
/// predicate of its outlive bounds. If an item has no outlives
|
|
/// bounds, it will have no entry.
|
|
pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
|
|
}
|
|
|
|
impl<'tcx> Predicate<'tcx> {
|
|
/// Performs a substitution suitable for going from a
|
|
/// poly-trait-ref to supertraits that must hold if that
|
|
/// poly-trait-ref holds. This is slightly different from a normal
|
|
/// substitution in terms of what happens with bound regions. See
|
|
/// lengthy comment below for details.
|
|
pub fn subst_supertrait(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_ref: &ty::PolyTraitRef<'tcx>,
|
|
) -> Predicate<'tcx> {
|
|
// The interaction between HRTB and supertraits is not entirely
|
|
// obvious. Let me walk you (and myself) through an example.
|
|
//
|
|
// Let's start with an easy case. Consider two traits:
|
|
//
|
|
// trait Foo<'a>: Bar<'a,'a> { }
|
|
// trait Bar<'b,'c> { }
|
|
//
|
|
// Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
|
|
// we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
|
|
// knew that `Foo<'x>` (for any 'x) then we also know that
|
|
// `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
|
|
// normal substitution.
|
|
//
|
|
// In terms of why this is sound, the idea is that whenever there
|
|
// is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
|
|
// holds. So if there is an impl of `T:Foo<'a>` that applies to
|
|
// all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
|
|
// `'a`.
|
|
//
|
|
// Another example to be careful of is this:
|
|
//
|
|
// trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
|
|
// trait Bar1<'b,'c> { }
|
|
//
|
|
// Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
|
|
// The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
|
|
// reason is similar to the previous example: any impl of
|
|
// `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
|
|
// basically we would want to collapse the bound lifetimes from
|
|
// the input (`trait_ref`) and the supertraits.
|
|
//
|
|
// To achieve this in practice is fairly straightforward. Let's
|
|
// consider the more complicated scenario:
|
|
//
|
|
// - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
|
|
// has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
|
|
// where both `'x` and `'b` would have a DB index of 1.
|
|
// The substitution from the input trait-ref is therefore going to be
|
|
// `'a => 'x` (where `'x` has a DB index of 1).
|
|
// - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
|
|
// early-bound parameter and `'b' is a late-bound parameter with a
|
|
// DB index of 1.
|
|
// - If we replace `'a` with `'x` from the input, it too will have
|
|
// a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
|
|
// just as we wanted.
|
|
//
|
|
// There is only one catch. If we just apply the substitution `'a
|
|
// => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
|
|
// adjust the DB index because we substituting into a binder (it
|
|
// tries to be so smart...) resulting in `for<'x> for<'b>
|
|
// Bar1<'x,'b>` (we have no syntax for this, so use your
|
|
// imagination). Basically the 'x will have DB index of 2 and 'b
|
|
// will have DB index of 1. Not quite what we want. So we apply
|
|
// the substitution to the *contents* of the trait reference,
|
|
// rather than the trait reference itself (put another way, the
|
|
// substitution code expects equal binding levels in the values
|
|
// from the substitution and the value being substituted into, and
|
|
// this trick achieves that).
|
|
|
|
// Working through the second example:
|
|
// trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0]
|
|
// predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0]
|
|
// We want to end up with:
|
|
// for<'x, 'b> T: Bar1<'^0.0, '^0.1>
|
|
// To do this:
|
|
// 1) We must shift all bound vars in predicate by the length
|
|
// of trait ref's bound vars. So, we would end up with predicate like
|
|
// Self: Bar1<'a, '^0.1>
|
|
// 2) We can then apply the trait substs to this, ending up with
|
|
// T: Bar1<'^0.0, '^0.1>
|
|
// 3) Finally, to create the final bound vars, we concatenate the bound
|
|
// vars of the trait ref with those of the predicate:
|
|
// ['x, 'b]
|
|
let bound_pred = self.kind();
|
|
let pred_bound_vars = bound_pred.bound_vars();
|
|
let trait_bound_vars = trait_ref.bound_vars();
|
|
// 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
|
|
let shifted_pred =
|
|
tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
|
|
// 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
|
|
let new = shifted_pred.subst(tcx, trait_ref.skip_binder().substs);
|
|
// 3) ['x] + ['b] -> ['x, 'b]
|
|
let bound_vars =
|
|
tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars));
|
|
tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars))
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub struct TraitPredicate<'tcx> {
|
|
pub trait_ref: TraitRef<'tcx>,
|
|
|
|
pub constness: BoundConstness,
|
|
}
|
|
|
|
pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;
|
|
|
|
impl<'tcx> TraitPredicate<'tcx> {
|
|
pub fn def_id(self) -> DefId {
|
|
self.trait_ref.def_id
|
|
}
|
|
|
|
pub fn self_ty(self) -> Ty<'tcx> {
|
|
self.trait_ref.self_ty()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> PolyTraitPredicate<'tcx> {
|
|
pub fn def_id(self) -> DefId {
|
|
// Ok to skip binder since trait `DefId` does not care about regions.
|
|
self.skip_binder().def_id()
|
|
}
|
|
|
|
pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
|
|
self.map_bound(|trait_ref| trait_ref.self_ty())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
|
|
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
|
|
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
|
|
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
|
|
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;
|
|
|
|
/// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates
|
|
/// whether the `a` type is the type that we should label as "expected" when
|
|
/// presenting user diagnostics.
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub struct SubtypePredicate<'tcx> {
|
|
pub a_is_expected: bool,
|
|
pub a: Ty<'tcx>,
|
|
pub b: Ty<'tcx>,
|
|
}
|
|
pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;
|
|
|
|
/// Encodes that we have to coerce *from* the `a` type to the `b` type.
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub struct CoercePredicate<'tcx> {
|
|
pub a: Ty<'tcx>,
|
|
pub b: Ty<'tcx>,
|
|
}
|
|
pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;
|
|
|
|
/// This kind of predicate has no *direct* correspondent in the
|
|
/// syntax, but it roughly corresponds to the syntactic forms:
|
|
///
|
|
/// 1. `T: TraitRef<..., Item = Type>`
|
|
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
|
|
///
|
|
/// In particular, form #1 is "desugared" to the combination of a
|
|
/// normal trait predicate (`T: TraitRef<...>`) and one of these
|
|
/// predicates. Form #2 is a broader form in that it also permits
|
|
/// equality between arbitrary types. Processing an instance of
|
|
/// Form #2 eventually yields one of these `ProjectionPredicate`
|
|
/// instances to normalize the LHS.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
|
|
#[derive(HashStable, TypeFoldable)]
|
|
pub struct ProjectionPredicate<'tcx> {
|
|
pub projection_ty: ProjectionTy<'tcx>,
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;
|
|
|
|
impl<'tcx> PolyProjectionPredicate<'tcx> {
|
|
/// Returns the `DefId` of the trait of the associated item being projected.
|
|
#[inline]
|
|
pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
|
|
self.skip_binder().projection_ty.trait_def_id(tcx)
|
|
}
|
|
|
|
/// Get the [PolyTraitRef] required for this projection to be well formed.
|
|
/// Note that for generic associated types the predicates of the associated
|
|
/// type also need to be checked.
|
|
#[inline]
|
|
pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
|
|
// Note: unlike with `TraitRef::to_poly_trait_ref()`,
|
|
// `self.0.trait_ref` is permitted to have escaping regions.
|
|
// This is because here `self` has a `Binder` and so does our
|
|
// return value, so we are preserving the number of binding
|
|
// levels.
|
|
self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
|
|
}
|
|
|
|
pub fn ty(&self) -> Binder<'tcx, Ty<'tcx>> {
|
|
self.map_bound(|predicate| predicate.ty)
|
|
}
|
|
|
|
/// The `DefId` of the `TraitItem` for the associated type.
|
|
///
|
|
/// Note that this is not the `DefId` of the `TraitRef` containing this
|
|
/// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
|
|
pub fn projection_def_id(&self) -> DefId {
|
|
// Ok to skip binder since trait `DefId` does not care about regions.
|
|
self.skip_binder().projection_ty.item_def_id
|
|
}
|
|
}
|
|
|
|
pub trait ToPolyTraitRef<'tcx> {
|
|
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
|
|
}
|
|
|
|
impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
|
|
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
|
|
self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
|
|
}
|
|
}
|
|
|
|
pub trait ToPredicate<'tcx> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
|
|
}
|
|
|
|
impl ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
|
|
#[inline(always)]
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
tcx.mk_predicate(self)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
self.value
|
|
.map_bound(|trait_ref| {
|
|
PredicateKind::Trait(ty::TraitPredicate { trait_ref, constness: self.constness })
|
|
})
|
|
.to_predicate(tcx)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
self.map_bound(PredicateKind::Trait).to_predicate(tcx)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
|
|
fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
|
|
self.map_bound(PredicateKind::Projection).to_predicate(tcx)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Predicate<'tcx> {
|
|
pub fn to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>> {
|
|
let predicate = self.kind();
|
|
match predicate.skip_binder() {
|
|
PredicateKind::Trait(t) => {
|
|
Some(ConstnessAnd { constness: t.constness, value: predicate.rebind(t.trait_ref) })
|
|
}
|
|
PredicateKind::Projection(..)
|
|
| PredicateKind::Subtype(..)
|
|
| PredicateKind::Coerce(..)
|
|
| PredicateKind::RegionOutlives(..)
|
|
| PredicateKind::WellFormed(..)
|
|
| PredicateKind::ObjectSafe(..)
|
|
| PredicateKind::ClosureKind(..)
|
|
| PredicateKind::TypeOutlives(..)
|
|
| PredicateKind::ConstEvaluatable(..)
|
|
| PredicateKind::ConstEquate(..)
|
|
| PredicateKind::TypeWellFormedFromEnv(..) => None,
|
|
}
|
|
}
|
|
|
|
pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
|
|
let predicate = self.kind();
|
|
match predicate.skip_binder() {
|
|
PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)),
|
|
PredicateKind::Trait(..)
|
|
| PredicateKind::Projection(..)
|
|
| PredicateKind::Subtype(..)
|
|
| PredicateKind::Coerce(..)
|
|
| PredicateKind::RegionOutlives(..)
|
|
| PredicateKind::WellFormed(..)
|
|
| PredicateKind::ObjectSafe(..)
|
|
| PredicateKind::ClosureKind(..)
|
|
| PredicateKind::ConstEvaluatable(..)
|
|
| PredicateKind::ConstEquate(..)
|
|
| PredicateKind::TypeWellFormedFromEnv(..) => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Represents the bounds declared on a particular set of type
|
|
/// parameters. Should eventually be generalized into a flag list of
|
|
/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
|
|
/// `GenericPredicates` by using the `instantiate` method. Note that this method
|
|
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
|
|
/// the `GenericPredicates` are expressed in terms of the bound type
|
|
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
|
|
/// represented a set of bounds for some particular instantiation,
|
|
/// meaning that the generic parameters have been substituted with
|
|
/// their values.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// struct Foo<T, U: Bar<T>> { ... }
|
|
///
|
|
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
|
|
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
|
|
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
|
|
/// [usize:Bar<isize>]]`.
|
|
#[derive(Clone, Debug, TypeFoldable)]
|
|
pub struct InstantiatedPredicates<'tcx> {
|
|
pub predicates: Vec<Predicate<'tcx>>,
|
|
pub spans: Vec<Span>,
|
|
}
|
|
|
|
impl<'tcx> InstantiatedPredicates<'tcx> {
|
|
pub fn empty() -> InstantiatedPredicates<'tcx> {
|
|
InstantiatedPredicates { predicates: vec![], spans: vec![] }
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.predicates.is_empty()
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable, TypeFoldable)]
|
|
pub struct OpaqueTypeKey<'tcx> {
|
|
pub def_id: DefId,
|
|
pub substs: SubstsRef<'tcx>,
|
|
}
|
|
|
|
rustc_index::newtype_index! {
|
|
/// "Universes" are used during type- and trait-checking in the
|
|
/// presence of `for<..>` binders to control what sets of names are
|
|
/// visible. Universes are arranged into a tree: the root universe
|
|
/// contains names that are always visible. Each child then adds a new
|
|
/// set of names that are visible, in addition to those of its parent.
|
|
/// We say that the child universe "extends" the parent universe with
|
|
/// new names.
|
|
///
|
|
/// To make this more concrete, consider this program:
|
|
///
|
|
/// ```
|
|
/// struct Foo { }
|
|
/// fn bar<T>(x: T) {
|
|
/// let y: for<'a> fn(&'a u8, Foo) = ...;
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// The struct name `Foo` is in the root universe U0. But the type
|
|
/// parameter `T`, introduced on `bar`, is in an extended universe U1
|
|
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
|
|
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
|
|
/// region `'a` is in a universe U2 that extends U1, because we can
|
|
/// name it inside the fn type but not outside.
|
|
///
|
|
/// Universes are used to do type- and trait-checking around these
|
|
/// "forall" binders (also called **universal quantification**). The
|
|
/// idea is that when, in the body of `bar`, we refer to `T` as a
|
|
/// type, we aren't referring to any type in particular, but rather a
|
|
/// kind of "fresh" type that is distinct from all other types we have
|
|
/// actually declared. This is called a **placeholder** type, and we
|
|
/// use universes to talk about this. In other words, a type name in
|
|
/// universe 0 always corresponds to some "ground" type that the user
|
|
/// declared, but a type name in a non-zero universe is a placeholder
|
|
/// type -- an idealized representative of "types in general" that we
|
|
/// use for checking generic functions.
|
|
pub struct UniverseIndex {
|
|
derive [HashStable]
|
|
DEBUG_FORMAT = "U{}",
|
|
}
|
|
}
|
|
|
|
impl UniverseIndex {
|
|
pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
|
|
|
|
/// Returns the "next" universe index in order -- this new index
|
|
/// is considered to extend all previous universes. This
|
|
/// corresponds to entering a `forall` quantifier. So, for
|
|
/// example, suppose we have this type in universe `U`:
|
|
///
|
|
/// ```
|
|
/// for<'a> fn(&'a u32)
|
|
/// ```
|
|
///
|
|
/// Once we "enter" into this `for<'a>` quantifier, we are in a
|
|
/// new universe that extends `U` -- in this new universe, we can
|
|
/// name the region `'a`, but that region was not nameable from
|
|
/// `U` because it was not in scope there.
|
|
pub fn next_universe(self) -> UniverseIndex {
|
|
UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
|
|
}
|
|
|
|
/// Returns `true` if `self` can name a name from `other` -- in other words,
|
|
/// if the set of names in `self` is a superset of those in
|
|
/// `other` (`self >= other`).
|
|
pub fn can_name(self, other: UniverseIndex) -> bool {
|
|
self.private >= other.private
|
|
}
|
|
|
|
/// Returns `true` if `self` cannot name some names from `other` -- in other
|
|
/// words, if the set of names in `self` is a strict subset of
|
|
/// those in `other` (`self < other`).
|
|
pub fn cannot_name(self, other: UniverseIndex) -> bool {
|
|
self.private < other.private
|
|
}
|
|
}
|
|
|
|
/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
|
|
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
|
|
/// regions/types/consts within the same universe simply have an unknown relationship to one
|
|
/// another.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
|
|
pub struct Placeholder<T> {
|
|
pub universe: UniverseIndex,
|
|
pub name: T,
|
|
}
|
|
|
|
impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
|
|
where
|
|
T: HashStable<StableHashingContext<'a>>,
|
|
{
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
self.universe.hash_stable(hcx, hasher);
|
|
self.name.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
pub type PlaceholderRegion = Placeholder<BoundRegionKind>;
|
|
|
|
pub type PlaceholderType = Placeholder<BoundVar>;
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
|
|
#[derive(TyEncodable, TyDecodable, PartialOrd, Ord)]
|
|
pub struct BoundConst<'tcx> {
|
|
pub var: BoundVar,
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
pub type PlaceholderConst<'tcx> = Placeholder<BoundConst<'tcx>>;
|
|
|
|
/// A `DefId` which, in case it is a const argument, is potentially bundled with
|
|
/// the `DefId` of the generic parameter it instantiates.
|
|
///
|
|
/// This is used to avoid calls to `type_of` for const arguments during typeck
|
|
/// which cause cycle errors.
|
|
///
|
|
/// ```rust
|
|
/// struct A;
|
|
/// impl A {
|
|
/// fn foo<const N: usize>(&self) -> [u8; N] { [0; N] }
|
|
/// // ^ const parameter
|
|
/// }
|
|
/// struct B;
|
|
/// impl B {
|
|
/// fn foo<const M: u8>(&self) -> usize { 42 }
|
|
/// // ^ const parameter
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let a = A;
|
|
/// let _b = a.foo::<{ 3 + 7 }>();
|
|
/// // ^^^^^^^^^ const argument
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know
|
|
/// which `foo` is used until we know the type of `a`.
|
|
///
|
|
/// We only know the type of `a` once we are inside of `typeck(main)`.
|
|
/// We also end up normalizing the type of `_b` during `typeck(main)` which
|
|
/// requires us to evaluate the const argument.
|
|
///
|
|
/// To evaluate that const argument we need to know its type,
|
|
/// which we would get using `type_of(const_arg)`. This requires us to
|
|
/// resolve `foo` as it can be either `usize` or `u8` in this example.
|
|
/// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`,
|
|
/// which results in a cycle.
|
|
///
|
|
/// In short we must not call `type_of(const_arg)` during `typeck(main)`.
|
|
///
|
|
/// When first creating the `ty::Const` of the const argument inside of `typeck` we have
|
|
/// already resolved `foo` so we know which const parameter this argument instantiates.
|
|
/// This means that we also know the expected result of `type_of(const_arg)` even if we
|
|
/// aren't allowed to call that query: it is equal to `type_of(const_param)` which is
|
|
/// trivial to compute.
|
|
///
|
|
/// If we now want to use that constant in a place which potentionally needs its type
|
|
/// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`,
|
|
/// except that instead of a `Ty` we bundle the `DefId` of the const parameter.
|
|
/// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some`
|
|
/// to get the type of `did`.
|
|
#[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)]
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord)]
|
|
#[derive(Hash, HashStable)]
|
|
pub struct WithOptConstParam<T> {
|
|
pub did: T,
|
|
/// The `DefId` of the corresponding generic parameter in case `did` is
|
|
/// a const argument.
|
|
///
|
|
/// Note that even if `did` is a const argument, this may still be `None`.
|
|
/// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
|
|
/// to potentially update `param_did` in the case it is `None`.
|
|
pub const_param_did: Option<DefId>,
|
|
}
|
|
|
|
impl<T> WithOptConstParam<T> {
|
|
/// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
|
|
#[inline(always)]
|
|
pub fn unknown(did: T) -> WithOptConstParam<T> {
|
|
WithOptConstParam { did, const_param_did: None }
|
|
}
|
|
}
|
|
|
|
impl WithOptConstParam<LocalDefId> {
|
|
/// Returns `Some((did, param_did))` if `def_id` is a const argument,
|
|
/// `None` otherwise.
|
|
#[inline(always)]
|
|
pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
|
|
tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
|
|
}
|
|
|
|
/// In case `self` is unknown but `self.did` is a const argument, this returns
|
|
/// a `WithOptConstParam` with the correct `const_param_did`.
|
|
#[inline(always)]
|
|
pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
|
|
if self.const_param_did.is_none() {
|
|
if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
|
|
return Some(WithOptConstParam { did: self.did, const_param_did });
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn to_global(self) -> WithOptConstParam<DefId> {
|
|
WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
|
|
}
|
|
|
|
pub fn def_id_for_type_of(self) -> DefId {
|
|
if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
|
|
}
|
|
}
|
|
|
|
impl WithOptConstParam<DefId> {
|
|
pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
|
|
self.did
|
|
.as_local()
|
|
.map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
|
|
}
|
|
|
|
pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
|
|
if let Some(param_did) = self.const_param_did {
|
|
if let Some(did) = self.did.as_local() {
|
|
return Some((did, param_did));
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn is_local(self) -> bool {
|
|
self.did.is_local()
|
|
}
|
|
|
|
pub fn def_id_for_type_of(self) -> DefId {
|
|
self.const_param_did.unwrap_or(self.did)
|
|
}
|
|
}
|
|
|
|
/// When type checking, we use the `ParamEnv` to track
|
|
/// details about the set of where-clauses that are in scope at this
|
|
/// particular point.
|
|
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
|
|
pub struct ParamEnv<'tcx> {
|
|
/// This packs both caller bounds and the reveal enum into one pointer.
|
|
///
|
|
/// Caller bounds are `Obligation`s that the caller must satisfy. This is
|
|
/// basically the set of bounds on the in-scope type parameters, translated
|
|
/// into `Obligation`s, and elaborated and normalized.
|
|
///
|
|
/// Use the `caller_bounds()` method to access.
|
|
///
|
|
/// Typically, this is `Reveal::UserFacing`, but during codegen we
|
|
/// want `Reveal::All`.
|
|
///
|
|
/// Note: This is packed, use the reveal() method to access it.
|
|
packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>,
|
|
}
|
|
|
|
unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal {
|
|
const BITS: usize = 1;
|
|
#[inline]
|
|
fn into_usize(self) -> usize {
|
|
match self {
|
|
traits::Reveal::UserFacing => 0,
|
|
traits::Reveal::All => 1,
|
|
}
|
|
}
|
|
#[inline]
|
|
unsafe fn from_usize(ptr: usize) -> Self {
|
|
match ptr {
|
|
0 => traits::Reveal::UserFacing,
|
|
1 => traits::Reveal::All,
|
|
_ => std::hint::unreachable_unchecked(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.debug_struct("ParamEnv")
|
|
.field("caller_bounds", &self.caller_bounds())
|
|
.field("reveal", &self.reveal())
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
self.caller_bounds().hash_stable(hcx, hasher);
|
|
self.reveal().hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
|
|
fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
|
|
ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder))
|
|
}
|
|
|
|
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
|
|
self.caller_bounds().visit_with(visitor)?;
|
|
self.reveal().visit_with(visitor)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ParamEnv<'tcx> {
|
|
/// Construct a trait environment suitable for contexts where
|
|
/// there are no where-clauses in scope. Hidden types (like `impl
|
|
/// Trait`) are left hidden, so this is suitable for ordinary
|
|
/// type-checking.
|
|
#[inline]
|
|
pub fn empty() -> Self {
|
|
Self::new(List::empty(), Reveal::UserFacing)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
|
|
self.packed.pointer()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn reveal(self) -> traits::Reveal {
|
|
self.packed.tag()
|
|
}
|
|
|
|
/// Construct a trait environment with no where-clauses in scope
|
|
/// where the values of all `impl Trait` and other hidden types
|
|
/// are revealed. This is suitable for monomorphized, post-typeck
|
|
/// environments like codegen or doing optimizations.
|
|
///
|
|
/// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
|
|
/// or invoke `param_env.with_reveal_all()`.
|
|
#[inline]
|
|
pub fn reveal_all() -> Self {
|
|
Self::new(List::empty(), Reveal::All)
|
|
}
|
|
|
|
/// Construct a trait environment with the given set of predicates.
|
|
#[inline]
|
|
pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self {
|
|
ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) }
|
|
}
|
|
|
|
pub fn with_user_facing(mut self) -> Self {
|
|
self.packed.set_tag(Reveal::UserFacing);
|
|
self
|
|
}
|
|
|
|
/// Returns a new parameter environment with the same clauses, but
|
|
/// which "reveals" the true results of projections in all cases
|
|
/// (even for associated types that are specializable). This is
|
|
/// the desired behavior during codegen and certain other special
|
|
/// contexts; normally though we want to use `Reveal::UserFacing`,
|
|
/// which is the default.
|
|
/// All opaque types in the caller_bounds of the `ParamEnv`
|
|
/// will be normalized to their underlying types.
|
|
/// See PR #65989 and issue #65918 for more details
|
|
pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
|
|
if self.packed.tag() == traits::Reveal::All {
|
|
return self;
|
|
}
|
|
|
|
ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All)
|
|
}
|
|
|
|
/// Returns this same environment but with no caller bounds.
|
|
#[inline]
|
|
pub fn without_caller_bounds(self) -> Self {
|
|
Self::new(List::empty(), self.reveal())
|
|
}
|
|
|
|
/// Creates a suitable environment in which to perform trait
|
|
/// queries on the given value. When type-checking, this is simply
|
|
/// the pair of the environment plus value. But when reveal is set to
|
|
/// All, then if `value` does not reference any type parameters, we will
|
|
/// pair it with the empty environment. This improves caching and is generally
|
|
/// invisible.
|
|
///
|
|
/// N.B., we preserve the environment when type-checking because it
|
|
/// is possible for the user to have wacky where-clauses like
|
|
/// `where Box<u32>: Copy`, which are clearly never
|
|
/// satisfiable. We generally want to behave as if they were true,
|
|
/// although the surrounding function is never reachable.
|
|
pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
|
|
match self.reveal() {
|
|
Reveal::UserFacing => ParamEnvAnd { param_env: self, value },
|
|
|
|
Reveal::All => {
|
|
if value.is_known_global() {
|
|
ParamEnvAnd { param_env: self.without_caller_bounds(), value }
|
|
} else {
|
|
ParamEnvAnd { param_env: self, value }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
|
|
pub struct ConstnessAnd<T> {
|
|
pub constness: BoundConstness,
|
|
pub value: T,
|
|
}
|
|
|
|
// FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
|
|
// the constness of trait bounds is being propagated correctly.
|
|
pub trait WithConstness: Sized {
|
|
#[inline]
|
|
fn with_constness(self, constness: BoundConstness) -> ConstnessAnd<Self> {
|
|
ConstnessAnd { constness, value: self }
|
|
}
|
|
|
|
#[inline]
|
|
fn with_const_if_const(self) -> ConstnessAnd<Self> {
|
|
self.with_constness(BoundConstness::ConstIfConst)
|
|
}
|
|
|
|
#[inline]
|
|
fn without_const(self) -> ConstnessAnd<Self> {
|
|
self.with_constness(BoundConstness::NotConst)
|
|
}
|
|
}
|
|
|
|
impl<T> WithConstness for T {}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
|
|
pub struct ParamEnvAnd<'tcx, T> {
|
|
pub param_env: ParamEnv<'tcx>,
|
|
pub value: T,
|
|
}
|
|
|
|
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
|
|
pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
|
|
(self.param_env, self.value)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
|
|
where
|
|
T: HashStable<StableHashingContext<'a>>,
|
|
{
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
let ParamEnvAnd { ref param_env, ref value } = *self;
|
|
|
|
param_env.hash_stable(hcx, hasher);
|
|
value.hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, HashStable)]
|
|
pub struct Destructor {
|
|
/// The `DefId` of the destructor method
|
|
pub did: DefId,
|
|
/// The constness of the destructor method
|
|
pub constness: hir::Constness,
|
|
}
|
|
|
|
bitflags! {
|
|
#[derive(HashStable)]
|
|
pub struct VariantFlags: u32 {
|
|
const NO_VARIANT_FLAGS = 0;
|
|
/// Indicates whether the field list of this variant is `#[non_exhaustive]`.
|
|
const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
|
|
/// Indicates whether this variant was obtained as part of recovering from
|
|
/// a syntactic error. May be incomplete or bogus.
|
|
const IS_RECOVERED = 1 << 1;
|
|
}
|
|
}
|
|
|
|
/// Definition of a variant -- a struct's fields or an enum variant.
|
|
#[derive(Debug, HashStable)]
|
|
pub struct VariantDef {
|
|
/// `DefId` that identifies the variant itself.
|
|
/// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
|
|
pub def_id: DefId,
|
|
/// `DefId` that identifies the variant's constructor.
|
|
/// If this variant is a struct variant, then this is `None`.
|
|
pub ctor_def_id: Option<DefId>,
|
|
/// Variant or struct name.
|
|
#[stable_hasher(project(name))]
|
|
pub ident: Ident,
|
|
/// Discriminant of this variant.
|
|
pub discr: VariantDiscr,
|
|
/// Fields of this variant.
|
|
pub fields: Vec<FieldDef>,
|
|
/// Type of constructor of variant.
|
|
pub ctor_kind: CtorKind,
|
|
/// Flags of the variant (e.g. is field list non-exhaustive)?
|
|
flags: VariantFlags,
|
|
}
|
|
|
|
impl VariantDef {
|
|
/// Creates a new `VariantDef`.
|
|
///
|
|
/// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
|
|
/// represents an enum variant).
|
|
///
|
|
/// `ctor_did` is the `DefId` that identifies the constructor of unit or
|
|
/// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
|
|
///
|
|
/// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
|
|
/// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
|
|
/// to go through the redirect of checking the ctor's attributes - but compiling a small crate
|
|
/// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
|
|
/// built-in trait), and we do not want to load attributes twice.
|
|
///
|
|
/// If someone speeds up attribute loading to not be a performance concern, they can
|
|
/// remove this hack and use the constructor `DefId` everywhere.
|
|
pub fn new(
|
|
ident: Ident,
|
|
variant_did: Option<DefId>,
|
|
ctor_def_id: Option<DefId>,
|
|
discr: VariantDiscr,
|
|
fields: Vec<FieldDef>,
|
|
ctor_kind: CtorKind,
|
|
adt_kind: AdtKind,
|
|
parent_did: DefId,
|
|
recovered: bool,
|
|
is_field_list_non_exhaustive: bool,
|
|
) -> Self {
|
|
debug!(
|
|
"VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
|
|
fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
|
|
ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
|
|
);
|
|
|
|
let mut flags = VariantFlags::NO_VARIANT_FLAGS;
|
|
if is_field_list_non_exhaustive {
|
|
flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
|
|
}
|
|
|
|
if recovered {
|
|
flags |= VariantFlags::IS_RECOVERED;
|
|
}
|
|
|
|
VariantDef {
|
|
def_id: variant_did.unwrap_or(parent_did),
|
|
ctor_def_id,
|
|
ident,
|
|
discr,
|
|
fields,
|
|
ctor_kind,
|
|
flags,
|
|
}
|
|
}
|
|
|
|
/// Is this field list non-exhaustive?
|
|
#[inline]
|
|
pub fn is_field_list_non_exhaustive(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
|
|
}
|
|
|
|
/// Was this variant obtained as part of recovering from a syntactic error?
|
|
#[inline]
|
|
pub fn is_recovered(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::IS_RECOVERED)
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
|
|
pub enum VariantDiscr {
|
|
/// Explicit value for this variant, i.e., `X = 123`.
|
|
/// The `DefId` corresponds to the embedded constant.
|
|
Explicit(DefId),
|
|
|
|
/// The previous variant's discriminant plus one.
|
|
/// For efficiency reasons, the distance from the
|
|
/// last `Explicit` discriminant is being stored,
|
|
/// or `0` for the first variant, if it has none.
|
|
Relative(u32),
|
|
}
|
|
|
|
#[derive(Debug, HashStable)]
|
|
pub struct FieldDef {
|
|
pub did: DefId,
|
|
#[stable_hasher(project(name))]
|
|
pub ident: Ident,
|
|
pub vis: Visibility,
|
|
}
|
|
|
|
bitflags! {
|
|
#[derive(TyEncodable, TyDecodable, Default, HashStable)]
|
|
pub struct ReprFlags: u8 {
|
|
const IS_C = 1 << 0;
|
|
const IS_SIMD = 1 << 1;
|
|
const IS_TRANSPARENT = 1 << 2;
|
|
// Internal only for now. If true, don't reorder fields.
|
|
const IS_LINEAR = 1 << 3;
|
|
// If true, don't expose any niche to type's context.
|
|
const HIDE_NICHE = 1 << 4;
|
|
// If true, the type's layout can be randomized using
|
|
// the seed stored in `ReprOptions.layout_seed`
|
|
const RANDOMIZE_LAYOUT = 1 << 5;
|
|
// Any of these flags being set prevent field reordering optimisation.
|
|
const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
|
|
ReprFlags::IS_SIMD.bits |
|
|
ReprFlags::IS_LINEAR.bits;
|
|
}
|
|
}
|
|
|
|
/// Represents the repr options provided by the user,
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
|
|
pub struct ReprOptions {
|
|
pub int: Option<attr::IntType>,
|
|
pub align: Option<Align>,
|
|
pub pack: Option<Align>,
|
|
pub flags: ReprFlags,
|
|
/// The seed to be used for randomizing a type's layout
|
|
///
|
|
/// Note: This could technically be a `[u8; 16]` (a `u128`) which would
|
|
/// be the "most accurate" hash as it'd encompass the item and crate
|
|
/// hash without loss, but it does pay the price of being larger.
|
|
/// Everything's a tradeoff, a `u64` seed should be sufficient for our
|
|
/// purposes (primarily `-Z randomize-layout`)
|
|
pub field_shuffle_seed: u64,
|
|
}
|
|
|
|
impl ReprOptions {
|
|
pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
|
|
let mut flags = ReprFlags::empty();
|
|
let mut size = None;
|
|
let mut max_align: Option<Align> = None;
|
|
let mut min_pack: Option<Align> = None;
|
|
|
|
// Generate a deterministically-derived seed from the item's path hash
|
|
// to allow for cross-crate compilation to actually work
|
|
let field_shuffle_seed = tcx.def_path_hash(did).0.to_smaller_hash();
|
|
|
|
for attr in tcx.get_attrs(did).iter() {
|
|
for r in attr::find_repr_attrs(&tcx.sess, attr) {
|
|
flags.insert(match r {
|
|
attr::ReprC => ReprFlags::IS_C,
|
|
attr::ReprPacked(pack) => {
|
|
let pack = Align::from_bytes(pack as u64).unwrap();
|
|
min_pack = Some(if let Some(min_pack) = min_pack {
|
|
min_pack.min(pack)
|
|
} else {
|
|
pack
|
|
});
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
|
|
attr::ReprNoNiche => ReprFlags::HIDE_NICHE,
|
|
attr::ReprSimd => ReprFlags::IS_SIMD,
|
|
attr::ReprInt(i) => {
|
|
size = Some(i);
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprAlign(align) => {
|
|
max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
|
|
ReprFlags::empty()
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// If `-Z randomize-layout` was enabled for the type definition then we can
|
|
// consider performing layout randomization
|
|
if tcx.sess.opts.debugging_opts.randomize_layout {
|
|
flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
|
|
}
|
|
|
|
// This is here instead of layout because the choice must make it into metadata.
|
|
if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
|
|
flags.insert(ReprFlags::IS_LINEAR);
|
|
}
|
|
|
|
Self { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn simd(&self) -> bool {
|
|
self.flags.contains(ReprFlags::IS_SIMD)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn c(&self) -> bool {
|
|
self.flags.contains(ReprFlags::IS_C)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn packed(&self) -> bool {
|
|
self.pack.is_some()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn transparent(&self) -> bool {
|
|
self.flags.contains(ReprFlags::IS_TRANSPARENT)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn linear(&self) -> bool {
|
|
self.flags.contains(ReprFlags::IS_LINEAR)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn hide_niche(&self) -> bool {
|
|
self.flags.contains(ReprFlags::HIDE_NICHE)
|
|
}
|
|
|
|
/// Returns the discriminant type, given these `repr` options.
|
|
/// This must only be called on enums!
|
|
pub fn discr_type(&self) -> attr::IntType {
|
|
self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
|
|
}
|
|
|
|
/// Returns `true` if this `#[repr()]` should inhabit "smart enum
|
|
/// layout" optimizations, such as representing `Foo<&T>` as a
|
|
/// single pointer.
|
|
pub fn inhibit_enum_layout_opt(&self) -> bool {
|
|
self.c() || self.int.is_some()
|
|
}
|
|
|
|
/// Returns `true` if this `#[repr()]` should inhibit struct field reordering
|
|
/// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
|
|
pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
|
|
if let Some(pack) = self.pack {
|
|
if pack.bytes() == 1 {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
|
|
}
|
|
|
|
/// Returns `true` if this type is valid for reordering and `-Z randomize-layout`
|
|
/// was enabled for its declaration crate
|
|
pub fn can_randomize_type_layout(&self) -> bool {
|
|
!self.inhibit_struct_field_reordering_opt()
|
|
&& self.flags.contains(ReprFlags::RANDOMIZE_LAYOUT)
|
|
}
|
|
|
|
/// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
|
|
pub fn inhibit_union_abi_opt(&self) -> bool {
|
|
self.c()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FieldDef {
|
|
/// Returns the type of this field. The resulting type is not normalized. The `subst` is
|
|
/// typically obtained via the second field of `TyKind::AdtDef`.
|
|
pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
|
|
tcx.type_of(self.did).subst(tcx, subst)
|
|
}
|
|
}
|
|
|
|
pub type Attributes<'tcx> = &'tcx [ast::Attribute];
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub enum ImplOverlapKind {
|
|
/// These impls are always allowed to overlap.
|
|
Permitted {
|
|
/// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
|
|
marker: bool,
|
|
},
|
|
/// These impls are allowed to overlap, but that raises
|
|
/// an issue #33140 future-compatibility warning.
|
|
///
|
|
/// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
|
|
/// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
|
|
///
|
|
/// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
|
|
/// that difference, making what reduces to the following set of impls:
|
|
///
|
|
/// ```
|
|
/// trait Trait {}
|
|
/// impl Trait for dyn Send + Sync {}
|
|
/// impl Trait for dyn Sync + Send {}
|
|
/// ```
|
|
///
|
|
/// Obviously, once we made these types be identical, that code causes a coherence
|
|
/// error and a fairly big headache for us. However, luckily for us, the trait
|
|
/// `Trait` used in this case is basically a marker trait, and therefore having
|
|
/// overlapping impls for it is sound.
|
|
///
|
|
/// To handle this, we basically regard the trait as a marker trait, with an additional
|
|
/// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
|
|
/// it has the following restrictions:
|
|
///
|
|
/// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
|
|
/// positive impls.
|
|
/// 2. The trait-ref of both impls must be equal.
|
|
/// 3. The trait-ref of both impls must be a trait object type consisting only of
|
|
/// marker traits.
|
|
/// 4. Neither of the impls can have any where-clauses.
|
|
///
|
|
/// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
|
|
Issue33140,
|
|
}
|
|
|
|
impl<'tcx> TyCtxt<'tcx> {
|
|
pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
|
|
self.typeck(self.hir().body_owner_def_id(body))
|
|
}
|
|
|
|
pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
|
|
self.associated_items(id)
|
|
.in_definition_order()
|
|
.filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value())
|
|
}
|
|
|
|
fn item_name_from_hir(self, def_id: DefId) -> Option<Ident> {
|
|
self.hir().get_if_local(def_id).and_then(|node| node.ident())
|
|
}
|
|
|
|
fn item_name_from_def_id(self, def_id: DefId) -> Option<Symbol> {
|
|
if def_id.index == CRATE_DEF_INDEX {
|
|
Some(self.crate_name(def_id.krate))
|
|
} else {
|
|
let def_key = self.def_key(def_id);
|
|
match def_key.disambiguated_data.data {
|
|
// The name of a constructor is that of its parent.
|
|
rustc_hir::definitions::DefPathData::Ctor => self.item_name_from_def_id(DefId {
|
|
krate: def_id.krate,
|
|
index: def_key.parent.unwrap(),
|
|
}),
|
|
_ => def_key.disambiguated_data.data.get_opt_name(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look up the name of an item across crates. This does not look at HIR.
|
|
///
|
|
/// When possible, this function should be used for cross-crate lookups over
|
|
/// [`opt_item_name`] to avoid invalidating the incremental cache. If you
|
|
/// need to handle items without a name, or HIR items that will not be
|
|
/// serialized cross-crate, or if you need the span of the item, use
|
|
/// [`opt_item_name`] instead.
|
|
///
|
|
/// [`opt_item_name`]: Self::opt_item_name
|
|
pub fn item_name(self, id: DefId) -> Symbol {
|
|
// Look at cross-crate items first to avoid invalidating the incremental cache
|
|
// unless we have to.
|
|
self.item_name_from_def_id(id).unwrap_or_else(|| {
|
|
bug!("item_name: no name for {:?}", self.def_path(id));
|
|
})
|
|
}
|
|
|
|
/// Look up the name and span of an item or [`Node`].
|
|
///
|
|
/// See [`item_name`][Self::item_name] for more information.
|
|
pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
|
|
// Look at the HIR first so the span will be correct if this is a local item.
|
|
self.item_name_from_hir(def_id)
|
|
.or_else(|| self.item_name_from_def_id(def_id).map(Ident::with_dummy_span))
|
|
}
|
|
|
|
pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
|
|
if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
|
|
Some(self.associated_item(def_id))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
|
|
typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
|
|
}
|
|
|
|
pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
|
|
variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id))
|
|
}
|
|
|
|
/// Returns `true` if the impls are the same polarity and the trait either
|
|
/// has no items or is annotated `#[marker]` and prevents item overrides.
|
|
pub fn impls_are_allowed_to_overlap(
|
|
self,
|
|
def_id1: DefId,
|
|
def_id2: DefId,
|
|
) -> Option<ImplOverlapKind> {
|
|
// If either trait impl references an error, they're allowed to overlap,
|
|
// as one of them essentially doesn't exist.
|
|
if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
|
|
|| self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
|
|
{
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
|
|
match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
|
|
(ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
|
|
// `#[rustc_reservation_impl]` impls don't overlap with anything
|
|
debug!(
|
|
"impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
|
|
def_id1, def_id2
|
|
);
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Negative)
|
|
| (ImplPolarity::Negative, ImplPolarity::Positive) => {
|
|
// `impl AutoTrait for Type` + `impl !AutoTrait for Type`
|
|
debug!(
|
|
"impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
|
|
def_id1, def_id2
|
|
);
|
|
return None;
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Positive)
|
|
| (ImplPolarity::Negative, ImplPolarity::Negative) => {}
|
|
};
|
|
|
|
let is_marker_overlap = {
|
|
let is_marker_impl = |def_id: DefId| -> bool {
|
|
let trait_ref = self.impl_trait_ref(def_id);
|
|
trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
|
|
};
|
|
is_marker_impl(def_id1) && is_marker_impl(def_id2)
|
|
};
|
|
|
|
if is_marker_overlap {
|
|
debug!(
|
|
"impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
|
|
def_id1, def_id2
|
|
);
|
|
Some(ImplOverlapKind::Permitted { marker: true })
|
|
} else {
|
|
if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
|
|
if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
|
|
if self_ty1 == self_ty2 {
|
|
debug!(
|
|
"impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
|
|
def_id1, def_id2
|
|
);
|
|
return Some(ImplOverlapKind::Issue33140);
|
|
} else {
|
|
debug!(
|
|
"impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
|
|
def_id1, def_id2, self_ty1, self_ty2
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns `ty::VariantDef` if `res` refers to a struct,
|
|
/// or variant or their constructors, panics otherwise.
|
|
pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
|
|
match res {
|
|
Res::Def(DefKind::Variant, did) => {
|
|
let enum_did = self.parent(did).unwrap();
|
|
self.adt_def(enum_did).variant_with_id(did)
|
|
}
|
|
Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
|
|
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
|
|
let variant_did = self.parent(variant_ctor_did).unwrap();
|
|
let enum_did = self.parent(variant_did).unwrap();
|
|
self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
|
|
}
|
|
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
|
|
let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
|
|
self.adt_def(struct_did).non_enum_variant()
|
|
}
|
|
_ => bug!("expect_variant_res used with unexpected res {:?}", res),
|
|
}
|
|
}
|
|
|
|
/// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
|
|
pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
|
|
match instance {
|
|
ty::InstanceDef::Item(def) => match self.def_kind(def.did) {
|
|
DefKind::Const
|
|
| DefKind::Static
|
|
| DefKind::AssocConst
|
|
| DefKind::Ctor(..)
|
|
| DefKind::AnonConst => self.mir_for_ctfe_opt_const_arg(def),
|
|
// If the caller wants `mir_for_ctfe` of a function they should not be using
|
|
// `instance_mir`, so we'll assume const fn also wants the optimized version.
|
|
_ => {
|
|
assert_eq!(def.const_param_did, None);
|
|
self.optimized_mir(def.did)
|
|
}
|
|
},
|
|
ty::InstanceDef::VtableShim(..)
|
|
| ty::InstanceDef::ReifyShim(..)
|
|
| ty::InstanceDef::Intrinsic(..)
|
|
| ty::InstanceDef::FnPtrShim(..)
|
|
| ty::InstanceDef::Virtual(..)
|
|
| ty::InstanceDef::ClosureOnceShim { .. }
|
|
| ty::InstanceDef::DropGlue(..)
|
|
| ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
|
|
}
|
|
}
|
|
|
|
/// Gets the attributes of a definition.
|
|
pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
|
|
if let Some(did) = did.as_local() {
|
|
self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
|
|
} else {
|
|
self.item_attrs(did)
|
|
}
|
|
}
|
|
|
|
/// Determines whether an item is annotated with an attribute.
|
|
pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
|
|
self.sess.contains_name(&self.get_attrs(did), attr)
|
|
}
|
|
|
|
/// Returns `true` if this is an `auto trait`.
|
|
pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
|
|
self.trait_def(trait_def_id).has_auto_impl
|
|
}
|
|
|
|
/// Returns layout of a generator. Layout might be unavailable if the
|
|
/// generator is tainted by errors.
|
|
pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> {
|
|
self.optimized_mir(def_id).generator_layout()
|
|
}
|
|
|
|
/// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
|
|
/// If it implements no trait, returns `None`.
|
|
pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
|
|
self.impl_trait_ref(def_id).map(|tr| tr.def_id)
|
|
}
|
|
|
|
/// If the given defid describes a method belonging to an impl, returns the
|
|
/// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
|
|
pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
|
|
self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container {
|
|
TraitContainer(_) => None,
|
|
ImplContainer(def_id) => Some(def_id),
|
|
})
|
|
}
|
|
|
|
/// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
|
|
/// with the name of the crate containing the impl.
|
|
pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
|
|
if let Some(impl_did) = impl_did.as_local() {
|
|
let hir_id = self.hir().local_def_id_to_hir_id(impl_did);
|
|
Ok(self.hir().span(hir_id))
|
|
} else {
|
|
Err(self.crate_name(impl_did.krate))
|
|
}
|
|
}
|
|
|
|
/// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
|
|
/// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
|
|
/// definition's parent/scope to perform comparison.
|
|
pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
|
|
// We could use `Ident::eq` here, but we deliberately don't. The name
|
|
// comparison fails frequently, and we want to avoid the expensive
|
|
// `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
|
|
use_name.name == def_name.name
|
|
&& use_name
|
|
.span
|
|
.ctxt()
|
|
.hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
|
|
}
|
|
|
|
pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
|
|
ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
|
|
ident
|
|
}
|
|
|
|
pub fn adjust_ident_and_get_scope(
|
|
self,
|
|
mut ident: Ident,
|
|
scope: DefId,
|
|
block: hir::HirId,
|
|
) -> (Ident, DefId) {
|
|
let scope = ident
|
|
.span
|
|
.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
|
|
.and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
|
|
.unwrap_or_else(|| self.parent_module(block).to_def_id());
|
|
(ident, scope)
|
|
}
|
|
|
|
pub fn is_object_safe(self, key: DefId) -> bool {
|
|
self.object_safety_violations(key).is_empty()
|
|
}
|
|
}
|
|
|
|
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
|
|
pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
|
|
if let Some(def_id) = def_id.as_local() {
|
|
if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
|
|
if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
|
|
return opaque_ty.impl_trait_fn;
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
pub fn int_ty(ity: ast::IntTy) -> IntTy {
|
|
match ity {
|
|
ast::IntTy::Isize => IntTy::Isize,
|
|
ast::IntTy::I8 => IntTy::I8,
|
|
ast::IntTy::I16 => IntTy::I16,
|
|
ast::IntTy::I32 => IntTy::I32,
|
|
ast::IntTy::I64 => IntTy::I64,
|
|
ast::IntTy::I128 => IntTy::I128,
|
|
}
|
|
}
|
|
|
|
pub fn uint_ty(uty: ast::UintTy) -> UintTy {
|
|
match uty {
|
|
ast::UintTy::Usize => UintTy::Usize,
|
|
ast::UintTy::U8 => UintTy::U8,
|
|
ast::UintTy::U16 => UintTy::U16,
|
|
ast::UintTy::U32 => UintTy::U32,
|
|
ast::UintTy::U64 => UintTy::U64,
|
|
ast::UintTy::U128 => UintTy::U128,
|
|
}
|
|
}
|
|
|
|
pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
|
|
match fty {
|
|
ast::FloatTy::F32 => FloatTy::F32,
|
|
ast::FloatTy::F64 => FloatTy::F64,
|
|
}
|
|
}
|
|
|
|
pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
|
|
match ity {
|
|
IntTy::Isize => ast::IntTy::Isize,
|
|
IntTy::I8 => ast::IntTy::I8,
|
|
IntTy::I16 => ast::IntTy::I16,
|
|
IntTy::I32 => ast::IntTy::I32,
|
|
IntTy::I64 => ast::IntTy::I64,
|
|
IntTy::I128 => ast::IntTy::I128,
|
|
}
|
|
}
|
|
|
|
pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
|
|
match uty {
|
|
UintTy::Usize => ast::UintTy::Usize,
|
|
UintTy::U8 => ast::UintTy::U8,
|
|
UintTy::U16 => ast::UintTy::U16,
|
|
UintTy::U32 => ast::UintTy::U32,
|
|
UintTy::U64 => ast::UintTy::U64,
|
|
UintTy::U128 => ast::UintTy::U128,
|
|
}
|
|
}
|
|
|
|
pub fn provide(providers: &mut ty::query::Providers) {
|
|
closure::provide(providers);
|
|
context::provide(providers);
|
|
erase_regions::provide(providers);
|
|
layout::provide(providers);
|
|
util::provide(providers);
|
|
print::provide(providers);
|
|
super::util::bug::provide(providers);
|
|
super::middle::provide(providers);
|
|
*providers = ty::query::Providers {
|
|
trait_impls_of: trait_def::trait_impls_of_provider,
|
|
type_uninhabited_from: inhabitedness::type_uninhabited_from,
|
|
const_param_default: consts::const_param_default,
|
|
..*providers
|
|
};
|
|
}
|
|
|
|
/// A map for the local crate mapping each type to a vector of its
|
|
/// inherent impls. This is not meant to be used outside of coherence;
|
|
/// rather, you should request the vector for a specific type via
|
|
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
|
|
/// (constructing this map requires touching the entire crate).
|
|
#[derive(Clone, Debug, Default, HashStable)]
|
|
pub struct CrateInherentImpls {
|
|
pub inherent_impls: LocalDefIdMap<Vec<DefId>>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
|
|
pub struct SymbolName<'tcx> {
|
|
/// `&str` gives a consistent ordering, which ensures reproducible builds.
|
|
pub name: &'tcx str,
|
|
}
|
|
|
|
impl<'tcx> SymbolName<'tcx> {
|
|
pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
|
|
SymbolName {
|
|
name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Display for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default, Copy, Clone)]
|
|
pub struct FoundRelationships {
|
|
/// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
|
|
/// obligation, where:
|
|
///
|
|
/// * `Foo` is not `Sized`
|
|
/// * `(): Foo` may be satisfied
|
|
pub self_in_trait: bool,
|
|
/// This is true if we identified that this Ty (`?T`) is found in a `<_ as
|
|
/// _>::AssocType = ?T`
|
|
pub output: bool,
|
|
}
|