1
Fork 0
rust/compiler/rustc_lint_defs/src/builtin.rs
Kevin Reid 2a96478dd8 Mention unnameable_types in unreachable_pub documentation.
This link makes sense because someone who wishes to avoid unusable `pub`
is likely, but not guaranteed, to be interested in avoiding unnameable
types.

Also fixed some grammar problems I noticed in the area.

Fixes #116604.
2025-01-05 17:13:33 -08:00

5180 lines
178 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Some lints that are built in to the compiler.
//!
//! These are the built-in lints that are emitted direct in the main
//! compiler code, rather than using their own custom pass. Those
//! lints are all available in `rustc_lint::builtin`.
//!
//! When removing a lint, make sure to also add a call to `register_removed` in
//! compiler/rustc_lint/src/lib.rs.
use rustc_span::edition::Edition;
use crate::{FutureIncompatibilityReason, declare_lint, declare_lint_pass};
declare_lint_pass! {
/// Does nothing as a lint pass, but registers some `Lint`s
/// that are used by other parts of the compiler.
HardwiredLints => [
// tidy-alphabetical-start
ABI_UNSUPPORTED_VECTOR_TYPES,
ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
AMBIGUOUS_ASSOCIATED_ITEMS,
AMBIGUOUS_GLOB_IMPORTS,
AMBIGUOUS_GLOB_REEXPORTS,
ARITHMETIC_OVERFLOW,
ASM_SUB_REGISTER,
BAD_ASM_STYLE,
BARE_TRAIT_OBJECTS,
BINDINGS_WITH_VARIANT_NAME,
BREAK_WITH_LABEL_AND_LOOP,
CENUM_IMPL_DROP_CAST,
COHERENCE_LEAK_CHECK,
CONFLICTING_REPR_HINTS,
CONST_EVALUATABLE_UNCHECKED,
CONST_ITEM_MUTATION,
DEAD_CODE,
DEPENDENCY_ON_UNIT_NEVER_TYPE_FALLBACK,
DEPRECATED,
DEPRECATED_IN_FUTURE,
DEPRECATED_SAFE_2024,
DEPRECATED_WHERE_CLAUSE_LOCATION,
DUPLICATE_MACRO_ATTRIBUTES,
ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
ELIDED_LIFETIMES_IN_PATHS,
ELIDED_NAMED_LIFETIMES,
EXPLICIT_BUILTIN_CFGS_IN_FLAGS,
EXPORTED_PRIVATE_DEPENDENCIES,
FFI_UNWIND_CALLS,
FORBIDDEN_LINT_GROUPS,
FUNCTION_ITEM_REFERENCES,
FUZZY_PROVENANCE_CASTS,
HIDDEN_GLOB_REEXPORTS,
ILL_FORMED_ATTRIBUTE_INPUT,
INCOMPLETE_INCLUDE,
INEFFECTIVE_UNSTABLE_TRAIT_IMPL,
INLINE_NO_SANITIZE,
INVALID_DOC_ATTRIBUTES,
INVALID_MACRO_EXPORT_ARGUMENTS,
INVALID_TYPE_PARAM_DEFAULT,
IRREFUTABLE_LET_PATTERNS,
LARGE_ASSIGNMENTS,
LATE_BOUND_LIFETIME_ARGUMENTS,
LEGACY_DERIVE_HELPERS,
LONG_RUNNING_CONST_EVAL,
LOSSY_PROVENANCE_CASTS,
MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
MACRO_USE_EXTERN_CRATE,
META_VARIABLE_MISUSE,
MISSING_ABI,
MISSING_FRAGMENT_SPECIFIER,
MISSING_UNSAFE_ON_EXTERN,
MUST_NOT_SUSPEND,
NAMED_ARGUMENTS_USED_POSITIONALLY,
NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE,
NON_CONTIGUOUS_RANGE_ENDPOINTS,
NON_EXHAUSTIVE_OMITTED_PATTERNS,
ORDER_DEPENDENT_TRAIT_OBJECTS,
OUT_OF_SCOPE_MACRO_CALLS,
OVERLAPPING_RANGE_ENDPOINTS,
PATTERNS_IN_FNS_WITHOUT_BODY,
PRIVATE_BOUNDS,
PRIVATE_INTERFACES,
PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
PTR_CAST_ADD_AUTO_TO_OBJECT,
PTR_TO_INTEGER_TRANSMUTE_IN_CONSTS,
PUB_USE_OF_PRIVATE_EXTERN_CRATE,
REDUNDANT_IMPORTS,
REDUNDANT_LIFETIMES,
REFINING_IMPL_TRAIT_INTERNAL,
REFINING_IMPL_TRAIT_REACHABLE,
RENAMED_AND_REMOVED_LINTS,
REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
RUST_2021_INCOMPATIBLE_OR_PATTERNS,
RUST_2021_PREFIXES_INCOMPATIBLE_SYNTAX,
RUST_2021_PRELUDE_COLLISIONS,
RUST_2024_GUARDED_STRING_INCOMPATIBLE_SYNTAX,
RUST_2024_INCOMPATIBLE_PAT,
RUST_2024_PRELUDE_COLLISIONS,
SELF_CONSTRUCTOR_FROM_OUTER_ITEM,
SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
SINGLE_USE_LIFETIMES,
SOFT_UNSTABLE,
STABLE_FEATURES,
TAIL_EXPR_DROP_ORDER,
TEST_UNSTABLE_LINT,
TEXT_DIRECTION_CODEPOINT_IN_COMMENT,
TRIVIAL_CASTS,
TRIVIAL_NUMERIC_CASTS,
TYVAR_BEHIND_RAW_POINTER,
UNCONDITIONAL_PANIC,
UNCONDITIONAL_RECURSION,
UNCOVERED_PARAM_IN_PROJECTION,
UNDEFINED_NAKED_FUNCTION_ABI,
UNEXPECTED_CFGS,
UNFULFILLED_LINT_EXPECTATIONS,
UNINHABITED_STATIC,
UNKNOWN_CRATE_TYPES,
UNKNOWN_LINTS,
UNKNOWN_OR_MALFORMED_DIAGNOSTIC_ATTRIBUTES,
UNNAMEABLE_TEST_ITEMS,
UNNAMEABLE_TYPES,
UNREACHABLE_CODE,
UNREACHABLE_PATTERNS,
UNSAFE_ATTR_OUTSIDE_UNSAFE,
UNSAFE_OP_IN_UNSAFE_FN,
UNSTABLE_NAME_COLLISIONS,
UNSTABLE_SYNTAX_PRE_EXPANSION,
UNSUPPORTED_FN_PTR_CALLING_CONVENTIONS,
UNUSED_ASSIGNMENTS,
UNUSED_ASSOCIATED_TYPE_BOUNDS,
UNUSED_ATTRIBUTES,
UNUSED_CRATE_DEPENDENCIES,
UNUSED_EXTERN_CRATES,
UNUSED_FEATURES,
UNUSED_IMPORTS,
UNUSED_LABELS,
UNUSED_LIFETIMES,
UNUSED_MACRO_RULES,
UNUSED_MACROS,
UNUSED_MUT,
UNUSED_QUALIFICATIONS,
UNUSED_UNSAFE,
UNUSED_VARIABLES,
USELESS_DEPRECATED,
WARNINGS,
WASM_C_ABI,
// tidy-alphabetical-end
]
}
declare_lint! {
/// The `forbidden_lint_groups` lint detects violations of
/// `forbid` applied to a lint group. Due to a bug in the compiler,
/// these used to be overlooked entirely. They now generate a warning.
///
/// ### Example
///
/// ```rust
/// #![forbid(warnings)]
/// #![warn(bad_style)]
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Recommended fix
///
/// If your crate is using `#![forbid(warnings)]`,
/// we recommend that you change to `#![deny(warnings)]`.
///
/// ### Explanation
///
/// Due to a compiler bug, applying `forbid` to lint groups
/// previously had no effect. The bug is now fixed but instead of
/// enforcing `forbid` we issue this future-compatibility warning
/// to avoid breaking existing crates.
pub FORBIDDEN_LINT_GROUPS,
Warn,
"applying forbid to lint-groups",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #81670 <https://github.com/rust-lang/rust/issues/81670>",
};
}
declare_lint! {
/// The `ill_formed_attribute_input` lint detects ill-formed attribute
/// inputs that were previously accepted and used in practice.
///
/// ### Example
///
/// ```rust,compile_fail
/// #[inline = "this is not valid"]
/// fn foo() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previously, inputs for many built-in attributes weren't validated and
/// nonsensical attribute inputs were accepted. After validation was
/// added, it was determined that some existing projects made use of these
/// invalid forms. This is a [future-incompatible] lint to transition this
/// to a hard error in the future. See [issue #57571] for more details.
///
/// Check the [attribute reference] for details on the valid inputs for
/// attributes.
///
/// [issue #57571]: https://github.com/rust-lang/rust/issues/57571
/// [attribute reference]: https://doc.rust-lang.org/nightly/reference/attributes.html
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub ILL_FORMED_ATTRIBUTE_INPUT,
Deny,
"ill-formed attribute inputs that were previously accepted and used in practice",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #57571 <https://github.com/rust-lang/rust/issues/57571>",
};
crate_level_only
}
declare_lint! {
/// The `conflicting_repr_hints` lint detects [`repr` attributes] with
/// conflicting hints.
///
/// [`repr` attributes]: https://doc.rust-lang.org/reference/type-layout.html#representations
///
/// ### Example
///
/// ```rust,compile_fail
/// #[repr(u32, u64)]
/// enum Foo {
/// Variant1,
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The compiler incorrectly accepted these conflicting representations in
/// the past. This is a [future-incompatible] lint to transition this to a
/// hard error in the future. See [issue #68585] for more details.
///
/// To correct the issue, remove one of the conflicting hints.
///
/// [issue #68585]: https://github.com/rust-lang/rust/issues/68585
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub CONFLICTING_REPR_HINTS,
Deny,
"conflicts between `#[repr(..)]` hints that were previously accepted and used in practice",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #68585 <https://github.com/rust-lang/rust/issues/68585>",
};
}
declare_lint! {
/// The `meta_variable_misuse` lint detects possible meta-variable misuse
/// in macro definitions.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(meta_variable_misuse)]
///
/// macro_rules! foo {
/// () => {};
/// ($( $i:ident = $($j:ident),+ );*) => { $( $( $i = $k; )+ )* };
/// }
///
/// fn main() {
/// foo!();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// There are quite a few different ways a [`macro_rules`] macro can be
/// improperly defined. Many of these errors were previously only detected
/// when the macro was expanded or not at all. This lint is an attempt to
/// catch some of these problems when the macro is *defined*.
///
/// This lint is "allow" by default because it may have false positives
/// and other issues. See [issue #61053] for more details.
///
/// [`macro_rules`]: https://doc.rust-lang.org/reference/macros-by-example.html
/// [issue #61053]: https://github.com/rust-lang/rust/issues/61053
pub META_VARIABLE_MISUSE,
Allow,
"possible meta-variable misuse at macro definition"
}
declare_lint! {
/// The `incomplete_include` lint detects the use of the [`include!`]
/// macro with a file that contains more than one expression.
///
/// [`include!`]: https://doc.rust-lang.org/std/macro.include.html
///
/// ### Example
///
/// ```rust,ignore (needs separate file)
/// fn main() {
/// include!("foo.txt");
/// }
/// ```
///
/// where the file `foo.txt` contains:
///
/// ```text
/// println!("hi!");
/// ```
///
/// produces:
///
/// ```text
/// error: include macro expected single expression in source
/// --> foo.txt:1:14
/// |
/// 1 | println!("1");
/// | ^
/// |
/// = note: `#[deny(incomplete_include)]` on by default
/// ```
///
/// ### Explanation
///
/// The [`include!`] macro is currently only intended to be used to
/// include a single [expression] or multiple [items]. Historically it
/// would ignore any contents after the first expression, but that can be
/// confusing. In the example above, the `println!` expression ends just
/// before the semicolon, making the semicolon "extra" information that is
/// ignored. Perhaps even more surprising, if the included file had
/// multiple print statements, the subsequent ones would be ignored!
///
/// One workaround is to place the contents in braces to create a [block
/// expression]. Also consider alternatives, like using functions to
/// encapsulate the expressions, or use [proc-macros].
///
/// This is a lint instead of a hard error because existing projects were
/// found to hit this error. To be cautious, it is a lint for now. The
/// future semantics of the `include!` macro are also uncertain, see
/// [issue #35560].
///
/// [items]: https://doc.rust-lang.org/reference/items.html
/// [expression]: https://doc.rust-lang.org/reference/expressions.html
/// [block expression]: https://doc.rust-lang.org/reference/expressions/block-expr.html
/// [proc-macros]: https://doc.rust-lang.org/reference/procedural-macros.html
/// [issue #35560]: https://github.com/rust-lang/rust/issues/35560
pub INCOMPLETE_INCLUDE,
Deny,
"trailing content in included file"
}
declare_lint! {
/// The `arithmetic_overflow` lint detects that an arithmetic operation
/// will [overflow].
///
/// [overflow]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#overflow
///
/// ### Example
///
/// ```rust,compile_fail
/// 1_i32 << 32;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is very likely a mistake to perform an arithmetic operation that
/// overflows its value. If the compiler is able to detect these kinds of
/// overflows at compile-time, it will trigger this lint. Consider
/// adjusting the expression to avoid overflow, or use a data type that
/// will not overflow.
pub ARITHMETIC_OVERFLOW,
Deny,
"arithmetic operation overflows",
@eval_always = true
}
declare_lint! {
/// The `unconditional_panic` lint detects an operation that will cause a
/// panic at runtime.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// let x = 1 / 0;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This lint detects code that is very likely incorrect because it will
/// always panic, such as division by zero and out-of-bounds array
/// accesses. Consider adjusting your code if this is a bug, or using the
/// `panic!` or `unreachable!` macro instead in case the panic is intended.
pub UNCONDITIONAL_PANIC,
Deny,
"operation will cause a panic at runtime",
@eval_always = true
}
declare_lint! {
/// The `unused_imports` lint detects imports that are never used.
///
/// ### Example
///
/// ```rust
/// use std::collections::HashMap;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused imports may signal a mistake or unfinished code, and clutter
/// the code, and should be removed. If you intended to re-export the item
/// to make it available outside of the module, add a visibility modifier
/// like `pub`.
pub UNUSED_IMPORTS,
Warn,
"imports that are never used"
}
declare_lint! {
/// The `redundant_imports` lint detects imports that are redundant due to being
/// imported already; either through a previous import, or being present in
/// the prelude.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(redundant_imports)]
/// use std::option::Option::None;
/// fn foo() -> Option<i32> { None }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Redundant imports are unnecessary and can be removed to simplify code.
/// If you intended to re-export the item to make it available outside of the
/// module, add a visibility modifier like `pub`.
pub REDUNDANT_IMPORTS,
Allow,
"imports that are redundant due to being imported already"
}
declare_lint! {
/// The `must_not_suspend` lint guards against values that shouldn't be held across suspend points
/// (`.await`)
///
/// ### Example
///
/// ```rust
/// #![feature(must_not_suspend)]
/// #![warn(must_not_suspend)]
///
/// #[must_not_suspend]
/// struct SyncThing {}
///
/// async fn yield_now() {}
///
/// pub async fn uhoh() {
/// let guard = SyncThing {};
/// yield_now().await;
/// let _guard = guard;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The `must_not_suspend` lint detects values that are marked with the `#[must_not_suspend]`
/// attribute being held across suspend points. A "suspend" point is usually a `.await` in an async
/// function.
///
/// This attribute can be used to mark values that are semantically incorrect across suspends
/// (like certain types of timers), values that have async alternatives, and values that
/// regularly cause problems with the `Send`-ness of async fn's returned futures (like
/// `MutexGuard`'s)
///
pub MUST_NOT_SUSPEND,
Allow,
"use of a `#[must_not_suspend]` value across a yield point",
@feature_gate = must_not_suspend;
}
declare_lint! {
/// The `unused_extern_crates` lint guards against `extern crate` items
/// that are never used.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(unused_extern_crates)]
/// #![deny(warnings)]
/// extern crate proc_macro;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// `extern crate` items that are unused have no effect and should be
/// removed. Note that there are some cases where specifying an `extern
/// crate` is desired for the side effect of ensuring the given crate is
/// linked, even though it is not otherwise directly referenced. The lint
/// can be silenced by aliasing the crate to an underscore, such as
/// `extern crate foo as _`. Also note that it is no longer idiomatic to
/// use `extern crate` in the [2018 edition], as extern crates are now
/// automatically added in scope.
///
/// This lint is "allow" by default because it can be noisy, and produce
/// false-positives. If a dependency is being removed from a project, it
/// is recommended to remove it from the build configuration (such as
/// `Cargo.toml`) to ensure stale build entries aren't left behind.
///
/// [2018 edition]: https://doc.rust-lang.org/edition-guide/rust-2018/module-system/path-clarity.html#no-more-extern-crate
pub UNUSED_EXTERN_CRATES,
Allow,
"extern crates that are never used"
}
declare_lint! {
/// The `unused_crate_dependencies` lint detects crate dependencies that
/// are never used.
///
/// ### Example
///
/// ```rust,ignore (needs extern crate)
/// #![deny(unused_crate_dependencies)]
/// ```
///
/// This will produce:
///
/// ```text
/// error: extern crate `regex` is unused in crate `lint_example`
/// |
/// = help: remove the dependency or add `use regex as _;` to the crate root
/// note: the lint level is defined here
/// --> src/lib.rs:1:9
/// |
/// 1 | #![deny(unused_crate_dependencies)]
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^
/// ```
///
/// ### Explanation
///
/// After removing the code that uses a dependency, this usually also
/// requires removing the dependency from the build configuration.
/// However, sometimes that step can be missed, which leads to time wasted
/// building dependencies that are no longer used. This lint can be
/// enabled to detect dependencies that are never used (more specifically,
/// any dependency passed with the `--extern` command-line flag that is
/// never referenced via [`use`], [`extern crate`], or in any [path]).
///
/// This lint is "allow" by default because it can provide false positives
/// depending on how the build system is configured. For example, when
/// using Cargo, a "package" consists of multiple crates (such as a
/// library and a binary), but the dependencies are defined for the
/// package as a whole. If there is a dependency that is only used in the
/// binary, but not the library, then the lint will be incorrectly issued
/// in the library.
///
/// [path]: https://doc.rust-lang.org/reference/paths.html
/// [`use`]: https://doc.rust-lang.org/reference/items/use-declarations.html
/// [`extern crate`]: https://doc.rust-lang.org/reference/items/extern-crates.html
pub UNUSED_CRATE_DEPENDENCIES,
Allow,
"crate dependencies that are never used",
crate_level_only
}
declare_lint! {
/// The `unused_qualifications` lint detects unnecessarily qualified
/// names.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(unused_qualifications)]
/// mod foo {
/// pub fn bar() {}
/// }
///
/// fn main() {
/// use foo::bar;
/// foo::bar();
/// bar();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// If an item from another module is already brought into scope, then
/// there is no need to qualify it in this case. You can call `bar()`
/// directly, without the `foo::`.
///
/// This lint is "allow" by default because it is somewhat pedantic, and
/// doesn't indicate an actual problem, but rather a stylistic choice, and
/// can be noisy when refactoring or moving around code.
pub UNUSED_QUALIFICATIONS,
Allow,
"detects unnecessarily qualified names"
}
declare_lint! {
/// The `unknown_lints` lint detects unrecognized lint attributes.
///
/// ### Example
///
/// ```rust
/// #![allow(not_a_real_lint)]
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is usually a mistake to specify a lint that does not exist. Check
/// the spelling, and check the lint listing for the correct name. Also
/// consider if you are using an old version of the compiler, and the lint
/// is only available in a newer version.
pub UNKNOWN_LINTS,
Warn,
"unrecognized lint attribute",
@eval_always = true
}
declare_lint! {
/// The `unfulfilled_lint_expectations` lint detects when a lint expectation is
/// unfulfilled.
///
/// ### Example
///
/// ```rust
/// #[expect(unused_variables)]
/// let x = 10;
/// println!("{}", x);
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The `#[expect]` attribute can be used to create a lint expectation. The
/// expectation is fulfilled, if a `#[warn]` attribute at the same location
/// would result in a lint emission. If the expectation is unfulfilled,
/// because no lint was emitted, this lint will be emitted on the attribute.
///
pub UNFULFILLED_LINT_EXPECTATIONS,
Warn,
"unfulfilled lint expectation"
}
declare_lint! {
/// The `unused_variables` lint detects variables which are not used in
/// any way.
///
/// ### Example
///
/// ```rust
/// let x = 5;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused variables may signal a mistake or unfinished code. To silence
/// the warning for the individual variable, prefix it with an underscore
/// such as `_x`.
pub UNUSED_VARIABLES,
Warn,
"detect variables which are not used in any way"
}
declare_lint! {
/// The `unused_assignments` lint detects assignments that will never be read.
///
/// ### Example
///
/// ```rust
/// let mut x = 5;
/// x = 6;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused assignments may signal a mistake or unfinished code. If the
/// variable is never used after being assigned, then the assignment can
/// be removed. Variables with an underscore prefix such as `_x` will not
/// trigger this lint.
pub UNUSED_ASSIGNMENTS,
Warn,
"detect assignments that will never be read"
}
declare_lint! {
/// The `dead_code` lint detects unused, unexported items.
///
/// ### Example
///
/// ```rust
/// fn foo() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Dead code may signal a mistake or unfinished code. To silence the
/// warning for individual items, prefix the name with an underscore such
/// as `_foo`. If it was intended to expose the item outside of the crate,
/// consider adding a visibility modifier like `pub`.
///
/// To preserve the numbering of tuple structs with unused fields,
/// change the unused fields to have unit type or use
/// `PhantomData`.
///
/// Otherwise consider removing the unused code.
///
/// ### Limitations
///
/// Removing fields that are only used for side-effects and never
/// read will result in behavioral changes. Examples of this
/// include:
///
/// - If a field's value performs an action when it is dropped.
/// - If a field's type does not implement an auto trait
/// (e.g. `Send`, `Sync`, `Unpin`).
///
/// For side-effects from dropping field values, this lint should
/// be allowed on those fields. For side-effects from containing
/// field types, `PhantomData` should be used.
pub DEAD_CODE,
Warn,
"detect unused, unexported items"
}
declare_lint! {
/// The `unused_attributes` lint detects attributes that were not used by
/// the compiler.
///
/// ### Example
///
/// ```rust
/// #![ignore]
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused [attributes] may indicate the attribute is placed in the wrong
/// position. Consider removing it, or placing it in the correct position.
/// Also consider if you intended to use an _inner attribute_ (with a `!`
/// such as `#![allow(unused)]`) which applies to the item the attribute
/// is within, or an _outer attribute_ (without a `!` such as
/// `#[allow(unused)]`) which applies to the item *following* the
/// attribute.
///
/// [attributes]: https://doc.rust-lang.org/reference/attributes.html
pub UNUSED_ATTRIBUTES,
Warn,
"detects attributes that were not used by the compiler"
}
declare_lint! {
/// The `unreachable_code` lint detects unreachable code paths.
///
/// ### Example
///
/// ```rust,no_run
/// panic!("we never go past here!");
///
/// let x = 5;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unreachable code may signal a mistake or unfinished code. If the code
/// is no longer in use, consider removing it.
pub UNREACHABLE_CODE,
Warn,
"detects unreachable code paths",
report_in_external_macro
}
declare_lint! {
/// The `unreachable_patterns` lint detects unreachable patterns.
///
/// ### Example
///
/// ```rust
/// let x = 5;
/// match x {
/// y => (),
/// 5 => (),
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This usually indicates a mistake in how the patterns are specified or
/// ordered. In this example, the `y` pattern will always match, so the
/// five is impossible to reach. Remember, match arms match in order, you
/// probably wanted to put the `5` case above the `y` case.
pub UNREACHABLE_PATTERNS,
Warn,
"detects unreachable patterns"
}
declare_lint! {
/// The `overlapping_range_endpoints` lint detects `match` arms that have [range patterns] that
/// overlap on their endpoints.
///
/// [range patterns]: https://doc.rust-lang.org/nightly/reference/patterns.html#range-patterns
///
/// ### Example
///
/// ```rust
/// let x = 123u8;
/// match x {
/// 0..=100 => { println!("small"); }
/// 100..=255 => { println!("large"); }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is likely a mistake to have range patterns in a match expression that overlap in this
/// way. Check that the beginning and end values are what you expect, and keep in mind that
/// with `..=` the left and right bounds are inclusive.
pub OVERLAPPING_RANGE_ENDPOINTS,
Warn,
"detects range patterns with overlapping endpoints"
}
declare_lint! {
/// The `non_contiguous_range_endpoints` lint detects likely off-by-one errors when using
/// exclusive [range patterns].
///
/// [range patterns]: https://doc.rust-lang.org/nightly/reference/patterns.html#range-patterns
///
/// ### Example
///
/// ```rust
/// let x = 123u32;
/// match x {
/// 0..100 => { println!("small"); }
/// 101..1000 => { println!("large"); }
/// _ => { println!("larger"); }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is likely a mistake to have range patterns in a match expression that miss out a single
/// number. Check that the beginning and end values are what you expect, and keep in mind that
/// with `..=` the right bound is inclusive, and with `..` it is exclusive.
pub NON_CONTIGUOUS_RANGE_ENDPOINTS,
Warn,
"detects off-by-one errors with exclusive range patterns"
}
declare_lint! {
/// The `bindings_with_variant_name` lint detects pattern bindings with
/// the same name as one of the matched variants.
///
/// ### Example
///
/// ```rust,compile_fail
/// pub enum Enum {
/// Foo,
/// Bar,
/// }
///
/// pub fn foo(x: Enum) {
/// match x {
/// Foo => {}
/// Bar => {}
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is usually a mistake to specify an enum variant name as an
/// [identifier pattern]. In the example above, the `match` arms are
/// specifying a variable name to bind the value of `x` to. The second arm
/// is ignored because the first one matches *all* values. The likely
/// intent is that the arm was intended to match on the enum variant.
///
/// Two possible solutions are:
///
/// * Specify the enum variant using a [path pattern], such as
/// `Enum::Foo`.
/// * Bring the enum variants into local scope, such as adding `use
/// Enum::*;` to the beginning of the `foo` function in the example
/// above.
///
/// [identifier pattern]: https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
/// [path pattern]: https://doc.rust-lang.org/reference/patterns.html#path-patterns
pub BINDINGS_WITH_VARIANT_NAME,
Deny,
"detects pattern bindings with the same name as one of the matched variants"
}
declare_lint! {
/// The `unused_macros` lint detects macros that were not used.
///
/// Note that this lint is distinct from the `unused_macro_rules` lint,
/// which checks for single rules that never match of an otherwise used
/// macro, and thus never expand.
///
/// ### Example
///
/// ```rust
/// macro_rules! unused {
/// () => {};
/// }
///
/// fn main() {
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused macros may signal a mistake or unfinished code. To silence the
/// warning for the individual macro, prefix the name with an underscore
/// such as `_my_macro`. If you intended to export the macro to make it
/// available outside of the crate, use the [`macro_export` attribute].
///
/// [`macro_export` attribute]: https://doc.rust-lang.org/reference/macros-by-example.html#path-based-scope
pub UNUSED_MACROS,
Warn,
"detects macros that were not used"
}
declare_lint! {
/// The `unused_macro_rules` lint detects macro rules that were not used.
///
/// Note that the lint is distinct from the `unused_macros` lint, which
/// fires if the entire macro is never called, while this lint fires for
/// single unused rules of the macro that is otherwise used.
/// `unused_macro_rules` fires only if `unused_macros` wouldn't fire.
///
/// ### Example
///
/// ```rust
/// #[warn(unused_macro_rules)]
/// macro_rules! unused_empty {
/// (hello) => { println!("Hello, world!") }; // This rule is unused
/// () => { println!("empty") }; // This rule is used
/// }
///
/// fn main() {
/// unused_empty!(hello);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused macro rules may signal a mistake or unfinished code. Furthermore,
/// they slow down compilation. Right now, silencing the warning is not
/// supported on a single rule level, so you have to add an allow to the
/// entire macro definition.
///
/// If you intended to export the macro to make it
/// available outside of the crate, use the [`macro_export` attribute].
///
/// [`macro_export` attribute]: https://doc.rust-lang.org/reference/macros-by-example.html#path-based-scope
pub UNUSED_MACRO_RULES,
Allow,
"detects macro rules that were not used"
}
declare_lint! {
/// The `warnings` lint allows you to change the level of other
/// lints which produce warnings.
///
/// ### Example
///
/// ```rust
/// #![deny(warnings)]
/// fn foo() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The `warnings` lint is a bit special; by changing its level, you
/// change every other warning that would produce a warning to whatever
/// value you'd like. As such, you won't ever trigger this lint in your
/// code directly.
pub WARNINGS,
Warn,
"mass-change the level for lints which produce warnings"
}
declare_lint! {
/// The `unused_features` lint detects unused or unknown features found in
/// crate-level [`feature` attributes].
///
/// [`feature` attributes]: https://doc.rust-lang.org/nightly/unstable-book/
///
/// Note: This lint is currently not functional, see [issue #44232] for
/// more details.
///
/// [issue #44232]: https://github.com/rust-lang/rust/issues/44232
pub UNUSED_FEATURES,
Warn,
"unused features found in crate-level `#[feature]` directives"
}
declare_lint! {
/// The `stable_features` lint detects a [`feature` attribute] that
/// has since been made stable.
///
/// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
///
/// ### Example
///
/// ```rust
/// #![feature(test_accepted_feature)]
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// When a feature is stabilized, it is no longer necessary to include a
/// `#![feature]` attribute for it. To fix, simply remove the
/// `#![feature]` attribute.
pub STABLE_FEATURES,
Warn,
"stable features found in `#[feature]` directive"
}
declare_lint! {
/// The `unknown_crate_types` lint detects an unknown crate type found in
/// a [`crate_type` attribute].
///
/// ### Example
///
/// ```rust,compile_fail
/// #![crate_type="lol"]
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// An unknown value give to the `crate_type` attribute is almost
/// certainly a mistake.
///
/// [`crate_type` attribute]: https://doc.rust-lang.org/reference/linkage.html
pub UNKNOWN_CRATE_TYPES,
Deny,
"unknown crate type found in `#[crate_type]` directive",
crate_level_only
}
declare_lint! {
/// The `trivial_casts` lint detects trivial casts which could be replaced
/// with coercion, which may require a temporary variable.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(trivial_casts)]
/// let x: &u32 = &42;
/// let y = x as *const u32;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A trivial cast is a cast `e as T` where `e` has type `U` and `U` is a
/// subtype of `T`. This type of cast is usually unnecessary, as it can be
/// usually be inferred.
///
/// This lint is "allow" by default because there are situations, such as
/// with FFI interfaces or complex type aliases, where it triggers
/// incorrectly, or in situations where it will be more difficult to
/// clearly express the intent. It may be possible that this will become a
/// warning in the future, possibly with an explicit syntax for coercions
/// providing a convenient way to work around the current issues.
/// See [RFC 401 (coercions)][rfc-401], [RFC 803 (type ascription)][rfc-803] and
/// [RFC 3307 (remove type ascription)][rfc-3307] for historical context.
///
/// [rfc-401]: https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md
/// [rfc-803]: https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md
/// [rfc-3307]: https://github.com/rust-lang/rfcs/blob/master/text/3307-de-rfc-type-ascription.md
pub TRIVIAL_CASTS,
Allow,
"detects trivial casts which could be removed"
}
declare_lint! {
/// The `trivial_numeric_casts` lint detects trivial numeric casts of types
/// which could be removed.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(trivial_numeric_casts)]
/// let x = 42_i32 as i32;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A trivial numeric cast is a cast of a numeric type to the same numeric
/// type. This type of cast is usually unnecessary.
///
/// This lint is "allow" by default because there are situations, such as
/// with FFI interfaces or complex type aliases, where it triggers
/// incorrectly, or in situations where it will be more difficult to
/// clearly express the intent. It may be possible that this will become a
/// warning in the future, possibly with an explicit syntax for coercions
/// providing a convenient way to work around the current issues.
/// See [RFC 401 (coercions)][rfc-401], [RFC 803 (type ascription)][rfc-803] and
/// [RFC 3307 (remove type ascription)][rfc-3307] for historical context.
///
/// [rfc-401]: https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md
/// [rfc-803]: https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md
/// [rfc-3307]: https://github.com/rust-lang/rfcs/blob/master/text/3307-de-rfc-type-ascription.md
pub TRIVIAL_NUMERIC_CASTS,
Allow,
"detects trivial casts of numeric types which could be removed"
}
declare_lint! {
/// The `exported_private_dependencies` lint detects private dependencies
/// that are exposed in a public interface.
///
/// ### Example
///
/// ```rust,ignore (needs-dependency)
/// pub fn foo() -> Option<some_private_dependency::Thing> {
/// None
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// warning: type `bar::Thing` from private dependency 'bar' in public interface
/// --> src/lib.rs:3:1
/// |
/// 3 | pub fn foo() -> Option<bar::Thing> {
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = note: `#[warn(exported_private_dependencies)]` on by default
/// ```
///
/// ### Explanation
///
/// Dependencies can be marked as "private" to indicate that they are not
/// exposed in the public interface of a crate. This can be used by Cargo
/// to independently resolve those dependencies because it can assume it
/// does not need to unify them with other packages using that same
/// dependency. This lint is an indication of a violation of that
/// contract.
///
/// To fix this, avoid exposing the dependency in your public interface.
/// Or, switch the dependency to a public dependency.
///
/// Note that support for this is only available on the nightly channel.
/// See [RFC 1977] for more details, as well as the [Cargo documentation].
///
/// [RFC 1977]: https://github.com/rust-lang/rfcs/blob/master/text/1977-public-private-dependencies.md
/// [Cargo documentation]: https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#public-dependency
pub EXPORTED_PRIVATE_DEPENDENCIES,
Warn,
"public interface leaks type from a private dependency"
}
declare_lint! {
/// The `pub_use_of_private_extern_crate` lint detects a specific
/// situation of re-exporting a private `extern crate`.
///
/// ### Example
///
/// ```rust,compile_fail
/// extern crate core;
/// pub use core as reexported_core;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A public `use` declaration should not be used to publicly re-export a
/// private `extern crate`. `pub extern crate` should be used instead.
///
/// This was historically allowed, but is not the intended behavior
/// according to the visibility rules. This is a [future-incompatible]
/// lint to transition this to a hard error in the future. See [issue
/// #127909] for more details.
///
/// [issue #127909]: https://github.com/rust-lang/rust/issues/127909
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub PUB_USE_OF_PRIVATE_EXTERN_CRATE,
Deny,
"detect public re-exports of private extern crates",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #127909 <https://github.com/rust-lang/rust/issues/127909>",
};
}
declare_lint! {
/// The `invalid_type_param_default` lint detects type parameter defaults
/// erroneously allowed in an invalid location.
///
/// ### Example
///
/// ```rust,compile_fail
/// fn foo<T=i32>(t: T) {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Default type parameters were only intended to be allowed in certain
/// situations, but historically the compiler allowed them everywhere.
/// This is a [future-incompatible] lint to transition this to a hard
/// error in the future. See [issue #36887] for more details.
///
/// [issue #36887]: https://github.com/rust-lang/rust/issues/36887
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub INVALID_TYPE_PARAM_DEFAULT,
Deny,
"type parameter default erroneously allowed in invalid location",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #36887 <https://github.com/rust-lang/rust/issues/36887>",
};
}
declare_lint! {
/// The `renamed_and_removed_lints` lint detects lints that have been
/// renamed or removed.
///
/// ### Example
///
/// ```rust
/// #![deny(raw_pointer_derive)]
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// To fix this, either remove the lint or use the new name. This can help
/// avoid confusion about lints that are no longer valid, and help
/// maintain consistency for renamed lints.
pub RENAMED_AND_REMOVED_LINTS,
Warn,
"lints that have been renamed or removed"
}
declare_lint! {
/// The `const_item_mutation` lint detects attempts to mutate a `const`
/// item.
///
/// ### Example
///
/// ```rust
/// const FOO: [i32; 1] = [0];
///
/// fn main() {
/// FOO[0] = 1;
/// // This will print "[0]".
/// println!("{:?}", FOO);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Trying to directly mutate a `const` item is almost always a mistake.
/// What is happening in the example above is that a temporary copy of the
/// `const` is mutated, but the original `const` is not. Each time you
/// refer to the `const` by name (such as `FOO` in the example above), a
/// separate copy of the value is inlined at that location.
///
/// This lint checks for writing directly to a field (`FOO.field =
/// some_value`) or array entry (`FOO[0] = val`), or taking a mutable
/// reference to the const item (`&mut FOO`), including through an
/// autoderef (`FOO.some_mut_self_method()`).
///
/// There are various alternatives depending on what you are trying to
/// accomplish:
///
/// * First, always reconsider using mutable globals, as they can be
/// difficult to use correctly, and can make the code more difficult to
/// use or understand.
/// * If you are trying to perform a one-time initialization of a global:
/// * If the value can be computed at compile-time, consider using
/// const-compatible values (see [Constant Evaluation]).
/// * For more complex single-initialization cases, consider using
/// [`std::sync::LazyLock`].
/// * If you truly need a mutable global, consider using a [`static`],
/// which has a variety of options:
/// * Simple data types can be directly defined and mutated with an
/// [`atomic`] type.
/// * More complex types can be placed in a synchronization primitive
/// like a [`Mutex`], which can be initialized with one of the options
/// listed above.
/// * A [mutable `static`] is a low-level primitive, requiring unsafe.
/// Typically This should be avoided in preference of something
/// higher-level like one of the above.
///
/// [Constant Evaluation]: https://doc.rust-lang.org/reference/const_eval.html
/// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
/// [mutable `static`]: https://doc.rust-lang.org/reference/items/static-items.html#mutable-statics
/// [`std::sync::LazyLock`]: https://doc.rust-lang.org/stable/std/sync/struct.LazyLock.html
/// [`atomic`]: https://doc.rust-lang.org/std/sync/atomic/index.html
/// [`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
pub CONST_ITEM_MUTATION,
Warn,
"detects attempts to mutate a `const` item",
}
declare_lint! {
/// The `patterns_in_fns_without_body` lint detects `mut` identifier
/// patterns as a parameter in functions without a body.
///
/// ### Example
///
/// ```rust,compile_fail
/// trait Trait {
/// fn foo(mut arg: u8);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// To fix this, remove `mut` from the parameter in the trait definition;
/// it can be used in the implementation. That is, the following is OK:
///
/// ```rust
/// trait Trait {
/// fn foo(arg: u8); // Removed `mut` here
/// }
///
/// impl Trait for i32 {
/// fn foo(mut arg: u8) { // `mut` here is OK
///
/// }
/// }
/// ```
///
/// Trait definitions can define functions without a body to specify a
/// function that implementors must define. The parameter names in the
/// body-less functions are only allowed to be `_` or an [identifier] for
/// documentation purposes (only the type is relevant). Previous versions
/// of the compiler erroneously allowed [identifier patterns] with the
/// `mut` keyword, but this was not intended to be allowed. This is a
/// [future-incompatible] lint to transition this to a hard error in the
/// future. See [issue #35203] for more details.
///
/// [identifier]: https://doc.rust-lang.org/reference/identifiers.html
/// [identifier patterns]: https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
/// [issue #35203]: https://github.com/rust-lang/rust/issues/35203
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub PATTERNS_IN_FNS_WITHOUT_BODY,
Deny,
"patterns in functions without body were erroneously allowed",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #35203 <https://github.com/rust-lang/rust/issues/35203>",
};
}
declare_lint! {
/// The `missing_fragment_specifier` lint is issued when an unused pattern in a
/// `macro_rules!` macro definition has a meta-variable (e.g. `$e`) that is not
/// followed by a fragment specifier (e.g. `:expr`).
///
/// This warning can always be fixed by removing the unused pattern in the
/// `macro_rules!` macro definition.
///
/// ### Example
///
/// ```rust,compile_fail
/// macro_rules! foo {
/// () => {};
/// ($name) => { };
/// }
///
/// fn main() {
/// foo!();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// To fix this, remove the unused pattern from the `macro_rules!` macro definition:
///
/// ```rust
/// macro_rules! foo {
/// () => {};
/// }
/// fn main() {
/// foo!();
/// }
/// ```
pub MISSING_FRAGMENT_SPECIFIER,
Deny,
"detects missing fragment specifiers in unused `macro_rules!` patterns",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #40107 <https://github.com/rust-lang/rust/issues/40107>",
};
}
declare_lint! {
/// The `late_bound_lifetime_arguments` lint detects generic lifetime
/// arguments in path segments with late bound lifetime parameters.
///
/// ### Example
///
/// ```rust
/// struct S;
///
/// impl S {
/// fn late(self, _: &u8, _: &u8) {}
/// }
///
/// fn main() {
/// S.late::<'static>(&0, &0);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is not clear how to provide arguments for early-bound lifetime
/// parameters if they are intermixed with late-bound parameters in the
/// same list. For now, providing any explicit arguments will trigger this
/// lint if late-bound parameters are present, so in the future a solution
/// can be adopted without hitting backward compatibility issues. This is
/// a [future-incompatible] lint to transition this to a hard error in the
/// future. See [issue #42868] for more details, along with a description
/// of the difference between early and late-bound parameters.
///
/// [issue #42868]: https://github.com/rust-lang/rust/issues/42868
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub LATE_BOUND_LIFETIME_ARGUMENTS,
Warn,
"detects generic lifetime arguments in path segments with late bound lifetime parameters",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #42868 <https://github.com/rust-lang/rust/issues/42868>",
};
}
declare_lint! {
/// The `order_dependent_trait_objects` lint detects a trait coherency
/// violation that would allow creating two trait impls for the same
/// dynamic trait object involving marker traits.
///
/// ### Example
///
/// ```rust,compile_fail
/// pub trait Trait {}
///
/// impl Trait for dyn Send + Sync { }
/// impl Trait for dyn Sync + Send { }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// A previous bug caused the compiler to interpret traits with different
/// orders (such as `Send + Sync` and `Sync + Send`) as distinct types
/// when they were intended to be treated the same. This allowed code to
/// define separate trait implementations when there should be a coherence
/// error. This is a [future-incompatible] lint to transition this to a
/// hard error in the future. See [issue #56484] for more details.
///
/// [issue #56484]: https://github.com/rust-lang/rust/issues/56484
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub ORDER_DEPENDENT_TRAIT_OBJECTS,
Deny,
"trait-object types were treated as different depending on marker-trait order",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #56484 <https://github.com/rust-lang/rust/issues/56484>",
};
}
declare_lint! {
/// The `coherence_leak_check` lint detects conflicting implementations of
/// a trait that are only distinguished by the old leak-check code.
///
/// ### Example
///
/// ```rust
/// trait SomeTrait { }
/// impl SomeTrait for for<'a> fn(&'a u8) { }
/// impl<'a> SomeTrait for fn(&'a u8) { }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In the past, the compiler would accept trait implementations for
/// identical functions that differed only in where the lifetime binder
/// appeared. Due to a change in the borrow checker implementation to fix
/// several bugs, this is no longer allowed. However, since this affects
/// existing code, this is a [future-incompatible] lint to transition this
/// to a hard error in the future.
///
/// Code relying on this pattern should introduce "[newtypes]",
/// like `struct Foo(for<'a> fn(&'a u8))`.
///
/// See [issue #56105] for more details.
///
/// [issue #56105]: https://github.com/rust-lang/rust/issues/56105
/// [newtypes]: https://doc.rust-lang.org/book/ch19-04-advanced-types.html#using-the-newtype-pattern-for-type-safety-and-abstraction
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub COHERENCE_LEAK_CHECK,
Warn,
"distinct impls distinguished only by the leak-check code",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::Custom("the behavior may change in a future release"),
reference: "issue #56105 <https://github.com/rust-lang/rust/issues/56105>",
};
}
declare_lint! {
/// The `deprecated` lint detects use of deprecated items.
///
/// ### Example
///
/// ```rust
/// #[deprecated]
/// fn foo() {}
///
/// fn bar() {
/// foo();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Items may be marked "deprecated" with the [`deprecated` attribute] to
/// indicate that they should no longer be used. Usually the attribute
/// should include a note on what to use instead, or check the
/// documentation.
///
/// [`deprecated` attribute]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-deprecated-attribute
pub DEPRECATED,
Warn,
"detects use of deprecated items",
report_in_external_macro
}
declare_lint! {
/// The `unused_unsafe` lint detects unnecessary use of an `unsafe` block.
///
/// ### Example
///
/// ```rust
/// unsafe {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// If nothing within the block requires `unsafe`, then remove the
/// `unsafe` marker because it is not required and may cause confusion.
pub UNUSED_UNSAFE,
Warn,
"unnecessary use of an `unsafe` block"
}
declare_lint! {
/// The `unused_mut` lint detects mut variables which don't need to be
/// mutable.
///
/// ### Example
///
/// ```rust
/// let mut x = 5;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The preferred style is to only mark variables as `mut` if it is
/// required.
pub UNUSED_MUT,
Warn,
"detect mut variables which don't need to be mutable"
}
declare_lint! {
/// The `rust_2024_incompatible_pat` lint
/// detects patterns whose meaning will change in the Rust 2024 edition.
///
/// ### Example
///
/// ```rust,edition2021
/// #![warn(rust_2024_incompatible_pat)]
///
/// if let Some(&a) = &Some(&0u8) {
/// let _: u8 = a;
/// }
/// if let Some(mut _a) = &mut Some(0u8) {
/// _a = 7u8;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust 2024 and above, the `mut` keyword does not reset the pattern binding mode,
/// and nor do `&` or `&mut` patterns. The lint will suggest code that
/// has the same meaning in all editions.
pub RUST_2024_INCOMPATIBLE_PAT,
Allow,
"detects patterns whose meaning will change in Rust 2024",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/match-ergonomics.html>",
};
}
declare_lint! {
/// The `unconditional_recursion` lint detects functions that cannot
/// return without calling themselves.
///
/// ### Example
///
/// ```rust
/// fn foo() {
/// foo();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is usually a mistake to have a recursive call that does not have
/// some condition to cause it to terminate. If you really intend to have
/// an infinite loop, using a `loop` expression is recommended.
pub UNCONDITIONAL_RECURSION,
Warn,
"functions that cannot return without calling themselves"
}
declare_lint! {
/// The `single_use_lifetimes` lint detects lifetimes that are only used
/// once.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(single_use_lifetimes)]
///
/// fn foo<'a>(x: &'a u32) {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Specifying an explicit lifetime like `'a` in a function or `impl`
/// should only be used to link together two things. Otherwise, you should
/// just use `'_` to indicate that the lifetime is not linked to anything,
/// or elide the lifetime altogether if possible.
///
/// This lint is "allow" by default because it was introduced at a time
/// when `'_` and elided lifetimes were first being introduced, and this
/// lint would be too noisy. Also, there are some known false positives
/// that it produces. See [RFC 2115] for historical context, and [issue
/// #44752] for more details.
///
/// [RFC 2115]: https://github.com/rust-lang/rfcs/blob/master/text/2115-argument-lifetimes.md
/// [issue #44752]: https://github.com/rust-lang/rust/issues/44752
pub SINGLE_USE_LIFETIMES,
Allow,
"detects lifetime parameters that are only used once"
}
declare_lint! {
/// The `unused_lifetimes` lint detects lifetime parameters that are never
/// used.
///
/// ### Example
///
/// ```rust,compile_fail
/// #[deny(unused_lifetimes)]
///
/// pub fn foo<'a>() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused lifetime parameters may signal a mistake or unfinished code.
/// Consider removing the parameter.
pub UNUSED_LIFETIMES,
Allow,
"detects lifetime parameters that are never used"
}
declare_lint! {
/// The `redundant_lifetimes` lint detects lifetime parameters that are
/// redundant because they are equal to another named lifetime.
///
/// ### Example
///
/// ```rust,compile_fail
/// #[deny(redundant_lifetimes)]
///
/// // `'a = 'static`, so all usages of `'a` can be replaced with `'static`
/// pub fn bar<'a: 'static>() {}
///
/// // `'a = 'b`, so all usages of `'b` can be replaced with `'a`
/// pub fn bar<'a: 'b, 'b: 'a>() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused lifetime parameters may signal a mistake or unfinished code.
/// Consider removing the parameter.
pub REDUNDANT_LIFETIMES,
Allow,
"detects lifetime parameters that are redundant because they are equal to some other named lifetime"
}
declare_lint! {
/// The `tyvar_behind_raw_pointer` lint detects raw pointer to an
/// inference variable.
///
/// ### Example
///
/// ```rust,edition2015
/// // edition 2015
/// let data = std::ptr::null();
/// let _ = &data as *const *const ();
///
/// if data.is_null() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This kind of inference was previously allowed, but with the future
/// arrival of [arbitrary self types], this can introduce ambiguity. To
/// resolve this, use an explicit type instead of relying on type
/// inference.
///
/// This is a [future-incompatible] lint to transition this to a hard
/// error in the 2018 edition. See [issue #46906] for more details. This
/// is currently a hard-error on the 2018 edition, and is "warn" by
/// default in the 2015 edition.
///
/// [arbitrary self types]: https://github.com/rust-lang/rust/issues/44874
/// [issue #46906]: https://github.com/rust-lang/rust/issues/46906
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub TYVAR_BEHIND_RAW_POINTER,
Warn,
"raw pointer to an inference variable",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
reference: "issue #46906 <https://github.com/rust-lang/rust/issues/46906>",
};
}
declare_lint! {
/// The `elided_lifetimes_in_paths` lint detects the use of hidden
/// lifetime parameters.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(elided_lifetimes_in_paths)]
/// #![deny(warnings)]
/// struct Foo<'a> {
/// x: &'a u32
/// }
///
/// fn foo(x: &Foo) {
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Elided lifetime parameters can make it difficult to see at a glance
/// that borrowing is occurring. This lint ensures that lifetime
/// parameters are always explicitly stated, even if it is the `'_`
/// [placeholder lifetime].
///
/// This lint is "allow" by default because it has some known issues, and
/// may require a significant transition for old code.
///
/// [placeholder lifetime]: https://doc.rust-lang.org/reference/lifetime-elision.html#lifetime-elision-in-functions
pub ELIDED_LIFETIMES_IN_PATHS,
Allow,
"hidden lifetime parameters in types are deprecated"
}
declare_lint! {
/// The `elided_named_lifetimes` lint detects when an elided
/// lifetime ends up being a named lifetime, such as `'static`
/// or some lifetime parameter `'a`.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(elided_named_lifetimes)]
/// struct Foo;
/// impl Foo {
/// pub fn get_mut(&'static self, x: &mut u8) -> &mut u8 {
/// unsafe { &mut *(x as *mut _) }
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Lifetime elision is quite useful, because it frees you from having
/// to give each lifetime its own name, but sometimes it can produce
/// somewhat surprising resolutions. In safe code, it is mostly okay,
/// because the borrow checker prevents any unsoundness, so the worst
/// case scenario is you get a confusing error message in some other place.
/// But with `unsafe` code, such unexpected resolutions may lead to unsound code.
pub ELIDED_NAMED_LIFETIMES,
Warn,
"detects when an elided lifetime gets resolved to be `'static` or some named parameter"
}
declare_lint! {
/// The `bare_trait_objects` lint suggests using `dyn Trait` for trait
/// objects.
///
/// ### Example
///
/// ```rust,edition2018
/// trait Trait { }
///
/// fn takes_trait_object(_: Box<Trait>) {
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Without the `dyn` indicator, it can be ambiguous or confusing when
/// reading code as to whether or not you are looking at a trait object.
/// The `dyn` keyword makes it explicit, and adds a symmetry to contrast
/// with [`impl Trait`].
///
/// [`impl Trait`]: https://doc.rust-lang.org/book/ch10-02-traits.html#traits-as-parameters
pub BARE_TRAIT_OBJECTS,
Warn,
"suggest using `dyn Trait` for trait objects",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
};
}
declare_lint! {
/// The `absolute_paths_not_starting_with_crate` lint detects fully
/// qualified paths that start with a module name instead of `crate`,
/// `self`, or an extern crate name
///
/// ### Example
///
/// ```rust,edition2015,compile_fail
/// #![deny(absolute_paths_not_starting_with_crate)]
///
/// mod foo {
/// pub fn bar() {}
/// }
///
/// fn main() {
/// ::foo::bar();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Rust [editions] allow the language to evolve without breaking
/// backwards compatibility. This lint catches code that uses absolute
/// paths in the style of the 2015 edition. In the 2015 edition, absolute
/// paths (those starting with `::`) refer to either the crate root or an
/// external crate. In the 2018 edition it was changed so that they only
/// refer to external crates. The path prefix `crate::` should be used
/// instead to reference items from the crate root.
///
/// If you switch the compiler from the 2015 to 2018 edition without
/// updating the code, then it will fail to compile if the old style paths
/// are used. You can manually change the paths to use the `crate::`
/// prefix to transition to the 2018 edition.
///
/// This lint solves the problem automatically. It is "allow" by default
/// because the code is perfectly valid in the 2015 edition. The [`cargo
/// fix`] tool with the `--edition` flag will switch this lint to "warn"
/// and automatically apply the suggested fix from the compiler. This
/// provides a completely automated way to update old code to the 2018
/// edition.
///
/// [editions]: https://doc.rust-lang.org/edition-guide/
/// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
pub ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
Allow,
"fully qualified paths that start with a module name \
instead of `crate`, `self`, or an extern crate name",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
reference: "issue #53130 <https://github.com/rust-lang/rust/issues/53130>",
};
}
declare_lint! {
/// The `unstable_name_collisions` lint detects that you have used a name
/// that the standard library plans to add in the future.
///
/// ### Example
///
/// ```rust
/// trait MyIterator : Iterator {
/// // is_partitioned is an unstable method that already exists on the Iterator trait
/// fn is_partitioned<P>(self, predicate: P) -> bool
/// where
/// Self: Sized,
/// P: FnMut(Self::Item) -> bool,
/// {true}
/// }
///
/// impl<T: ?Sized> MyIterator for T where T: Iterator { }
///
/// let x = vec![1, 2, 3];
/// let _ = x.iter().is_partitioned(|_| true);
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// When new methods are added to traits in the standard library, they are
/// usually added in an "unstable" form which is only available on the
/// [nightly channel] with a [`feature` attribute]. If there is any
/// preexisting code which extends a trait to have a method with the same
/// name, then the names will collide. In the future, when the method is
/// stabilized, this will cause an error due to the ambiguity. This lint
/// is an early-warning to let you know that there may be a collision in
/// the future. This can be avoided by adding type annotations to
/// disambiguate which trait method you intend to call, such as
/// `MyIterator::is_partitioned(my_iter, my_predicate)` or renaming or removing the method.
///
/// [nightly channel]: https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
/// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
pub UNSTABLE_NAME_COLLISIONS,
Warn,
"detects name collision with an existing but unstable method",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::Custom(
"once this associated item is added to the standard library, \
the ambiguity may cause an error or change in behavior!"
),
reference: "issue #48919 <https://github.com/rust-lang/rust/issues/48919>",
// Note: this item represents future incompatibility of all unstable functions in the
// standard library, and thus should never be removed or changed to an error.
};
}
declare_lint! {
/// The `irrefutable_let_patterns` lint detects [irrefutable patterns]
/// in [`if let`]s, [`while let`]s, and `if let` guards.
///
/// ### Example
///
/// ```rust
/// if let _ = 123 {
/// println!("always runs!");
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// There usually isn't a reason to have an irrefutable pattern in an
/// `if let` or `while let` statement, because the pattern will always match
/// successfully. A [`let`] or [`loop`] statement will suffice. However,
/// when generating code with a macro, forbidding irrefutable patterns
/// would require awkward workarounds in situations where the macro
/// doesn't know if the pattern is refutable or not. This lint allows
/// macros to accept this form, while alerting for a possibly incorrect
/// use in normal code.
///
/// See [RFC 2086] for more details.
///
/// [irrefutable patterns]: https://doc.rust-lang.org/reference/patterns.html#refutability
/// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
/// [`while let`]: https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
/// [`let`]: https://doc.rust-lang.org/reference/statements.html#let-statements
/// [`loop`]: https://doc.rust-lang.org/reference/expressions/loop-expr.html#infinite-loops
/// [RFC 2086]: https://github.com/rust-lang/rfcs/blob/master/text/2086-allow-if-let-irrefutables.md
pub IRREFUTABLE_LET_PATTERNS,
Warn,
"detects irrefutable patterns in `if let` and `while let` statements"
}
declare_lint! {
/// The `unused_labels` lint detects [labels] that are never used.
///
/// [labels]: https://doc.rust-lang.org/reference/expressions/loop-expr.html#loop-labels
///
/// ### Example
///
/// ```rust,no_run
/// 'unused_label: loop {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unused labels may signal a mistake or unfinished code. To silence the
/// warning for the individual label, prefix it with an underscore such as
/// `'_my_label:`.
pub UNUSED_LABELS,
Warn,
"detects labels that are never used"
}
declare_lint! {
/// The `proc_macro_derive_resolution_fallback` lint detects proc macro
/// derives using inaccessible names from parent modules.
///
/// ### Example
///
/// ```rust,ignore (proc-macro)
/// // foo.rs
/// #![crate_type = "proc-macro"]
///
/// extern crate proc_macro;
///
/// use proc_macro::*;
///
/// #[proc_macro_derive(Foo)]
/// pub fn foo1(a: TokenStream) -> TokenStream {
/// drop(a);
/// "mod __bar { static mut BAR: Option<Something> = None; }".parse().unwrap()
/// }
/// ```
///
/// ```rust,ignore (needs-dependency)
/// // bar.rs
/// #[macro_use]
/// extern crate foo;
///
/// struct Something;
///
/// #[derive(Foo)]
/// struct Another;
///
/// fn main() {}
/// ```
///
/// This will produce:
///
/// ```text
/// warning: cannot find type `Something` in this scope
/// --> src/main.rs:8:10
/// |
/// 8 | #[derive(Foo)]
/// | ^^^ names from parent modules are not accessible without an explicit import
/// |
/// = note: `#[warn(proc_macro_derive_resolution_fallback)]` on by default
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #50504 <https://github.com/rust-lang/rust/issues/50504>
/// ```
///
/// ### Explanation
///
/// If a proc-macro generates a module, the compiler unintentionally
/// allowed items in that module to refer to items in the crate root
/// without importing them. This is a [future-incompatible] lint to
/// transition this to a hard error in the future. See [issue #50504] for
/// more details.
///
/// [issue #50504]: https://github.com/rust-lang/rust/issues/50504
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
Deny,
"detects proc macro derives using inaccessible names from parent modules",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #83583 <https://github.com/rust-lang/rust/issues/83583>",
};
}
declare_lint! {
/// The `macro_use_extern_crate` lint detects the use of the [`macro_use` attribute].
///
/// ### Example
///
/// ```rust,ignore (needs extern crate)
/// #![deny(macro_use_extern_crate)]
///
/// #[macro_use]
/// extern crate serde_json;
///
/// fn main() {
/// let _ = json!{{}};
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// error: applying the `#[macro_use]` attribute to an `extern crate` item is deprecated
/// --> src/main.rs:3:1
/// |
/// 3 | #[macro_use]
/// | ^^^^^^^^^^^^
/// |
/// = help: remove it and import macros at use sites with a `use` item instead
/// note: the lint level is defined here
/// --> src/main.rs:1:9
/// |
/// 1 | #![deny(macro_use_extern_crate)]
/// | ^^^^^^^^^^^^^^^^^^^^^^
/// ```
///
/// ### Explanation
///
/// The [`macro_use` attribute] on an [`extern crate`] item causes
/// macros in that external crate to be brought into the prelude of the
/// crate, making the macros in scope everywhere. As part of the efforts
/// to simplify handling of dependencies in the [2018 edition], the use of
/// `extern crate` is being phased out. To bring macros from extern crates
/// into scope, it is recommended to use a [`use` import].
///
/// This lint is "allow" by default because this is a stylistic choice
/// that has not been settled, see [issue #52043] for more information.
///
/// [`macro_use` attribute]: https://doc.rust-lang.org/reference/macros-by-example.html#the-macro_use-attribute
/// [`use` import]: https://doc.rust-lang.org/reference/items/use-declarations.html
/// [issue #52043]: https://github.com/rust-lang/rust/issues/52043
pub MACRO_USE_EXTERN_CRATE,
Allow,
"the `#[macro_use]` attribute is now deprecated in favor of using macros \
via the module system"
}
declare_lint! {
/// The `macro_expanded_macro_exports_accessed_by_absolute_paths` lint
/// detects macro-expanded [`macro_export`] macros from the current crate
/// that cannot be referred to by absolute paths.
///
/// [`macro_export`]: https://doc.rust-lang.org/reference/macros-by-example.html#path-based-scope
///
/// ### Example
///
/// ```rust,compile_fail
/// macro_rules! define_exported {
/// () => {
/// #[macro_export]
/// macro_rules! exported {
/// () => {};
/// }
/// };
/// }
///
/// define_exported!();
///
/// fn main() {
/// crate::exported!();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The intent is that all macros marked with the `#[macro_export]`
/// attribute are made available in the root of the crate. However, when a
/// `macro_rules!` definition is generated by another macro, the macro
/// expansion is unable to uphold this rule. This is a
/// [future-incompatible] lint to transition this to a hard error in the
/// future. See [issue #53495] for more details.
///
/// [issue #53495]: https://github.com/rust-lang/rust/issues/53495
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
Deny,
"macro-expanded `macro_export` macros from the current crate \
cannot be referred to by absolute paths",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #52234 <https://github.com/rust-lang/rust/issues/52234>",
};
crate_level_only
}
declare_lint! {
/// The `explicit_outlives_requirements` lint detects unnecessary
/// lifetime bounds that can be inferred.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// #![deny(explicit_outlives_requirements)]
/// #![deny(warnings)]
///
/// struct SharedRef<'a, T>
/// where
/// T: 'a,
/// {
/// data: &'a T,
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// If a `struct` contains a reference, such as `&'a T`, the compiler
/// requires that `T` outlives the lifetime `'a`. This historically
/// required writing an explicit lifetime bound to indicate this
/// requirement. However, this can be overly explicit, causing clutter and
/// unnecessary complexity. The language was changed to automatically
/// infer the bound if it is not specified. Specifically, if the struct
/// contains a reference, directly or indirectly, to `T` with lifetime
/// `'x`, then it will infer that `T: 'x` is a requirement.
///
/// This lint is "allow" by default because it can be noisy for existing
/// code that already had these requirements. This is a stylistic choice,
/// as it is still valid to explicitly state the bound. It also has some
/// false positives that can cause confusion.
///
/// See [RFC 2093] for more details.
///
/// [RFC 2093]: https://github.com/rust-lang/rfcs/blob/master/text/2093-infer-outlives.md
pub EXPLICIT_OUTLIVES_REQUIREMENTS,
Allow,
"outlives requirements can be inferred"
}
declare_lint! {
/// The `deprecated_in_future` lint is internal to rustc and should not be
/// used by user code.
///
/// This lint is only enabled in the standard library. It works with the
/// use of `#[deprecated]` with a `since` field of a version in the future.
/// This allows something to be marked as deprecated in a future version,
/// and then this lint will ensure that the item is no longer used in the
/// standard library. See the [stability documentation] for more details.
///
/// [stability documentation]: https://rustc-dev-guide.rust-lang.org/stability.html#deprecated
pub DEPRECATED_IN_FUTURE,
Allow,
"detects use of items that will be deprecated in a future version",
report_in_external_macro
}
declare_lint! {
/// The `ambiguous_associated_items` lint detects ambiguity between
/// [associated items] and [enum variants].
///
/// [associated items]: https://doc.rust-lang.org/reference/items/associated-items.html
/// [enum variants]: https://doc.rust-lang.org/reference/items/enumerations.html
///
/// ### Example
///
/// ```rust,compile_fail
/// enum E {
/// V
/// }
///
/// trait Tr {
/// type V;
/// fn foo() -> Self::V;
/// }
///
/// impl Tr for E {
/// type V = u8;
/// // `Self::V` is ambiguous because it may refer to the associated type or
/// // the enum variant.
/// fn foo() -> Self::V { 0 }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previous versions of Rust did not allow accessing enum variants
/// through [type aliases]. When this ability was added (see [RFC 2338]), this
/// introduced some situations where it can be ambiguous what a type
/// was referring to.
///
/// To fix this ambiguity, you should use a [qualified path] to explicitly
/// state which type to use. For example, in the above example the
/// function can be written as `fn f() -> <Self as Tr>::V { 0 }` to
/// specifically refer to the associated type.
///
/// This is a [future-incompatible] lint to transition this to a hard
/// error in the future. See [issue #57644] for more details.
///
/// [issue #57644]: https://github.com/rust-lang/rust/issues/57644
/// [type aliases]: https://doc.rust-lang.org/reference/items/type-aliases.html#type-aliases
/// [RFC 2338]: https://github.com/rust-lang/rfcs/blob/master/text/2338-type-alias-enum-variants.md
/// [qualified path]: https://doc.rust-lang.org/reference/paths.html#qualified-paths
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub AMBIGUOUS_ASSOCIATED_ITEMS,
Deny,
"ambiguous associated items",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #57644 <https://github.com/rust-lang/rust/issues/57644>",
};
}
declare_lint! {
/// The `soft_unstable` lint detects unstable features that were
/// unintentionally allowed on stable.
///
/// ### Example
///
/// ```rust,compile_fail
/// #[cfg(test)]
/// extern crate test;
///
/// #[bench]
/// fn name(b: &mut test::Bencher) {
/// b.iter(|| 123)
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The [`bench` attribute] was accidentally allowed to be specified on
/// the [stable release channel]. Turning this to a hard error would have
/// broken some projects. This lint allows those projects to continue to
/// build correctly when [`--cap-lints`] is used, but otherwise signal an
/// error that `#[bench]` should not be used on the stable channel. This
/// is a [future-incompatible] lint to transition this to a hard error in
/// the future. See [issue #64266] for more details.
///
/// [issue #64266]: https://github.com/rust-lang/rust/issues/64266
/// [`bench` attribute]: https://doc.rust-lang.org/nightly/unstable-book/library-features/test.html
/// [stable release channel]: https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
/// [`--cap-lints`]: https://doc.rust-lang.org/rustc/lints/levels.html#capping-lints
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub SOFT_UNSTABLE,
Deny,
"a feature gate that doesn't break dependent crates",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #64266 <https://github.com/rust-lang/rust/issues/64266>",
};
}
declare_lint! {
/// The `inline_no_sanitize` lint detects incompatible use of
/// [`#[inline(always)]`][inline] and [`#[no_sanitize(...)]`][no_sanitize].
///
/// [inline]: https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
/// [no_sanitize]: https://doc.rust-lang.org/nightly/unstable-book/language-features/no-sanitize.html
///
/// ### Example
///
/// ```rust
/// #![feature(no_sanitize)]
///
/// #[inline(always)]
/// #[no_sanitize(address)]
/// fn x() {}
///
/// fn main() {
/// x()
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The use of the [`#[inline(always)]`][inline] attribute prevents the
/// the [`#[no_sanitize(...)]`][no_sanitize] attribute from working.
/// Consider temporarily removing `inline` attribute.
pub INLINE_NO_SANITIZE,
Warn,
"detects incompatible use of `#[inline(always)]` and `#[no_sanitize(...)]`",
}
declare_lint! {
/// The `asm_sub_register` lint detects using only a subset of a register
/// for inline asm inputs.
///
/// ### Example
///
/// ```rust,ignore (fails on non-x86_64)
/// #[cfg(target_arch="x86_64")]
/// use std::arch::asm;
///
/// fn main() {
/// #[cfg(target_arch="x86_64")]
/// unsafe {
/// asm!("mov {0}, {0}", in(reg) 0i16);
/// }
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// warning: formatting may not be suitable for sub-register argument
/// --> src/main.rs:7:19
/// |
/// 7 | asm!("mov {0}, {0}", in(reg) 0i16);
/// | ^^^ ^^^ ---- for this argument
/// |
/// = note: `#[warn(asm_sub_register)]` on by default
/// = help: use the `x` modifier to have the register formatted as `ax`
/// = help: or use the `r` modifier to keep the default formatting of `rax`
/// ```
///
/// ### Explanation
///
/// Registers on some architectures can use different names to refer to a
/// subset of the register. By default, the compiler will use the name for
/// the full register size. To explicitly use a subset of the register,
/// you can override the default by using a modifier on the template
/// string operand to specify when subregister to use. This lint is issued
/// if you pass in a value with a smaller data type than the default
/// register size, to alert you of possibly using the incorrect width. To
/// fix this, add the suggested modifier to the template, or cast the
/// value to the correct size.
///
/// See [register template modifiers] in the reference for more details.
///
/// [register template modifiers]: https://doc.rust-lang.org/nightly/reference/inline-assembly.html#template-modifiers
pub ASM_SUB_REGISTER,
Warn,
"using only a subset of a register for inline asm inputs",
}
declare_lint! {
/// The `bad_asm_style` lint detects the use of the `.intel_syntax` and
/// `.att_syntax` directives.
///
/// ### Example
///
/// ```rust,ignore (fails on non-x86_64)
/// #[cfg(target_arch="x86_64")]
/// use std::arch::asm;
///
/// fn main() {
/// #[cfg(target_arch="x86_64")]
/// unsafe {
/// asm!(
/// ".att_syntax",
/// "movq %{0}, %{0}", in(reg) 0usize
/// );
/// }
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// warning: avoid using `.att_syntax`, prefer using `options(att_syntax)` instead
/// --> src/main.rs:8:14
/// |
/// 8 | ".att_syntax",
/// | ^^^^^^^^^^^
/// |
/// = note: `#[warn(bad_asm_style)]` on by default
/// ```
///
/// ### Explanation
///
/// On x86, `asm!` uses the intel assembly syntax by default. While this
/// can be switched using assembler directives like `.att_syntax`, using the
/// `att_syntax` option is recommended instead because it will also properly
/// prefix register placeholders with `%` as required by AT&T syntax.
pub BAD_ASM_STYLE,
Warn,
"incorrect use of inline assembly",
}
declare_lint! {
/// The `unsafe_op_in_unsafe_fn` lint detects unsafe operations in unsafe
/// functions without an explicit unsafe block.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(unsafe_op_in_unsafe_fn)]
///
/// unsafe fn foo() {}
///
/// unsafe fn bar() {
/// foo();
/// }
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Currently, an [`unsafe fn`] allows any [unsafe] operation within its
/// body. However, this can increase the surface area of code that needs
/// to be scrutinized for proper behavior. The [`unsafe` block] provides a
/// convenient way to make it clear exactly which parts of the code are
/// performing unsafe operations. In the future, it is desired to change
/// it so that unsafe operations cannot be performed in an `unsafe fn`
/// without an `unsafe` block.
///
/// The fix to this is to wrap the unsafe code in an `unsafe` block.
///
/// This lint is "allow" by default on editions up to 2021, from 2024 it is
/// "warn" by default; the plan for increasing severity further is
/// still being considered. See [RFC #2585] and [issue #71668] for more
/// details.
///
/// [`unsafe fn`]: https://doc.rust-lang.org/reference/unsafe-functions.html
/// [`unsafe` block]: https://doc.rust-lang.org/reference/expressions/block-expr.html#unsafe-blocks
/// [unsafe]: https://doc.rust-lang.org/reference/unsafety.html
/// [RFC #2585]: https://github.com/rust-lang/rfcs/blob/master/text/2585-unsafe-block-in-unsafe-fn.md
/// [issue #71668]: https://github.com/rust-lang/rust/issues/71668
pub UNSAFE_OP_IN_UNSAFE_FN,
Allow,
"unsafe operations in unsafe functions without an explicit unsafe block are deprecated",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/unsafe-op-in-unsafe-fn.html>",
explain_reason: false
};
@edition Edition2024 => Warn;
}
declare_lint! {
/// The `cenum_impl_drop_cast` lint detects an `as` cast of a field-less
/// `enum` that implements [`Drop`].
///
/// [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// enum E {
/// A,
/// }
///
/// impl Drop for E {
/// fn drop(&mut self) {
/// println!("Drop");
/// }
/// }
///
/// fn main() {
/// let e = E::A;
/// let i = e as u32;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Casting a field-less `enum` that does not implement [`Copy`] to an
/// integer moves the value without calling `drop`. This can result in
/// surprising behavior if it was expected that `drop` should be called.
/// Calling `drop` automatically would be inconsistent with other move
/// operations. Since neither behavior is clear or consistent, it was
/// decided that a cast of this nature will no longer be allowed.
///
/// This is a [future-incompatible] lint to transition this to a hard error
/// in the future. See [issue #73333] for more details.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
/// [issue #73333]: https://github.com/rust-lang/rust/issues/73333
/// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
pub CENUM_IMPL_DROP_CAST,
Deny,
"a C-like enum implementing Drop is cast",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #73333 <https://github.com/rust-lang/rust/issues/73333>",
};
}
declare_lint! {
/// The `fuzzy_provenance_casts` lint detects an `as` cast between an integer
/// and a pointer.
///
/// ### Example
///
/// ```rust
/// #![warn(fuzzy_provenance_casts)]
///
/// fn main() {
/// let _dangling = 16_usize as *const u8;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This lint is part of the strict provenance effort, see [issue #95228].
/// Casting an integer to a pointer is considered bad style, as a pointer
/// contains, besides the *address* also a *provenance*, indicating what
/// memory the pointer is allowed to read/write. Casting an integer, which
/// doesn't have provenance, to a pointer requires the compiler to assign
/// (guess) provenance. The compiler assigns "all exposed valid" (see the
/// docs of [`ptr::with_exposed_provenance`] for more information about this
/// "exposing"). This penalizes the optimiser and is not well suited for
/// dynamic analysis/dynamic program verification (e.g. Miri or CHERI
/// platforms).
///
/// It is much better to use [`ptr::with_addr`] instead to specify the
/// provenance you want. If using this function is not possible because the
/// code relies on exposed provenance then there is as an escape hatch
/// [`ptr::with_exposed_provenance`].
///
/// [issue #95228]: https://github.com/rust-lang/rust/issues/95228
/// [`ptr::with_addr`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.with_addr
/// [`ptr::with_exposed_provenance`]: https://doc.rust-lang.org/core/ptr/fn.with_exposed_provenance.html
pub FUZZY_PROVENANCE_CASTS,
Allow,
"a fuzzy integer to pointer cast is used",
@feature_gate = strict_provenance_lints;
}
declare_lint! {
/// The `lossy_provenance_casts` lint detects an `as` cast between a pointer
/// and an integer.
///
/// ### Example
///
/// ```rust
/// #![warn(lossy_provenance_casts)]
///
/// fn main() {
/// let x: u8 = 37;
/// let _addr: usize = &x as *const u8 as usize;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This lint is part of the strict provenance effort, see [issue #95228].
/// Casting a pointer to an integer is a lossy operation, because beyond
/// just an *address* a pointer may be associated with a particular
/// *provenance*. This information is used by the optimiser and for dynamic
/// analysis/dynamic program verification (e.g. Miri or CHERI platforms).
///
/// Since this cast is lossy, it is considered good style to use the
/// [`ptr::addr`] method instead, which has a similar effect, but doesn't
/// "expose" the pointer provenance. This improves optimisation potential.
/// See the docs of [`ptr::addr`] and [`ptr::expose_provenance`] for more information
/// about exposing pointer provenance.
///
/// If your code can't comply with strict provenance and needs to expose
/// the provenance, then there is [`ptr::expose_provenance`] as an escape hatch,
/// which preserves the behaviour of `as usize` casts while being explicit
/// about the semantics.
///
/// [issue #95228]: https://github.com/rust-lang/rust/issues/95228
/// [`ptr::addr`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.addr
/// [`ptr::expose_provenance`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.expose_provenance
pub LOSSY_PROVENANCE_CASTS,
Allow,
"a lossy pointer to integer cast is used",
@feature_gate = strict_provenance_lints;
}
declare_lint! {
/// The `const_evaluatable_unchecked` lint detects a generic constant used
/// in a type.
///
/// ### Example
///
/// ```rust
/// const fn foo<T>() -> usize {
/// if std::mem::size_of::<*mut T>() < 8 { // size of *mut T does not depend on T
/// 4
/// } else {
/// 8
/// }
/// }
///
/// fn test<T>() {
/// let _ = [0; foo::<T>()];
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In the 1.43 release, some uses of generic parameters in array repeat
/// expressions were accidentally allowed. This is a [future-incompatible]
/// lint to transition this to a hard error in the future. See [issue
/// #76200] for a more detailed description and possible fixes.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
/// [issue #76200]: https://github.com/rust-lang/rust/issues/76200
pub CONST_EVALUATABLE_UNCHECKED,
Warn,
"detects a generic constant is used in a type without a emitting a warning",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #76200 <https://github.com/rust-lang/rust/issues/76200>",
};
}
declare_lint! {
/// The `function_item_references` lint detects function references that are
/// formatted with [`fmt::Pointer`] or transmuted.
///
/// [`fmt::Pointer`]: https://doc.rust-lang.org/std/fmt/trait.Pointer.html
///
/// ### Example
///
/// ```rust
/// fn foo() { }
///
/// fn main() {
/// println!("{:p}", &foo);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Taking a reference to a function may be mistaken as a way to obtain a
/// pointer to that function. This can give unexpected results when
/// formatting the reference as a pointer or transmuting it. This lint is
/// issued when function references are formatted as pointers, passed as
/// arguments bound by [`fmt::Pointer`] or transmuted.
pub FUNCTION_ITEM_REFERENCES,
Warn,
"suggest casting to a function pointer when attempting to take references to function items",
}
declare_lint! {
/// The `uninhabited_static` lint detects uninhabited statics.
///
/// ### Example
///
/// ```rust
/// enum Void {}
/// extern {
/// static EXTERN: Void;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Statics with an uninhabited type can never be initialized, so they are impossible to define.
/// However, this can be side-stepped with an `extern static`, leading to problems later in the
/// compiler which assumes that there are no initialized uninhabited places (such as locals or
/// statics). This was accidentally allowed, but is being phased out.
pub UNINHABITED_STATIC,
Warn,
"uninhabited static",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #74840 <https://github.com/rust-lang/rust/issues/74840>",
};
}
declare_lint! {
/// The `unnameable_test_items` lint detects [`#[test]`][test] functions
/// that are not able to be run by the test harness because they are in a
/// position where they are not nameable.
///
/// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
///
/// ### Example
///
/// ```rust,test
/// fn main() {
/// #[test]
/// fn foo() {
/// // This test will not fail because it does not run.
/// assert_eq!(1, 2);
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In order for the test harness to run a test, the test function must be
/// located in a position where it can be accessed from the crate root.
/// This generally means it must be defined in a module, and not anywhere
/// else such as inside another function. The compiler previously allowed
/// this without an error, so a lint was added as an alert that a test is
/// not being used. Whether or not this should be allowed has not yet been
/// decided, see [RFC 2471] and [issue #36629].
///
/// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
/// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
pub UNNAMEABLE_TEST_ITEMS,
Warn,
"detects an item that cannot be named being marked as `#[test_case]`",
report_in_external_macro
}
declare_lint! {
/// The `useless_deprecated` lint detects deprecation attributes with no effect.
///
/// ### Example
///
/// ```rust,compile_fail
/// struct X;
///
/// #[deprecated = "message"]
/// impl Default for X {
/// fn default() -> Self {
/// X
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Deprecation attributes have no effect on trait implementations.
pub USELESS_DEPRECATED,
Deny,
"detects deprecation attributes with no effect",
}
declare_lint! {
/// The `undefined_naked_function_abi` lint detects naked function definitions that
/// either do not specify an ABI or specify the Rust ABI.
///
/// ### Example
///
/// ```rust
/// #![feature(asm_experimental_arch, naked_functions)]
///
/// use std::arch::naked_asm;
///
/// #[naked]
/// pub fn default_abi() -> u32 {
/// unsafe { naked_asm!(""); }
/// }
///
/// #[naked]
/// pub extern "Rust" fn rust_abi() -> u32 {
/// unsafe { naked_asm!(""); }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The Rust ABI is currently undefined. Therefore, naked functions should
/// specify a non-Rust ABI.
pub UNDEFINED_NAKED_FUNCTION_ABI,
Warn,
"undefined naked function ABI"
}
declare_lint! {
/// The `ineffective_unstable_trait_impl` lint detects `#[unstable]` attributes which are not used.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![feature(staged_api)]
///
/// #[derive(Clone)]
/// #[stable(feature = "x", since = "1")]
/// struct S {}
///
/// #[unstable(feature = "y", issue = "none")]
/// impl Copy for S {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// `staged_api` does not currently support using a stability attribute on `impl` blocks.
/// `impl`s are always stable if both the type and trait are stable, and always unstable otherwise.
pub INEFFECTIVE_UNSTABLE_TRAIT_IMPL,
Deny,
"detects `#[unstable]` on stable trait implementations for stable types"
}
declare_lint! {
/// The `self_constructor_from_outer_item` lint detects cases where the `Self` constructor
/// was silently allowed due to a bug in the resolver, and which may produce surprising
/// and unintended behavior.
///
/// Using a `Self` type alias from an outer item was never intended, but was silently allowed.
/// This is deprecated -- and is a hard error when the `Self` type alias references generics
/// that are not in scope.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(self_constructor_from_outer_item)]
///
/// struct S0(usize);
///
/// impl S0 {
/// fn foo() {
/// const C: S0 = Self(0);
/// fn bar() -> S0 {
/// Self(0)
/// }
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The `Self` type alias should not be reachable because nested items are not associated with
/// the scope of the parameters from the parent item.
pub SELF_CONSTRUCTOR_FROM_OUTER_ITEM,
Warn,
"detect unsupported use of `Self` from outer item",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #124186 <https://github.com/rust-lang/rust/issues/124186>",
};
}
declare_lint! {
/// The `semicolon_in_expressions_from_macros` lint detects trailing semicolons
/// in macro bodies when the macro is invoked in expression position.
/// This was previous accepted, but is being phased out.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(semicolon_in_expressions_from_macros)]
/// macro_rules! foo {
/// () => { true; }
/// }
///
/// fn main() {
/// let val = match true {
/// true => false,
/// _ => foo!()
/// };
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previous, Rust ignored trailing semicolon in a macro
/// body when a macro was invoked in expression position.
/// However, this makes the treatment of semicolons in the language
/// inconsistent, and could lead to unexpected runtime behavior
/// in some circumstances (e.g. if the macro author expects
/// a value to be dropped).
///
/// This is a [future-incompatible] lint to transition this
/// to a hard error in the future. See [issue #79813] for more details.
///
/// [issue #79813]: https://github.com/rust-lang/rust/issues/79813
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
Warn,
"trailing semicolon in macro body used as expression",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #79813 <https://github.com/rust-lang/rust/issues/79813>",
};
}
declare_lint! {
/// The `legacy_derive_helpers` lint detects derive helper attributes
/// that are used before they are introduced.
///
/// ### Example
///
/// ```rust,ignore (needs extern crate)
/// #[serde(rename_all = "camelCase")]
/// #[derive(Deserialize)]
/// struct S { /* fields */ }
/// ```
///
/// produces:
///
/// ```text
/// warning: derive helper attribute is used before it is introduced
/// --> $DIR/legacy-derive-helpers.rs:1:3
/// |
/// 1 | #[serde(rename_all = "camelCase")]
/// | ^^^^^
/// ...
/// 2 | #[derive(Deserialize)]
/// | ----------- the attribute is introduced here
/// ```
///
/// ### Explanation
///
/// Attributes like this work for historical reasons, but attribute expansion works in
/// left-to-right order in general, so, to resolve `#[serde]`, compiler has to try to "look
/// into the future" at not yet expanded part of the item , but such attempts are not always
/// reliable.
///
/// To fix the warning place the helper attribute after its corresponding derive.
/// ```rust,ignore (needs extern crate)
/// #[derive(Deserialize)]
/// #[serde(rename_all = "camelCase")]
/// struct S { /* fields */ }
/// ```
pub LEGACY_DERIVE_HELPERS,
Warn,
"detects derive helper attributes that are used before they are introduced",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #79202 <https://github.com/rust-lang/rust/issues/79202>",
};
}
declare_lint! {
/// The `large_assignments` lint detects when objects of large
/// types are being moved around.
///
/// ### Example
///
/// ```rust,ignore (can crash on some platforms)
/// let x = [0; 50000];
/// let y = x;
/// ```
///
/// produces:
///
/// ```text
/// warning: moving a large value
/// --> $DIR/move-large.rs:1:3
/// let y = x;
/// - Copied large value here
/// ```
///
/// ### Explanation
///
/// When using a large type in a plain assignment or in a function
/// argument, idiomatic code can be inefficient.
/// Ideally appropriate optimizations would resolve this, but such
/// optimizations are only done in a best-effort manner.
/// This lint will trigger on all sites of large moves and thus allow the
/// user to resolve them in code.
pub LARGE_ASSIGNMENTS,
Warn,
"detects large moves or copies",
}
declare_lint! {
/// The `unexpected_cfgs` lint detects unexpected conditional compilation conditions.
///
/// ### Example
///
/// ```text
/// rustc --check-cfg 'cfg()'
/// ```
///
/// ```rust,ignore (needs command line option)
/// #[cfg(widnows)]
/// fn foo() {}
/// ```
///
/// This will produce:
///
/// ```text
/// warning: unexpected `cfg` condition name: `widnows`
/// --> lint_example.rs:1:7
/// |
/// 1 | #[cfg(widnows)]
/// | ^^^^^^^
/// |
/// = note: `#[warn(unexpected_cfgs)]` on by default
/// ```
///
/// ### Explanation
///
/// This lint is only active when [`--check-cfg`][check-cfg] arguments are being
/// passed to the compiler and triggers whenever an unexpected condition name or value is
/// used.
///
/// See the [Checking Conditional Configurations][check-cfg] section for more
/// details.
///
/// See the [Cargo Specifics][unexpected_cfgs_lint_config] section for configuring this lint in
/// `Cargo.toml`.
///
/// [check-cfg]: https://doc.rust-lang.org/nightly/rustc/check-cfg.html
/// [unexpected_cfgs_lint_config]: https://doc.rust-lang.org/nightly/rustc/check-cfg/cargo-specifics.html#check-cfg-in-lintsrust-table
pub UNEXPECTED_CFGS,
Warn,
"detects unexpected names and values in `#[cfg]` conditions",
report_in_external_macro
}
declare_lint! {
/// The `explicit_builtin_cfgs_in_flags` lint detects builtin cfgs set via the `--cfg` flag.
///
/// ### Example
///
/// ```text
/// rustc --cfg unix
/// ```
///
/// ```rust,ignore (needs command line option)
/// fn main() {}
/// ```
///
/// This will produce:
///
/// ```text
/// error: unexpected `--cfg unix` flag
/// |
/// = note: config `unix` is only supposed to be controlled by `--target`
/// = note: manually setting a built-in cfg can and does create incoherent behaviors
/// = note: `#[deny(explicit_builtin_cfgs_in_flags)]` on by default
/// ```
///
/// ### Explanation
///
/// Setting builtin cfgs can and does produce incoherent behavior, it's better to the use
/// the appropriate `rustc` flag that controls the config. For example setting the `windows`
/// cfg but on Linux based target.
pub EXPLICIT_BUILTIN_CFGS_IN_FLAGS,
Deny,
"detects builtin cfgs set via the `--cfg`"
}
declare_lint! {
/// The `repr_transparent_external_private_fields` lint
/// detects types marked `#[repr(transparent)]` that (transitively)
/// contain an external ZST type marked `#[non_exhaustive]` or containing
/// private fields
///
/// ### Example
///
/// ```rust,ignore (needs external crate)
/// #![deny(repr_transparent_external_private_fields)]
/// use foo::NonExhaustiveZst;
///
/// #[repr(transparent)]
/// struct Bar(u32, ([u32; 0], NonExhaustiveZst));
/// ```
///
/// This will produce:
///
/// ```text
/// error: zero-sized fields in repr(transparent) cannot contain external non-exhaustive types
/// --> src/main.rs:5:28
/// |
/// 5 | struct Bar(u32, ([u32; 0], NonExhaustiveZst));
/// | ^^^^^^^^^^^^^^^^
/// |
/// note: the lint level is defined here
/// --> src/main.rs:1:9
/// |
/// 1 | #![deny(repr_transparent_external_private_fields)]
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #78586 <https://github.com/rust-lang/rust/issues/78586>
/// = note: this struct contains `NonExhaustiveZst`, which is marked with `#[non_exhaustive]`, and makes it not a breaking change to become non-zero-sized in the future.
/// ```
///
/// ### Explanation
///
/// Previous, Rust accepted fields that contain external private zero-sized types,
/// even though it should not be a breaking change to add a non-zero-sized field to
/// that private type.
///
/// This is a [future-incompatible] lint to transition this
/// to a hard error in the future. See [issue #78586] for more details.
///
/// [issue #78586]: https://github.com/rust-lang/rust/issues/78586
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
Warn,
"transparent type contains an external ZST that is marked #[non_exhaustive] or contains private fields",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #78586 <https://github.com/rust-lang/rust/issues/78586>",
};
}
declare_lint! {
/// The `unstable_syntax_pre_expansion` lint detects the use of unstable
/// syntax that is discarded during attribute expansion.
///
/// ### Example
///
/// ```rust
/// #[cfg(FALSE)]
/// macro foo() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The input to active attributes such as `#[cfg]` or procedural macro
/// attributes is required to be valid syntax. Previously, the compiler only
/// gated the use of unstable syntax features after resolving `#[cfg]` gates
/// and expanding procedural macros.
///
/// To avoid relying on unstable syntax, move the use of unstable syntax
/// into a position where the compiler does not parse the syntax, such as a
/// functionlike macro.
///
/// ```rust
/// # #![deny(unstable_syntax_pre_expansion)]
///
/// macro_rules! identity {
/// ( $($tokens:tt)* ) => { $($tokens)* }
/// }
///
/// #[cfg(FALSE)]
/// identity! {
/// macro foo() {}
/// }
/// ```
///
/// This is a [future-incompatible] lint to transition this
/// to a hard error in the future. See [issue #65860] for more details.
///
/// [issue #65860]: https://github.com/rust-lang/rust/issues/65860
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub UNSTABLE_SYNTAX_PRE_EXPANSION,
Warn,
"unstable syntax can change at any point in the future, causing a hard error!",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #65860 <https://github.com/rust-lang/rust/issues/65860>",
};
}
declare_lint! {
/// The `ambiguous_glob_reexports` lint detects cases where names re-exported via globs
/// collide. Downstream users trying to use the same name re-exported from multiple globs
/// will receive a warning pointing out redefinition of the same name.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(ambiguous_glob_reexports)]
/// pub mod foo {
/// pub type X = u8;
/// }
///
/// pub mod bar {
/// pub type Y = u8;
/// pub type X = u8;
/// }
///
/// pub use foo::*;
/// pub use bar::*;
///
///
/// pub fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This was previously accepted but it could silently break a crate's downstream users code.
/// For example, if `foo::*` and `bar::*` were re-exported before `bar::X` was added to the
/// re-exports, down stream users could use `this_crate::X` without problems. However, adding
/// `bar::X` would cause compilation errors in downstream crates because `X` is defined
/// multiple times in the same namespace of `this_crate`.
pub AMBIGUOUS_GLOB_REEXPORTS,
Warn,
"ambiguous glob re-exports",
}
declare_lint! {
/// The `hidden_glob_reexports` lint detects cases where glob re-export items are shadowed by
/// private items.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(hidden_glob_reexports)]
///
/// pub mod upstream {
/// mod inner { pub struct Foo {}; pub struct Bar {}; }
/// pub use self::inner::*;
/// struct Foo {} // private item shadows `inner::Foo`
/// }
///
/// // mod downstream {
/// // fn test() {
/// // let _ = crate::upstream::Foo; // inaccessible
/// // }
/// // }
///
/// pub fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This was previously accepted without any errors or warnings but it could silently break a
/// crate's downstream user code. If the `struct Foo` was added, `dep::inner::Foo` would
/// silently become inaccessible and trigger a "`struct `Foo` is private`" visibility error at
/// the downstream use site.
pub HIDDEN_GLOB_REEXPORTS,
Warn,
"name introduced by a private item shadows a name introduced by a public glob re-export",
}
declare_lint! {
/// The `long_running_const_eval` lint is emitted when const
/// eval is running for a long time to ensure rustc terminates
/// even if you accidentally wrote an infinite loop.
///
/// ### Example
///
/// ```rust,compile_fail
/// const FOO: () = loop {};
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Loops allow const evaluation to compute arbitrary code, but may also
/// cause infinite loops or just very long running computations.
/// Users can enable long running computations by allowing the lint
/// on individual constants or for entire crates.
///
/// ### Unconditional warnings
///
/// Note that regardless of whether the lint is allowed or set to warn,
/// the compiler will issue warnings if constant evaluation runs significantly
/// longer than this lint's limit. These warnings are also shown to downstream
/// users from crates.io or similar registries. If you are above the lint's limit,
/// both you and downstream users might be exposed to these warnings.
/// They might also appear on compiler updates, as the compiler makes minor changes
/// about how complexity is measured: staying below the limit ensures that there
/// is enough room, and given that the lint is disabled for people who use your
/// dependency it means you will be the only one to get the warning and can put
/// out an update in your own time.
pub LONG_RUNNING_CONST_EVAL,
Deny,
"detects long const eval operations",
report_in_external_macro
}
declare_lint! {
/// The `unused_associated_type_bounds` lint is emitted when an
/// associated type bound is added to a trait object, but the associated
/// type has a `where Self: Sized` bound, and is thus unavailable on the
/// trait object anyway.
///
/// ### Example
///
/// ```rust
/// trait Foo {
/// type Bar where Self: Sized;
/// }
/// type Mop = dyn Foo<Bar = ()>;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Just like methods with `Self: Sized` bounds are unavailable on trait
/// objects, associated types can be removed from the trait object.
pub UNUSED_ASSOCIATED_TYPE_BOUNDS,
Warn,
"detects unused `Foo = Bar` bounds in `dyn Trait<Foo = Bar>`"
}
declare_lint! {
/// The `unused_doc_comments` lint detects doc comments that aren't used
/// by `rustdoc`.
///
/// ### Example
///
/// ```rust
/// /// docs for x
/// let x = 12;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// `rustdoc` does not use doc comments in all positions, and so the doc
/// comment will be ignored. Try changing it to a normal comment with `//`
/// to avoid the warning.
pub UNUSED_DOC_COMMENTS,
Warn,
"detects doc comments that aren't used by rustdoc"
}
declare_lint! {
/// The `rust_2021_incompatible_closure_captures` lint detects variables that aren't completely
/// captured in Rust 2021, such that the `Drop` order of their fields may differ between
/// Rust 2018 and 2021.
///
/// It can also detect when a variable implements a trait like `Send`, but one of its fields does not,
/// and the field is captured by a closure and used with the assumption that said field implements
/// the same trait as the root variable.
///
/// ### Example of drop reorder
///
/// ```rust,edition2018,compile_fail
/// #![deny(rust_2021_incompatible_closure_captures)]
/// # #![allow(unused)]
///
/// struct FancyInteger(i32);
///
/// impl Drop for FancyInteger {
/// fn drop(&mut self) {
/// println!("Just dropped {}", self.0);
/// }
/// }
///
/// struct Point { x: FancyInteger, y: FancyInteger }
///
/// fn main() {
/// let p = Point { x: FancyInteger(10), y: FancyInteger(20) };
///
/// let c = || {
/// let x = p.x;
/// };
///
/// c();
///
/// // ... More code ...
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In the above example, `p.y` will be dropped at the end of `f` instead of
/// with `c` in Rust 2021.
///
/// ### Example of auto-trait
///
/// ```rust,edition2018,compile_fail
/// #![deny(rust_2021_incompatible_closure_captures)]
/// use std::thread;
///
/// struct Pointer(*mut i32);
/// unsafe impl Send for Pointer {}
///
/// fn main() {
/// let mut f = 10;
/// let fptr = Pointer(&mut f as *mut i32);
/// thread::spawn(move || unsafe {
/// *fptr.0 = 20;
/// });
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In the above example, only `fptr.0` is captured in Rust 2021.
/// The field is of type `*mut i32`, which doesn't implement `Send`,
/// making the code invalid as the field cannot be sent between threads safely.
pub RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
Allow,
"detects closures affected by Rust 2021 changes",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2021),
explain_reason: false,
};
}
declare_lint_pass!(UnusedDocComment => [UNUSED_DOC_COMMENTS]);
declare_lint! {
/// The `missing_abi` lint detects cases where the ABI is omitted from
/// `extern` declarations.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(missing_abi)]
///
/// extern fn foo() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// For historic reasons, Rust implicitly selects `C` as the default ABI for
/// `extern` declarations. [Other ABIs] like `C-unwind` and `system` have
/// been added since then, and especially with their addition seeing the ABI
/// easily makes code review easier.
///
/// [Other ABIs]: https://doc.rust-lang.org/reference/items/external-blocks.html#abi
pub MISSING_ABI,
Allow,
"No declared ABI for extern declaration"
}
declare_lint! {
/// The `invalid_doc_attributes` lint detects when the `#[doc(...)]` is
/// misused.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(warnings)]
///
/// pub mod submodule {
/// #![doc(test(no_crate_inject))]
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previously, incorrect usage of the `#[doc(..)]` attribute was not
/// being validated. Usually these should be rejected as a hard error,
/// but this lint was introduced to avoid breaking any existing
/// crates which included them.
pub INVALID_DOC_ATTRIBUTES,
Deny,
"detects invalid `#[doc(...)]` attributes",
}
declare_lint! {
/// The `rust_2021_incompatible_or_patterns` lint detects usage of old versions of or-patterns.
///
/// ### Example
///
/// ```rust,edition2018,compile_fail
/// #![deny(rust_2021_incompatible_or_patterns)]
///
/// macro_rules! match_any {
/// ( $expr:expr , $( $( $pat:pat )|+ => $expr_arm:expr ),+ ) => {
/// match $expr {
/// $(
/// $( $pat => $expr_arm, )+
/// )+
/// }
/// };
/// }
///
/// fn main() {
/// let result: Result<i64, i32> = Err(42);
/// let int: i64 = match_any!(result, Ok(i) | Err(i) => i.into());
/// assert_eq!(int, 42);
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust 2021, the `pat` matcher will match additional patterns, which include the `|` character.
pub RUST_2021_INCOMPATIBLE_OR_PATTERNS,
Allow,
"detects usage of old versions of or-patterns",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/or-patterns-macro-rules.html>",
};
}
declare_lint! {
/// The `rust_2021_prelude_collisions` lint detects the usage of trait methods which are ambiguous
/// with traits added to the prelude in future editions.
///
/// ### Example
///
/// ```rust,edition2018,compile_fail
/// #![deny(rust_2021_prelude_collisions)]
///
/// trait Foo {
/// fn try_into(self) -> Result<String, !>;
/// }
///
/// impl Foo for &str {
/// fn try_into(self) -> Result<String, !> {
/// Ok(String::from(self))
/// }
/// }
///
/// fn main() {
/// let x: String = "3".try_into().unwrap();
/// // ^^^^^^^^
/// // This call to try_into matches both Foo::try_into and TryInto::try_into as
/// // `TryInto` has been added to the Rust prelude in 2021 edition.
/// println!("{x}");
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust 2021, one of the important introductions is the [prelude changes], which add
/// `TryFrom`, `TryInto`, and `FromIterator` into the standard library's prelude. Since this
/// results in an ambiguity as to which method/function to call when an existing `try_into`
/// method is called via dot-call syntax or a `try_from`/`from_iter` associated function
/// is called directly on a type.
///
/// [prelude changes]: https://blog.rust-lang.org/inside-rust/2021/03/04/planning-rust-2021.html#prelude-changes
pub RUST_2021_PRELUDE_COLLISIONS,
Allow,
"detects the usage of trait methods which are ambiguous with traits added to the \
prelude in future editions",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/prelude.html>",
};
}
declare_lint! {
/// The `rust_2024_prelude_collisions` lint detects the usage of trait methods which are ambiguous
/// with traits added to the prelude in future editions.
///
/// ### Example
///
/// ```rust,edition2021,compile_fail
/// #![deny(rust_2024_prelude_collisions)]
/// trait Meow {
/// fn poll(&self) {}
/// }
/// impl<T> Meow for T {}
///
/// fn main() {
/// core::pin::pin!(async {}).poll();
/// // ^^^^^^
/// // This call to try_into matches both Future::poll and Meow::poll as
/// // `Future` has been added to the Rust prelude in 2024 edition.
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Rust 2024, introduces two new additions to the standard library's prelude:
/// `Future` and `IntoFuture`. This results in an ambiguity as to which method/function
/// to call when an existing `poll`/`into_future` method is called via dot-call syntax or
/// a `poll`/`into_future` associated function is called directly on a type.
///
pub RUST_2024_PRELUDE_COLLISIONS,
Allow,
"detects the usage of trait methods which are ambiguous with traits added to the \
prelude in future editions",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/prelude.html>",
};
}
declare_lint! {
/// The `rust_2021_prefixes_incompatible_syntax` lint detects identifiers that will be parsed as a
/// prefix instead in Rust 2021.
///
/// ### Example
///
/// ```rust,edition2018,compile_fail
/// #![deny(rust_2021_prefixes_incompatible_syntax)]
///
/// macro_rules! m {
/// (z $x:expr) => ();
/// }
///
/// m!(z"hey");
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust 2015 and 2018, `z"hey"` is two tokens: the identifier `z`
/// followed by the string literal `"hey"`. In Rust 2021, the `z` is
/// considered a prefix for `"hey"`.
///
/// This lint suggests to add whitespace between the `z` and `"hey"` tokens
/// to keep them separated in Rust 2021.
// Allow this lint -- rustdoc doesn't yet support threading edition into this lint's parser.
#[allow(rustdoc::invalid_rust_codeblocks)]
pub RUST_2021_PREFIXES_INCOMPATIBLE_SYNTAX,
Allow,
"identifiers that will be parsed as a prefix in Rust 2021",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/reserving-syntax.html>",
};
crate_level_only
}
declare_lint! {
/// The `unsupported_fn_ptr_calling_conventions` lint is output whenever there is a use of
/// a target dependent calling convention on a target that does not support this calling
/// convention on a function pointer.
///
/// For example `stdcall` does not make much sense for a x86_64 or, more apparently, powerpc
/// code, because this calling convention was never specified for those targets.
///
/// ### Example
///
/// ```rust,ignore (needs specific targets)
/// fn stdcall_ptr(f: extern "stdcall" fn ()) {
/// f()
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// warning: the calling convention `"stdcall"` is not supported on this target
/// --> $DIR/unsupported.rs:34:15
/// |
/// LL | fn stdcall_ptr(f: extern "stdcall" fn()) {
/// | ^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #130260 <https://github.com/rust-lang/rust/issues/130260>
/// = note: `#[warn(unsupported_fn_ptr_calling_conventions)]` on by default
/// ```
///
/// ### Explanation
///
/// On most of the targets the behaviour of `stdcall` and similar calling conventions is not
/// defined at all, but was previously accepted due to a bug in the implementation of the
/// compiler.
pub UNSUPPORTED_FN_PTR_CALLING_CONVENTIONS,
Warn,
"use of unsupported calling convention for function pointer",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #130260 <https://github.com/rust-lang/rust/issues/130260>",
};
}
declare_lint! {
/// The `break_with_label_and_loop` lint detects labeled `break` expressions with
/// an unlabeled loop as their value expression.
///
/// ### Example
///
/// ```rust
/// 'label: loop {
/// break 'label loop { break 42; };
/// };
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust, loops can have a label, and `break` expressions can refer to that label to
/// break out of specific loops (and not necessarily the innermost one). `break` expressions
/// can also carry a value expression, which can be another loop. A labeled `break` with an
/// unlabeled loop as its value expression is easy to confuse with an unlabeled break with
/// a labeled loop and is thus discouraged (but allowed for compatibility); use parentheses
/// around the loop expression to silence this warning. Unlabeled `break` expressions with
/// labeled loops yield a hard error, which can also be silenced by wrapping the expression
/// in parentheses.
pub BREAK_WITH_LABEL_AND_LOOP,
Warn,
"`break` expression with label and unlabeled loop as value expression"
}
declare_lint! {
/// The `non_exhaustive_omitted_patterns` lint aims to help consumers of a `#[non_exhaustive]`
/// struct or enum who want to match all of its fields/variants explicitly.
///
/// The `#[non_exhaustive]` annotation forces matches to use wildcards, so exhaustiveness
/// checking cannot be used to ensure that all fields/variants are matched explicitly. To remedy
/// this, this allow-by-default lint warns the user when a match mentions some but not all of
/// the fields/variants of a `#[non_exhaustive]` struct or enum.
///
/// ### Example
///
/// ```rust,ignore (needs separate crate)
/// // crate A
/// #[non_exhaustive]
/// pub enum Bar {
/// A,
/// B, // added variant in non breaking change
/// }
///
/// // in crate B
/// #![feature(non_exhaustive_omitted_patterns_lint)]
/// #[warn(non_exhaustive_omitted_patterns)]
/// match Bar::A {
/// Bar::A => {},
/// _ => {},
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// warning: some variants are not matched explicitly
/// --> $DIR/reachable-patterns.rs:70:9
/// |
/// LL | match Bar::A {
/// | ^ pattern `Bar::B` not covered
/// |
/// note: the lint level is defined here
/// --> $DIR/reachable-patterns.rs:69:16
/// |
/// LL | #[warn(non_exhaustive_omitted_patterns)]
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// = help: ensure that all variants are matched explicitly by adding the suggested match arms
/// = note: the matched value is of type `Bar` and the `non_exhaustive_omitted_patterns` attribute was found
/// ```
///
/// Warning: setting this to `deny` will make upstream non-breaking changes (adding fields or
/// variants to a `#[non_exhaustive]` struct or enum) break your crate. This goes against
/// expected semver behavior.
///
/// ### Explanation
///
/// Structs and enums tagged with `#[non_exhaustive]` force the user to add a (potentially
/// redundant) wildcard when pattern-matching, to allow for future addition of fields or
/// variants. The `non_exhaustive_omitted_patterns` lint detects when such a wildcard happens to
/// actually catch some fields/variants. In other words, when the match without the wildcard
/// would not be exhaustive. This lets the user be informed if new fields/variants were added.
pub NON_EXHAUSTIVE_OMITTED_PATTERNS,
Allow,
"detect when patterns of types marked `non_exhaustive` are missed",
@feature_gate = non_exhaustive_omitted_patterns_lint;
}
declare_lint! {
#[allow(text_direction_codepoint_in_literal)]
/// The `text_direction_codepoint_in_comment` lint detects Unicode codepoints in comments that
/// change the visual representation of text on screen in a way that does not correspond to
/// their on memory representation.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(text_direction_codepoint_in_comment)]
/// fn main() {
/// println!("{:?}"); // '');
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Unicode allows changing the visual flow of text on screen in order to support scripts that
/// are written right-to-left, but a specially crafted comment can make code that will be
/// compiled appear to be part of a comment, depending on the software used to read the code.
/// To avoid potential problems or confusion, such as in CVE-2021-42574, by default we deny
/// their use.
pub TEXT_DIRECTION_CODEPOINT_IN_COMMENT,
Deny,
"invisible directionality-changing codepoints in comment"
}
declare_lint! {
/// The `duplicate_macro_attributes` lint detects when a `#[test]`-like built-in macro
/// attribute is duplicated on an item. This lint may trigger on `bench`, `cfg_eval`, `test`
/// and `test_case`.
///
/// ### Example
///
/// ```rust,ignore (needs --test)
/// #[test]
/// #[test]
/// fn foo() {}
/// ```
///
/// This will produce:
///
/// ```text
/// warning: duplicated attribute
/// --> src/lib.rs:2:1
/// |
/// 2 | #[test]
/// | ^^^^^^^
/// |
/// = note: `#[warn(duplicate_macro_attributes)]` on by default
/// ```
///
/// ### Explanation
///
/// A duplicated attribute may erroneously originate from a copy-paste and the effect of it
/// being duplicated may not be obvious or desirable.
///
/// For instance, doubling the `#[test]` attributes registers the test to be run twice with no
/// change to its environment.
///
/// [issue #90979]: https://github.com/rust-lang/rust/issues/90979
pub DUPLICATE_MACRO_ATTRIBUTES,
Warn,
"duplicated attribute"
}
declare_lint! {
/// The `deprecated_where_clause_location` lint detects when a where clause in front of the equals
/// in an associated type.
///
/// ### Example
///
/// ```rust
/// trait Trait {
/// type Assoc<'a> where Self: 'a;
/// }
///
/// impl Trait for () {
/// type Assoc<'a> where Self: 'a = ();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The preferred location for where clauses on associated types
/// is after the type. However, for most of generic associated types development,
/// it was only accepted before the equals. To provide a transition period and
/// further evaluate this change, both are currently accepted. At some point in
/// the future, this may be disallowed at an edition boundary; but, that is
/// undecided currently.
pub DEPRECATED_WHERE_CLAUSE_LOCATION,
Warn,
"deprecated where clause location"
}
declare_lint! {
/// The `test_unstable_lint` lint tests unstable lints and is perma-unstable.
///
/// ### Example
///
/// ```rust
/// #![allow(test_unstable_lint)]
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In order to test the behavior of unstable lints, a permanently-unstable
/// lint is required. This lint can be used to trigger warnings and errors
/// from the compiler related to unstable lints.
pub TEST_UNSTABLE_LINT,
Deny,
"this unstable lint is only for testing",
@feature_gate = test_unstable_lint;
}
declare_lint! {
/// The `ffi_unwind_calls` lint detects calls to foreign functions or function pointers with
/// `C-unwind` or other FFI-unwind ABIs.
///
/// ### Example
///
/// ```rust
/// #![warn(ffi_unwind_calls)]
///
/// extern "C-unwind" {
/// fn foo();
/// }
///
/// fn bar() {
/// unsafe { foo(); }
/// let ptr: unsafe extern "C-unwind" fn() = foo;
/// unsafe { ptr(); }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// For crates containing such calls, if they are compiled with `-C panic=unwind` then the
/// produced library cannot be linked with crates compiled with `-C panic=abort`. For crates
/// that desire this ability it is therefore necessary to avoid such calls.
pub FFI_UNWIND_CALLS,
Allow,
"call to foreign functions or function pointers with FFI-unwind ABI"
}
declare_lint! {
/// The `named_arguments_used_positionally` lint detects cases where named arguments are only
/// used positionally in format strings. This usage is valid but potentially very confusing.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(named_arguments_used_positionally)]
/// fn main() {
/// let _x = 5;
/// println!("{}", _x = 1); // Prints 1, will trigger lint
///
/// println!("{}", _x); // Prints 5, no lint emitted
/// println!("{_x}", _x = _x); // Prints 5, no lint emitted
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Rust formatting strings can refer to named arguments by their position, but this usage is
/// potentially confusing. In particular, readers can incorrectly assume that the declaration
/// of named arguments is an assignment (which would produce the unit type).
/// For backwards compatibility, this is not a hard error.
pub NAMED_ARGUMENTS_USED_POSITIONALLY,
Warn,
"named arguments in format used positionally"
}
declare_lint! {
/// The `never_type_fallback_flowing_into_unsafe` lint detects cases where never type fallback
/// affects unsafe function calls.
///
/// ### Never type fallback
///
/// When the compiler sees a value of type [`!`] it implicitly inserts a coercion (if possible),
/// to allow type check to infer any type:
///
/// ```ignore (illustrative-and-has-placeholders)
/// // this
/// let x: u8 = panic!();
///
/// // is (essentially) turned by the compiler into
/// let x: u8 = absurd(panic!());
///
/// // where absurd is a function with the following signature
/// // (it's sound, because `!` always marks unreachable code):
/// fn absurd<T>(never: !) -> T { ... }
/// ```
///
/// While it's convenient to be able to use non-diverging code in one of the branches (like
/// `if a { b } else { return }`) this could lead to compilation errors:
///
/// ```compile_fail
/// // this
/// { panic!() };
///
/// // gets turned into this
/// { absurd(panic!()) }; // error: can't infer the type of `absurd`
/// ```
///
/// To prevent such errors, compiler remembers where it inserted `absurd` calls, and if it
/// can't infer their type, it sets the type to fallback. `{ absurd::<Fallback>(panic!()) };`.
/// This is what is known as "never type fallback".
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(never_type_fallback_flowing_into_unsafe)]
/// fn main() {
/// if true {
/// // return has type `!` which, is some cases, causes never type fallback
/// return
/// } else {
/// // `zeroed` is an unsafe function, which returns an unbounded type
/// unsafe { std::mem::zeroed() }
/// };
/// // depending on the fallback, `zeroed` may create `()` (which is completely sound),
/// // or `!` (which is instant undefined behavior)
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Due to historic reasons never type fallback was `()`, meaning that `!` got spontaneously
/// coerced to `()`. There are plans to change that, but they may make the code such as above
/// unsound. Instead of depending on the fallback, you should specify the type explicitly:
/// ```
/// if true {
/// return
/// } else {
/// // type is explicitly specified, fallback can't hurt us no more
/// unsafe { std::mem::zeroed::<()>() }
/// };
/// ```
///
/// See [Tracking Issue for making `!` fall back to `!`](https://github.com/rust-lang/rust/issues/123748).
///
/// [`!`]: https://doc.rust-lang.org/core/primitive.never.html
/// [`()`]: https://doc.rust-lang.org/core/primitive.unit.html
pub NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE,
Warn,
"never type fallback affecting unsafe function calls",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionAndFutureReleaseSemanticsChange(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/never-type-fallback.html>",
};
@edition Edition2024 => Deny;
report_in_external_macro
}
declare_lint! {
/// The `dependency_on_unit_never_type_fallback` lint detects cases where code compiles with
/// [never type fallback] being [`()`], but will stop compiling with fallback being [`!`].
///
/// [never type fallback]: https://doc.rust-lang.org/nightly/core/primitive.never.html#never-type-fallback
/// [`!`]: https://doc.rust-lang.org/core/primitive.never.html
/// [`()`]: https://doc.rust-lang.org/core/primitive.unit.html
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(dependency_on_unit_never_type_fallback)]
/// fn main() {
/// if true {
/// // return has type `!` which, is some cases, causes never type fallback
/// return
/// } else {
/// // the type produced by this call is not specified explicitly,
/// // so it will be inferred from the previous branch
/// Default::default()
/// };
/// // depending on the fallback, this may compile (because `()` implements `Default`),
/// // or it may not (because `!` does not implement `Default`)
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Due to historic reasons never type fallback was `()`, meaning that `!` got spontaneously
/// coerced to `()`. There are plans to change that, but they may make the code such as above
/// not compile. Instead of depending on the fallback, you should specify the type explicitly:
/// ```
/// if true {
/// return
/// } else {
/// // type is explicitly specified, fallback can't hurt us no more
/// <() as Default>::default()
/// };
/// ```
///
/// See [Tracking Issue for making `!` fall back to `!`](https://github.com/rust-lang/rust/issues/123748).
pub DEPENDENCY_ON_UNIT_NEVER_TYPE_FALLBACK,
Warn,
"never type fallback affecting unsafe function calls",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionAndFutureReleaseError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/never-type-fallback.html>",
};
report_in_external_macro
}
declare_lint! {
/// The `invalid_macro_export_arguments` lint detects cases where `#[macro_export]` is being used with invalid arguments.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(invalid_macro_export_arguments)]
///
/// #[macro_export(invalid_parameter)]
/// macro_rules! myMacro {
/// () => {
/// // [...]
/// }
/// }
///
/// #[macro_export(too, many, items)]
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The only valid argument is `#[macro_export(local_inner_macros)]` or no argument (`#[macro_export]`).
/// You can't have multiple arguments in a `#[macro_export(..)]`, or mention arguments other than `local_inner_macros`.
///
pub INVALID_MACRO_EXPORT_ARGUMENTS,
Warn,
"\"invalid_parameter\" isn't a valid argument for `#[macro_export]`",
}
declare_lint! {
/// The `private_interfaces` lint detects types in a primary interface of an item,
/// that are more private than the item itself. Primary interface of an item is all
/// its interface except for bounds on generic parameters and where clauses.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// #![deny(private_interfaces)]
/// struct SemiPriv;
///
/// mod m1 {
/// struct Priv;
/// impl crate::SemiPriv {
/// pub fn f(_: Priv) {}
/// }
/// }
///
/// # fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Having something private in primary interface guarantees that
/// the item will be unusable from outer modules due to type privacy.
pub PRIVATE_INTERFACES,
Warn,
"private type in primary interface of an item",
}
declare_lint! {
/// The `private_bounds` lint detects types in a secondary interface of an item,
/// that are more private than the item itself. Secondary interface of an item consists of
/// bounds on generic parameters and where clauses, including supertraits for trait items.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// #![deny(private_bounds)]
///
/// struct PrivTy;
/// pub struct S
/// where PrivTy:
/// {}
/// # fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Having private types or traits in item bounds makes it less clear what interface
/// the item actually provides.
pub PRIVATE_BOUNDS,
Warn,
"private type in secondary interface of an item",
}
declare_lint! {
/// The `unnameable_types` lint detects types for which you can get objects of that type,
/// but cannot name the type itself.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![allow(unused)]
/// #![deny(unnameable_types)]
/// mod m {
/// pub struct S;
/// }
///
/// pub fn get_unnameable() -> m::S { m::S }
/// # fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// It is often expected that if you can obtain an object of type `T`, then
/// you can name the type `T` as well; this lint attempts to enforce this rule.
/// The recommended action is to either reexport the type properly to make it nameable,
/// or document that users are not supposed to be able to name it for one reason or another.
///
/// Besides types, this lint applies to traits because traits can also leak through signatures,
/// and you may obtain objects of their `dyn Trait` or `impl Trait` types.
pub UNNAMEABLE_TYPES,
Allow,
"effective visibility of a type is larger than the area in which it can be named",
}
declare_lint! {
/// The `unknown_or_malformed_diagnostic_attributes` lint detects unrecognized or otherwise malformed
/// diagnostic attributes.
///
/// ### Example
///
/// ```rust
/// #![feature(diagnostic_namespace)]
/// #[diagnostic::does_not_exist]
/// struct Foo;
/// ```
///
/// {{produces}}
///
///
/// ### Explanation
///
/// It is usually a mistake to specify a diagnostic attribute that does not exist. Check
/// the spelling, and check the diagnostic attribute listing for the correct name. Also
/// consider if you are using an old version of the compiler, and the attribute
/// is only available in a newer version.
pub UNKNOWN_OR_MALFORMED_DIAGNOSTIC_ATTRIBUTES,
Warn,
"unrecognized or malformed diagnostic attribute",
}
declare_lint! {
/// The `ambiguous_glob_imports` lint detects glob imports that should report ambiguity
/// errors, but previously didn't do that due to rustc bugs.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(ambiguous_glob_imports)]
/// pub fn foo() -> u32 {
/// use sub::*;
/// C
/// }
///
/// mod sub {
/// mod mod1 { pub const C: u32 = 1; }
/// mod mod2 { pub const C: u32 = 2; }
///
/// pub use mod1::*;
/// pub use mod2::*;
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previous versions of Rust compile it successfully because it
/// had lost the ambiguity error when resolve `use sub::mod2::*`.
///
/// This is a [future-incompatible] lint to transition this to a
/// hard error in the future.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub AMBIGUOUS_GLOB_IMPORTS,
Warn,
"detects certain glob imports that require reporting an ambiguity error",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #114095 <https://github.com/rust-lang/rust/issues/114095>",
};
}
declare_lint! {
/// The `refining_impl_trait_reachable` lint detects `impl Trait` return
/// types in method signatures that are refined by a publically reachable
/// trait implementation, meaning the implementation adds information about
/// the return type that is not present in the trait.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(refining_impl_trait)]
///
/// use std::fmt::Display;
///
/// pub trait AsDisplay {
/// fn as_display(&self) -> impl Display;
/// }
///
/// impl<'s> AsDisplay for &'s str {
/// fn as_display(&self) -> Self {
/// *self
/// }
/// }
///
/// fn main() {
/// // users can observe that the return type of
/// // `<&str as AsDisplay>::as_display()` is `&str`.
/// let _x: &str = "".as_display();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Callers of methods for types where the implementation is known are
/// able to observe the types written in the impl signature. This may be
/// intended behavior, but may also lead to implementation details being
/// revealed unintentionally. In particular, it may pose a semver hazard
/// for authors of libraries who do not wish to make stronger guarantees
/// about the types than what is written in the trait signature.
///
/// `refining_impl_trait` is a lint group composed of two lints:
///
/// * `refining_impl_trait_reachable`, for refinements that are publically
/// reachable outside a crate, and
/// * `refining_impl_trait_internal`, for refinements that are only visible
/// within a crate.
///
/// We are seeking feedback on each of these lints; see issue
/// [#121718](https://github.com/rust-lang/rust/issues/121718) for more
/// information.
pub REFINING_IMPL_TRAIT_REACHABLE,
Warn,
"impl trait in impl method signature does not match trait method signature",
}
declare_lint! {
/// The `refining_impl_trait_internal` lint detects `impl Trait` return
/// types in method signatures that are refined by a trait implementation,
/// meaning the implementation adds information about the return type that
/// is not present in the trait.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(refining_impl_trait)]
///
/// use std::fmt::Display;
///
/// trait AsDisplay {
/// fn as_display(&self) -> impl Display;
/// }
///
/// impl<'s> AsDisplay for &'s str {
/// fn as_display(&self) -> Self {
/// *self
/// }
/// }
///
/// fn main() {
/// // users can observe that the return type of
/// // `<&str as AsDisplay>::as_display()` is `&str`.
/// let _x: &str = "".as_display();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Callers of methods for types where the implementation is known are
/// able to observe the types written in the impl signature. This may be
/// intended behavior, but may also lead to implementation details being
/// revealed unintentionally. In particular, it may pose a semver hazard
/// for authors of libraries who do not wish to make stronger guarantees
/// about the types than what is written in the trait signature.
///
/// `refining_impl_trait` is a lint group composed of two lints:
///
/// * `refining_impl_trait_reachable`, for refinements that are publically
/// reachable outside a crate, and
/// * `refining_impl_trait_internal`, for refinements that are only visible
/// within a crate.
///
/// We are seeking feedback on each of these lints; see issue
/// [#121718](https://github.com/rust-lang/rust/issues/121718) for more
/// information.
pub REFINING_IMPL_TRAIT_INTERNAL,
Warn,
"impl trait in impl method signature does not match trait method signature",
}
declare_lint! {
/// The `elided_lifetimes_in_associated_constant` lint detects elided lifetimes
/// in associated constants when there are other lifetimes in scope. This was
/// accidentally supported, and this lint was later relaxed to allow eliding
/// lifetimes to `'static` when there are no lifetimes in scope.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(elided_lifetimes_in_associated_constant)]
///
/// struct Foo<'a>(&'a ());
///
/// impl<'a> Foo<'a> {
/// const STR: &str = "hello, world";
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Previous version of Rust
///
/// Implicit static-in-const behavior was decided [against] for associated
/// constants because of ambiguity. This, however, regressed and the compiler
/// erroneously treats elided lifetimes in associated constants as lifetime
/// parameters on the impl.
///
/// This is a [future-incompatible] lint to transition this to a
/// hard error in the future.
///
/// [against]: https://github.com/rust-lang/rust/issues/38831
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
Deny,
"elided lifetimes cannot be used in associated constants in impls",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #115010 <https://github.com/rust-lang/rust/issues/115010>",
};
}
declare_lint! {
/// The `private_macro_use` lint detects private macros that are imported
/// with `#[macro_use]`.
///
/// ### Example
///
/// ```rust,ignore (needs extern crate)
/// // extern_macro.rs
/// macro_rules! foo_ { () => {}; }
/// use foo_ as foo;
///
/// // code.rs
///
/// #![deny(private_macro_use)]
///
/// #[macro_use]
/// extern crate extern_macro;
///
/// fn main() {
/// foo!();
/// }
/// ```
///
/// This will produce:
///
/// ```text
/// error: cannot find macro `foo` in this scope
/// ```
///
/// ### Explanation
///
/// This lint arises from overlooking visibility checks for macros
/// in an external crate.
///
/// This is a [future-incompatible] lint to transition this to a
/// hard error in the future.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub PRIVATE_MACRO_USE,
Warn,
"detects certain macro bindings that should not be re-exported",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #120192 <https://github.com/rust-lang/rust/issues/120192>",
};
}
declare_lint! {
/// The `wasm_c_abi` lint detects crate dependencies that are incompatible
/// with future versions of Rust that will emit spec-compliant C ABI.
///
/// ### Example
///
/// ```rust,ignore (needs extern crate)
/// #![deny(wasm_c_abi)]
/// ```
///
/// This will produce:
///
/// ```text
/// error: the following packages contain code that will be rejected by a future version of Rust: wasm-bindgen v0.2.87
/// |
/// note: the lint level is defined here
/// --> src/lib.rs:1:9
/// |
/// 1 | #![deny(wasm_c_abi)]
/// | ^^^^^^^^^^
/// ```
///
/// ### Explanation
///
/// Rust has historically emitted non-spec-compliant C ABI. This has caused
/// incompatibilities between other compilers and Wasm targets. In a future
/// version of Rust this will be fixed and therefore dependencies relying
/// on the non-spec-compliant C ABI will stop functioning.
pub WASM_C_ABI,
Deny,
"detects dependencies that are incompatible with the Wasm C ABI",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #71871 <https://github.com/rust-lang/rust/issues/71871>",
};
crate_level_only
}
declare_lint! {
/// The `uncovered_param_in_projection` lint detects a violation of one of Rust's orphan rules for
/// foreign trait implementations that concerns the use of type parameters inside trait associated
/// type paths ("projections") whose output may not be a local type that is mistakenly considered
/// to "cover" said parameters which is **unsound** and which may be rejected by a future version
/// of the compiler.
///
/// Originally reported in [#99554].
///
/// [#99554]: https://github.com/rust-lang/rust/issues/99554
///
/// ### Example
///
/// ```rust,ignore (dependent)
/// // dependency.rs
/// #![crate_type = "lib"]
///
/// pub trait Trait<T, U> {}
/// ```
///
/// ```edition2021,ignore (needs dependency)
/// // dependent.rs
/// trait Identity {
/// type Output;
/// }
///
/// impl<T> Identity for T {
/// type Output = T;
/// }
///
/// struct Local;
///
/// impl<T> dependency::Trait<Local, T> for <T as Identity>::Output {}
///
/// fn main() {}
/// ```
///
/// This will produce:
///
/// ```text
/// warning[E0210]: type parameter `T` must be covered by another type when it appears before the first local type (`Local`)
/// --> dependent.rs:11:6
/// |
/// 11 | impl<T> dependency::Trait<Local, T> for <T as Identity>::Output {}
/// | ^ type parameter `T` must be covered by another type when it appears before the first local type (`Local`)
/// |
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #124559 <https://github.com/rust-lang/rust/issues/124559>
/// = note: implementing a foreign trait is only possible if at least one of the types for which it is implemented is local, and no uncovered type parameters appear before that first local type
/// = note: in this case, 'before' refers to the following order: `impl<..> ForeignTrait<T1, ..., Tn> for T0`, where `T0` is the first and `Tn` is the last
/// = note: `#[warn(uncovered_param_in_projection)]` on by default
/// ```
///
/// ### Explanation
///
/// FIXME(fmease): Write explainer.
pub UNCOVERED_PARAM_IN_PROJECTION,
Warn,
"impl contains type parameters that are not covered",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #124559 <https://github.com/rust-lang/rust/issues/124559>",
};
}
declare_lint! {
/// The `deprecated_safe_2024` lint detects unsafe functions being used as
/// safe functions.
///
/// ### Example
///
/// ```rust,edition2021,compile_fail
/// #![deny(deprecated_safe)]
/// // edition 2021
/// use std::env;
/// fn enable_backtrace() {
/// env::set_var("RUST_BACKTRACE", "1");
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Rust [editions] allow the language to evolve without breaking backward
/// compatibility. This lint catches code that uses `unsafe` functions that
/// were declared as safe (non-`unsafe`) in editions prior to Rust 2024. If
/// you switch the compiler to Rust 2024 without updating the code, then it
/// will fail to compile if you are using a function previously marked as
/// safe.
///
/// You can audit the code to see if it suffices the preconditions of the
/// `unsafe` code, and if it does, you can wrap it in an `unsafe` block. If
/// you can't fulfill the preconditions, you probably need to switch to a
/// different way of doing what you want to achieve.
///
/// This lint can automatically wrap the calls in `unsafe` blocks, but this
/// obviously cannot verify that the preconditions of the `unsafe`
/// functions are fulfilled, so that is still up to the user.
///
/// The lint is currently "allow" by default, but that might change in the
/// future.
///
/// [editions]: https://doc.rust-lang.org/edition-guide/
pub DEPRECATED_SAFE_2024,
Allow,
"detects unsafe functions being used as safe functions",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/newly-unsafe-functions.html>",
};
}
declare_lint! {
/// The `missing_unsafe_on_extern` lint detects missing unsafe keyword on extern declarations.
///
/// ### Example
///
/// ```rust
/// #![warn(missing_unsafe_on_extern)]
/// #![allow(dead_code)]
///
/// extern "C" {
/// fn foo(_: i32);
/// }
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Declaring extern items, even without ever using them, can cause Undefined Behavior. We
/// should consider all sources of Undefined Behavior to be unsafe.
///
/// This is a [future-incompatible] lint to transition this to a
/// hard error in the future.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub MISSING_UNSAFE_ON_EXTERN,
Allow,
"detects missing unsafe keyword on extern declarations",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/unsafe-extern.html>",
};
}
declare_lint! {
/// The `unsafe_attr_outside_unsafe` lint detects a missing unsafe keyword
/// on attributes considered unsafe.
///
/// ### Example
///
/// ```rust
/// #![warn(unsafe_attr_outside_unsafe)]
///
/// #[no_mangle]
/// extern "C" fn foo() {}
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Some attributes (e.g. `no_mangle`, `export_name`, `link_section` -- see
/// [issue #82499] for a more complete list) are considered "unsafe" attributes.
/// An unsafe attribute must only be used inside unsafe(...).
///
/// This lint can automatically wrap the attributes in `unsafe(...)` , but this
/// obviously cannot verify that the preconditions of the `unsafe`
/// attributes are fulfilled, so that is still up to the user.
///
/// The lint is currently "allow" by default, but that might change in the
/// future.
///
/// [editions]: https://doc.rust-lang.org/edition-guide/
/// [issue #82499]: https://github.com/rust-lang/rust/issues/82499
pub UNSAFE_ATTR_OUTSIDE_UNSAFE,
Allow,
"detects unsafe attributes outside of unsafe",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/unsafe-attributes.html>",
};
}
declare_lint! {
/// The `ptr_cast_add_auto_to_object` lint detects casts of raw pointers to trait
/// objects, which add auto traits.
///
/// ### Example
///
/// ```rust,edition2021,compile_fail
/// let ptr: *const dyn core::any::Any = &();
/// _ = ptr as *const dyn core::any::Any + Send;
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Adding an auto trait can make the vtable invalid, potentially causing
/// UB in safe code afterwards. For example:
///
/// ```ignore (causes a warning)
/// #![feature(arbitrary_self_types)]
///
/// trait Trait {
/// fn f(self: *const Self)
/// where
/// Self: Send;
/// }
///
/// impl Trait for *const () {
/// fn f(self: *const Self) {
/// unreachable!()
/// }
/// }
///
/// fn main() {
/// let unsend: *const () = &();
/// let unsend: *const dyn Trait = &unsend;
/// let send_bad: *const (dyn Trait + Send) = unsend as _;
/// send_bad.f(); // this crashes, since vtable for `*const ()` does not have an entry for `f`
/// }
/// ```
///
/// Generally you must ensure that vtable is right for the pointer's type,
/// before passing the pointer to safe code.
pub PTR_CAST_ADD_AUTO_TO_OBJECT,
Warn,
"detects `as` casts from pointers to `dyn Trait` to pointers to `dyn Trait + Auto`",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #127323 <https://github.com/rust-lang/rust/issues/127323>",
};
}
declare_lint! {
/// The `out_of_scope_macro_calls` lint detects `macro_rules` called when they are not in scope,
/// above their definition, which may happen in key-value attributes.
///
/// ### Example
///
/// ```rust
/// #![doc = in_root!()]
///
/// macro_rules! in_root { () => { "" } }
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// The scope in which a `macro_rules` item is visible starts at that item and continues
/// below it. This is more similar to `let` than to other items, which are in scope both above
/// and below their definition.
/// Due to a bug `macro_rules` were accidentally in scope inside some key-value attributes
/// above their definition. The lint catches such cases.
/// To address the issue turn the `macro_rules` into a regularly scoped item by importing it
/// with `use`.
///
/// This is a [future-incompatible] lint to transition this to a
/// hard error in the future.
///
/// [future-incompatible]: ../index.md#future-incompatible-lints
pub OUT_OF_SCOPE_MACRO_CALLS,
Warn,
"detects out of scope calls to `macro_rules` in key-value attributes",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorDontReportInDeps,
reference: "issue #124535 <https://github.com/rust-lang/rust/issues/124535>",
};
}
declare_lint! {
/// The `ptr_to_integer_transmute_in_consts` lint detects pointer to integer
/// transmute in const functions and associated constants.
///
/// ### Example
///
/// ```rust
/// const fn foo(ptr: *const u8) -> usize {
/// unsafe {
/// std::mem::transmute::<*const u8, usize>(ptr)
/// }
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Transmuting pointers to integers in a `const` context is undefined behavior.
/// Any attempt to use the resulting integer will abort const-evaluation.
///
/// But sometimes the compiler might not emit an error for pointer to integer transmutes
/// inside const functions and associated consts because they are evaluated only when referenced.
/// Therefore, this lint serves as an extra layer of defense to prevent any undefined behavior
/// from compiling without any warnings or errors.
///
/// See [std::mem::transmute] in the reference for more details.
///
/// [std::mem::transmute]: https://doc.rust-lang.org/std/mem/fn.transmute.html
pub PTR_TO_INTEGER_TRANSMUTE_IN_CONSTS,
Warn,
"detects pointer to integer transmutes in const functions and associated constants",
}
declare_lint! {
/// The `tail_expr_drop_order` lint looks for those values generated at the tail expression location,
/// that runs a custom `Drop` destructor.
/// Some of them may be dropped earlier in Edition 2024 that they used to in Edition 2021 and prior.
/// This lint detects those cases and provides you information on those values and their custom destructor implementations.
/// Your discretion on this information is required.
///
/// ### Example
/// ```rust,edition2021
/// #![warn(tail_expr_drop_order)]
/// struct Droppy(i32);
/// impl Droppy {
/// fn get(&self) -> i32 {
/// self.0
/// }
/// }
/// impl Drop for Droppy {
/// fn drop(&mut self) {
/// // This is a custom destructor and it induces side-effects that is observable
/// // especially when the drop order at a tail expression changes.
/// println!("loud drop {}", self.0);
/// }
/// }
/// fn edition_2021() -> i32 {
/// let another_droppy = Droppy(0);
/// Droppy(1).get()
/// }
/// fn main() {
/// edition_2021();
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In tail expression of blocks or function bodies,
/// values of type with significant `Drop` implementation has an ill-specified drop order
/// before Edition 2024 so that they are dropped only after dropping local variables.
/// Edition 2024 introduces a new rule with drop orders for them,
/// so that they are dropped first before dropping local variables.
///
/// A significant `Drop::drop` destructor here refers to an explicit, arbitrary
/// implementation of the `Drop` trait on the type, with exceptions including `Vec`,
/// `Box`, `Rc`, `BTreeMap` and `HashMap` that are marked by the compiler otherwise
/// so long that the generic types have no significant destructor recursively.
/// In other words, a type has a significant drop destructor when it has a `Drop` implementation
/// or its destructor invokes a significant destructor on a type.
/// Since we cannot completely reason about the change by just inspecting the existence of
/// a significant destructor, this lint remains only a suggestion and is set to `allow` by default.
///
/// This lint only points out the issue with `Droppy`, which will be dropped before `another_droppy`
/// does in Edition 2024.
/// No fix will be proposed by this lint.
/// However, the most probable fix is to hoist `Droppy` into its own local variable binding.
/// ```rust
/// struct Droppy(i32);
/// impl Droppy {
/// fn get(&self) -> i32 {
/// self.0
/// }
/// }
/// fn edition_2024() -> i32 {
/// let value = Droppy(0);
/// let another_droppy = Droppy(1);
/// value.get()
/// }
/// ```
pub TAIL_EXPR_DROP_ORDER,
Allow,
"Detect and warn on significant change in drop order in tail expression location",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/temporary-tail-expr-scope.html>",
};
}
declare_lint! {
/// The `rust_2024_guarded_string_incompatible_syntax` lint detects `#` tokens
/// that will be parsed as part of a guarded string literal in Rust 2024.
///
/// ### Example
///
/// ```rust,edition2021,compile_fail
/// #![deny(rust_2024_guarded_string_incompatible_syntax)]
///
/// macro_rules! m {
/// (# $x:expr #) => ();
/// (# $x:expr) => ();
/// }
///
/// m!(#"hey"#);
/// m!(#"hello");
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Prior to Rust 2024, `#"hey"#` is three tokens: the first `#`
/// followed by the string literal `"hey"` then the final `#`.
/// In Rust 2024, the whole sequence is considered a single token.
///
/// This lint suggests to add whitespace between the leading `#`
/// and the string to keep them separated in Rust 2024.
// Allow this lint -- rustdoc doesn't yet support threading edition into this lint's parser.
#[allow(rustdoc::invalid_rust_codeblocks)]
pub RUST_2024_GUARDED_STRING_INCOMPATIBLE_SYNTAX,
Allow,
"will be parsed as a guarded string in Rust 2024",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/reserved-syntax.html>",
};
crate_level_only
}
declare_lint! {
/// The `abi_unsupported_vector_types` lint detects function definitions and calls
/// whose ABI depends on enabling certain target features, but those features are not enabled.
///
/// ### Example
///
/// ```rust,ignore (fails on non-x86_64)
/// extern "C" fn missing_target_feature(_: std::arch::x86_64::__m256) {
/// todo!()
/// }
///
/// #[target_feature(enable = "avx")]
/// unsafe extern "C" fn with_target_feature(_: std::arch::x86_64::__m256) {
/// todo!()
/// }
///
/// fn main() {
/// let v = unsafe { std::mem::zeroed() };
/// unsafe { with_target_feature(v); }
/// }
/// ```
///
/// ```text
/// warning: ABI error: this function call uses a avx vector type, which is not enabled in the caller
/// --> lint_example.rs:18:12
/// |
/// | unsafe { with_target_feature(v); }
/// | ^^^^^^^^^^^^^^^^^^^^^^ function called here
/// |
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
/// = help: consider enabling it globally (-C target-feature=+avx) or locally (#[target_feature(enable="avx")])
/// = note: `#[warn(abi_unsupported_vector_types)]` on by default
///
///
/// warning: ABI error: this function definition uses a avx vector type, which is not enabled
/// --> lint_example.rs:3:1
/// |
/// | pub extern "C" fn with_target_feature(_: std::arch::x86_64::__m256) {
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ function defined here
/// |
/// = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
/// = note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
/// = help: consider enabling it globally (-C target-feature=+avx) or locally (#[target_feature(enable="avx")])
/// ```
///
///
///
/// ### Explanation
///
/// The C ABI for `__m256` requires the value to be passed in an AVX register,
/// which is only possible when the `avx` target feature is enabled.
/// Therefore, `missing_target_feature` cannot be compiled without that target feature.
/// A similar (but complementary) message is triggered when `with_target_feature` is called
/// by a function that does not enable the `avx` target feature.
///
/// Note that this lint is very similar to the `-Wpsabi` warning in `gcc`/`clang`.
pub ABI_UNSUPPORTED_VECTOR_TYPES,
Warn,
"this function call or definition uses a vector type which is not enabled",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::FutureReleaseErrorReportInDeps,
reference: "issue #116558 <https://github.com/rust-lang/rust/issues/116558>",
};
}