
Explainer: https://zetanumbers.github.io/book/async-drop-design.html https://github.com/rust-lang/rust/pull/121801
2173 lines
87 KiB
Rust
2173 lines
87 KiB
Rust
//! Code for projecting associated types out of trait references.
|
|
|
|
use std::ops::ControlFlow;
|
|
|
|
use super::specialization_graph;
|
|
use super::translate_args;
|
|
use super::util;
|
|
use super::MismatchedProjectionTypes;
|
|
use super::Obligation;
|
|
use super::ObligationCause;
|
|
use super::PredicateObligation;
|
|
use super::Selection;
|
|
use super::SelectionContext;
|
|
use super::SelectionError;
|
|
use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
|
|
use rustc_middle::traits::BuiltinImplSource;
|
|
use rustc_middle::traits::ImplSource;
|
|
use rustc_middle::traits::ImplSourceUserDefinedData;
|
|
|
|
use crate::errors::InherentProjectionNormalizationOverflow;
|
|
use crate::infer::type_variable::TypeVariableOrigin;
|
|
use crate::infer::{BoundRegionConversionTime, InferOk};
|
|
use crate::traits::normalize::normalize_with_depth;
|
|
use crate::traits::normalize::normalize_with_depth_to;
|
|
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
|
|
use crate::traits::select::ProjectionMatchesProjection;
|
|
use rustc_data_structures::sso::SsoHashSet;
|
|
use rustc_data_structures::stack::ensure_sufficient_stack;
|
|
use rustc_errors::ErrorGuaranteed;
|
|
use rustc_hir::def::DefKind;
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
|
|
use rustc_infer::infer::DefineOpaqueTypes;
|
|
use rustc_middle::traits::select::OverflowError;
|
|
use rustc_middle::ty::fold::TypeFoldable;
|
|
use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable, TypeVisitableExt};
|
|
use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
|
|
use rustc_span::symbol::sym;
|
|
|
|
pub use rustc_middle::traits::Reveal;
|
|
|
|
pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::AliasTy<'tcx>>;
|
|
|
|
pub(super) struct InProgress;
|
|
|
|
/// When attempting to resolve `<T as TraitRef>::Name` ...
|
|
#[derive(Debug)]
|
|
pub enum ProjectionError<'tcx> {
|
|
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
|
|
TooManyCandidates,
|
|
|
|
/// ...an error occurred matching `T : TraitRef`
|
|
TraitSelectionError(SelectionError<'tcx>),
|
|
}
|
|
|
|
#[derive(PartialEq, Eq, Debug)]
|
|
enum ProjectionCandidate<'tcx> {
|
|
/// From a where-clause in the env or object type
|
|
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// From the definition of `Trait` when you have something like
|
|
/// `<<A as Trait>::B as Trait2>::C`.
|
|
TraitDef(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// Bounds specified on an object type
|
|
Object(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// From an "impl" (or a "pseudo-impl" returned by select)
|
|
Select(Selection<'tcx>),
|
|
}
|
|
|
|
enum ProjectionCandidateSet<'tcx> {
|
|
None,
|
|
Single(ProjectionCandidate<'tcx>),
|
|
Ambiguous,
|
|
Error(SelectionError<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> ProjectionCandidateSet<'tcx> {
|
|
fn mark_ambiguous(&mut self) {
|
|
*self = ProjectionCandidateSet::Ambiguous;
|
|
}
|
|
|
|
fn mark_error(&mut self, err: SelectionError<'tcx>) {
|
|
*self = ProjectionCandidateSet::Error(err);
|
|
}
|
|
|
|
// Returns true if the push was successful, or false if the candidate
|
|
// was discarded -- this could be because of ambiguity, or because
|
|
// a higher-priority candidate is already there.
|
|
fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
|
|
use self::ProjectionCandidate::*;
|
|
use self::ProjectionCandidateSet::*;
|
|
|
|
// This wacky variable is just used to try and
|
|
// make code readable and avoid confusing paths.
|
|
// It is assigned a "value" of `()` only on those
|
|
// paths in which we wish to convert `*self` to
|
|
// ambiguous (and return false, because the candidate
|
|
// was not used). On other paths, it is not assigned,
|
|
// and hence if those paths *could* reach the code that
|
|
// comes after the match, this fn would not compile.
|
|
let convert_to_ambiguous;
|
|
|
|
match self {
|
|
None => {
|
|
*self = Single(candidate);
|
|
return true;
|
|
}
|
|
|
|
Single(current) => {
|
|
// Duplicates can happen inside ParamEnv. In the case, we
|
|
// perform a lazy deduplication.
|
|
if current == &candidate {
|
|
return false;
|
|
}
|
|
|
|
// Prefer where-clauses. As in select, if there are multiple
|
|
// candidates, we prefer where-clause candidates over impls. This
|
|
// may seem a bit surprising, since impls are the source of
|
|
// "truth" in some sense, but in fact some of the impls that SEEM
|
|
// applicable are not, because of nested obligations. Where
|
|
// clauses are the safer choice. See the comment on
|
|
// `select::SelectionCandidate` and #21974 for more details.
|
|
match (current, candidate) {
|
|
(ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
|
|
(ParamEnv(..), _) => return false,
|
|
(_, ParamEnv(..)) => bug!(
|
|
"should never prefer non-param-env candidates over param-env candidates"
|
|
),
|
|
(_, _) => convert_to_ambiguous = (),
|
|
}
|
|
}
|
|
|
|
Ambiguous | Error(..) => {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We only ever get here when we moved from a single candidate
|
|
// to ambiguous.
|
|
let () = convert_to_ambiguous;
|
|
*self = Ambiguous;
|
|
false
|
|
}
|
|
}
|
|
|
|
/// States returned from `poly_project_and_unify_type`. Takes the place
|
|
/// of the old return type, which was:
|
|
/// ```ignore (not-rust)
|
|
/// Result<
|
|
/// Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
|
|
/// MismatchedProjectionTypes<'tcx>,
|
|
/// >
|
|
/// ```
|
|
pub(super) enum ProjectAndUnifyResult<'tcx> {
|
|
/// The projection bound holds subject to the given obligations. If the
|
|
/// projection cannot be normalized because the required trait bound does
|
|
/// not hold, this is returned, with `obligations` being a predicate that
|
|
/// cannot be proven.
|
|
Holds(Vec<PredicateObligation<'tcx>>),
|
|
/// The projection cannot be normalized due to ambiguity. Resolving some
|
|
/// inference variables in the projection may fix this.
|
|
FailedNormalization,
|
|
/// The project cannot be normalized because `poly_project_and_unify_type`
|
|
/// is called recursively while normalizing the same projection.
|
|
Recursive,
|
|
// the projection can be normalized, but is not equal to the expected type.
|
|
// Returns the type error that arose from the mismatch.
|
|
MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
/// ```ignore (not-rust)
|
|
/// for<...> <T as Trait>::U == V
|
|
/// ```
|
|
/// If successful, this may result in additional obligations. Also returns
|
|
/// the projection cache key used to track these additional obligations.
|
|
#[instrument(level = "debug", skip(selcx))]
|
|
pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &PolyProjectionObligation<'tcx>,
|
|
) -> ProjectAndUnifyResult<'tcx> {
|
|
let infcx = selcx.infcx;
|
|
let r = infcx.commit_if_ok(|_snapshot| {
|
|
let old_universe = infcx.universe();
|
|
let placeholder_predicate = infcx.enter_forall_and_leak_universe(obligation.predicate);
|
|
let new_universe = infcx.universe();
|
|
|
|
let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
|
|
match project_and_unify_type(selcx, &placeholder_obligation) {
|
|
ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
|
|
ProjectAndUnifyResult::Holds(obligations)
|
|
if old_universe != new_universe
|
|
&& selcx.tcx().features().generic_associated_types_extended =>
|
|
{
|
|
// If the `generic_associated_types_extended` feature is active, then we ignore any
|
|
// obligations references lifetimes from any universe greater than or equal to the
|
|
// universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
|
|
// which isn't quite what we want. Ideally, we want either an implied
|
|
// `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
|
|
// instantiate concrete regions. There is design work to be done here; until then,
|
|
// however, this allows experimenting potential GAT features without running into
|
|
// well-formedness issues.
|
|
let new_obligations = obligations
|
|
.into_iter()
|
|
.filter(|obligation| {
|
|
let mut visitor = MaxUniverse::new();
|
|
obligation.predicate.visit_with(&mut visitor);
|
|
visitor.max_universe() < new_universe
|
|
})
|
|
.collect();
|
|
Ok(ProjectAndUnifyResult::Holds(new_obligations))
|
|
}
|
|
other => Ok(other),
|
|
}
|
|
});
|
|
|
|
match r {
|
|
Ok(inner) => inner,
|
|
Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
|
|
}
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
/// ```ignore (not-rust)
|
|
/// <T as Trait>::U == V
|
|
/// ```
|
|
/// If successful, this may result in additional obligations.
|
|
///
|
|
/// See [poly_project_and_unify_type] for an explanation of the return value.
|
|
#[instrument(level = "debug", skip(selcx))]
|
|
fn project_and_unify_type<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionObligation<'tcx>,
|
|
) -> ProjectAndUnifyResult<'tcx> {
|
|
let mut obligations = vec![];
|
|
|
|
let infcx = selcx.infcx;
|
|
let normalized = match opt_normalize_projection_type(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.predicate.projection_ty,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth,
|
|
&mut obligations,
|
|
) {
|
|
Ok(Some(n)) => n,
|
|
Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
|
|
Err(InProgress) => return ProjectAndUnifyResult::Recursive,
|
|
};
|
|
debug!(?normalized, ?obligations, "project_and_unify_type result");
|
|
let actual = obligation.predicate.term;
|
|
// For an example where this is necessary see tests/ui/impl-trait/nested-return-type2.rs
|
|
// This allows users to omit re-mentioning all bounds on an associated type and just use an
|
|
// `impl Trait` for the assoc type to add more bounds.
|
|
let InferOk { value: actual, obligations: new } =
|
|
selcx.infcx.replace_opaque_types_with_inference_vars(
|
|
actual,
|
|
obligation.cause.body_id,
|
|
obligation.cause.span,
|
|
obligation.param_env,
|
|
);
|
|
obligations.extend(new);
|
|
|
|
// Need to define opaque types to support nested opaque types like `impl Fn() -> impl Trait`
|
|
match infcx.at(&obligation.cause, obligation.param_env).eq(
|
|
DefineOpaqueTypes::Yes,
|
|
normalized,
|
|
actual,
|
|
) {
|
|
Ok(InferOk { obligations: inferred_obligations, value: () }) => {
|
|
obligations.extend(inferred_obligations);
|
|
ProjectAndUnifyResult::Holds(obligations)
|
|
}
|
|
Err(err) => {
|
|
debug!("equating types encountered error {:?}", err);
|
|
ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). If ambiguity arises, which implies that
|
|
/// there are unresolved type variables in the projection, we will
|
|
/// instantiate it with a fresh type variable `$X` and generate a new
|
|
/// obligation `<T as Trait>::Item == $X` for later.
|
|
pub fn normalize_projection_type<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Term<'tcx> {
|
|
opt_normalize_projection_type(
|
|
selcx,
|
|
param_env,
|
|
projection_ty,
|
|
cause.clone(),
|
|
depth,
|
|
obligations,
|
|
)
|
|
.ok()
|
|
.flatten()
|
|
.unwrap_or_else(move || {
|
|
// if we bottom out in ambiguity, create a type variable
|
|
// and a deferred predicate to resolve this when more type
|
|
// information is available.
|
|
|
|
selcx.infcx.infer_projection(param_env, projection_ty, cause, depth + 1, obligations).into()
|
|
})
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). Returns `None` in the case of ambiguity,
|
|
/// which indicates that there are unbound type variables.
|
|
///
|
|
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
|
|
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
|
|
/// often immediately appended to another obligations vector. So now this
|
|
/// function takes an obligations vector and appends to it directly, which is
|
|
/// slightly uglier but avoids the need for an extra short-lived allocation.
|
|
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
|
|
pub(super) fn opt_normalize_projection_type<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Result<Option<Term<'tcx>>, InProgress> {
|
|
let infcx = selcx.infcx;
|
|
debug_assert!(!selcx.infcx.next_trait_solver());
|
|
// Don't use the projection cache in intercrate mode -
|
|
// the `infcx` may be re-used between intercrate in non-intercrate
|
|
// mode, which could lead to using incorrect cache results.
|
|
let use_cache = !selcx.is_intercrate();
|
|
|
|
let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
|
|
let cache_key = ProjectionCacheKey::new(projection_ty);
|
|
|
|
// FIXME(#20304) For now, I am caching here, which is good, but it
|
|
// means we don't capture the type variables that are created in
|
|
// the case of ambiguity. Which means we may create a large stream
|
|
// of such variables. OTOH, if we move the caching up a level, we
|
|
// would not benefit from caching when proving `T: Trait<U=Foo>`
|
|
// bounds. It might be the case that we want two distinct caches,
|
|
// or else another kind of cache entry.
|
|
|
|
let cache_result = if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
|
|
} else {
|
|
Ok(())
|
|
};
|
|
match cache_result {
|
|
Ok(()) => debug!("no cache"),
|
|
Err(ProjectionCacheEntry::Ambiguous) => {
|
|
// If we found ambiguity the last time, that means we will continue
|
|
// to do so until some type in the key changes (and we know it
|
|
// hasn't, because we just fully resolved it).
|
|
debug!("found cache entry: ambiguous");
|
|
return Ok(None);
|
|
}
|
|
Err(ProjectionCacheEntry::InProgress) => {
|
|
// Under lazy normalization, this can arise when
|
|
// bootstrapping. That is, imagine an environment with a
|
|
// where-clause like `A::B == u32`. Now, if we are asked
|
|
// to normalize `A::B`, we will want to check the
|
|
// where-clauses in scope. So we will try to unify `A::B`
|
|
// with `A::B`, which can trigger a recursive
|
|
// normalization.
|
|
|
|
debug!("found cache entry: in-progress");
|
|
|
|
// Cache that normalizing this projection resulted in a cycle. This
|
|
// should ensure that, unless this happens within a snapshot that's
|
|
// rolled back, fulfillment or evaluation will notice the cycle.
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().recur(cache_key);
|
|
}
|
|
return Err(InProgress);
|
|
}
|
|
Err(ProjectionCacheEntry::Recur) => {
|
|
debug!("recur cache");
|
|
return Err(InProgress);
|
|
}
|
|
Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
|
|
// This is the hottest path in this function.
|
|
//
|
|
// If we find the value in the cache, then return it along
|
|
// with the obligations that went along with it. Note
|
|
// that, when using a fulfillment context, these
|
|
// obligations could in principle be ignored: they have
|
|
// already been registered when the cache entry was
|
|
// created (and hence the new ones will quickly be
|
|
// discarded as duplicated). But when doing trait
|
|
// evaluation this is not the case, and dropping the trait
|
|
// evaluations can causes ICEs (e.g., #43132).
|
|
debug!(?ty, "found normalized ty");
|
|
obligations.extend(ty.obligations);
|
|
return Ok(Some(ty.value));
|
|
}
|
|
Err(ProjectionCacheEntry::Error) => {
|
|
debug!("opt_normalize_projection_type: found error");
|
|
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
|
|
obligations.extend(result.obligations);
|
|
return Ok(Some(result.value.into()));
|
|
}
|
|
}
|
|
|
|
let obligation =
|
|
Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_ty);
|
|
|
|
match project(selcx, &obligation) {
|
|
Ok(Projected::Progress(Progress {
|
|
term: projected_term,
|
|
obligations: mut projected_obligations,
|
|
})) => {
|
|
// if projection succeeded, then what we get out of this
|
|
// is also non-normalized (consider: it was derived from
|
|
// an impl, where-clause etc) and hence we must
|
|
// re-normalize it
|
|
|
|
let projected_term = selcx.infcx.resolve_vars_if_possible(projected_term);
|
|
|
|
let mut result = if projected_term.has_aliases() {
|
|
let normalized_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause,
|
|
depth + 1,
|
|
projected_term,
|
|
&mut projected_obligations,
|
|
);
|
|
|
|
Normalized { value: normalized_ty, obligations: projected_obligations }
|
|
} else {
|
|
Normalized { value: projected_term, obligations: projected_obligations }
|
|
};
|
|
|
|
let mut deduped = SsoHashSet::with_capacity(result.obligations.len());
|
|
result.obligations.retain(|obligation| deduped.insert(obligation.clone()));
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
|
|
}
|
|
obligations.extend(result.obligations);
|
|
Ok(Some(result.value))
|
|
}
|
|
Ok(Projected::NoProgress(projected_ty)) => {
|
|
let result = Normalized { value: projected_ty, obligations: vec![] };
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
|
|
}
|
|
// No need to extend `obligations`.
|
|
Ok(Some(result.value))
|
|
}
|
|
Err(ProjectionError::TooManyCandidates) => {
|
|
debug!("opt_normalize_projection_type: too many candidates");
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
|
|
}
|
|
Ok(None)
|
|
}
|
|
Err(ProjectionError::TraitSelectionError(_)) => {
|
|
debug!("opt_normalize_projection_type: ERROR");
|
|
// if we got an error processing the `T as Trait` part,
|
|
// just return `ty::err` but add the obligation `T :
|
|
// Trait`, which when processed will cause the error to be
|
|
// reported later
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().error(cache_key);
|
|
}
|
|
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
|
|
obligations.extend(result.obligations);
|
|
Ok(Some(result.value.into()))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
|
|
/// hold. In various error cases, we cannot generate a valid
|
|
/// normalized projection. Therefore, we create an inference variable
|
|
/// return an associated obligation that, when fulfilled, will lead to
|
|
/// an error.
|
|
///
|
|
/// Note that we used to return `Error` here, but that was quite
|
|
/// dubious -- the premise was that an error would *eventually* be
|
|
/// reported, when the obligation was processed. But in general once
|
|
/// you see an `Error` you are supposed to be able to assume that an
|
|
/// error *has been* reported, so that you can take whatever heuristic
|
|
/// paths you want to take. To make things worse, it was possible for
|
|
/// cycles to arise, where you basically had a setup like `<MyType<$0>
|
|
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
|
|
/// Trait>::Foo>` to `[type error]` would lead to an obligation of
|
|
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
|
|
/// an error for this obligation, but we legitimately should not,
|
|
/// because it contains `[type error]`. Yuck! (See issue #29857 for
|
|
/// one case where this arose.)
|
|
fn normalize_to_error<'a, 'tcx>(
|
|
selcx: &SelectionContext<'a, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
) -> NormalizedTy<'tcx> {
|
|
let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
|
|
let trait_obligation = Obligation {
|
|
cause,
|
|
recursion_depth: depth,
|
|
param_env,
|
|
predicate: trait_ref.to_predicate(selcx.tcx()),
|
|
};
|
|
let tcx = selcx.infcx.tcx;
|
|
let new_value = selcx.infcx.next_ty_var(TypeVariableOrigin {
|
|
param_def_id: None,
|
|
span: tcx.def_span(projection_ty.def_id),
|
|
});
|
|
Normalized { value: new_value, obligations: vec![trait_obligation] }
|
|
}
|
|
|
|
/// Confirm and normalize the given inherent projection.
|
|
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
|
|
pub fn normalize_inherent_projection<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
alias_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Ty<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
if !tcx.recursion_limit().value_within_limit(depth) {
|
|
// Halt compilation because it is important that overflows never be masked.
|
|
tcx.dcx().emit_fatal(InherentProjectionNormalizationOverflow {
|
|
span: cause.span,
|
|
ty: alias_ty.to_string(),
|
|
});
|
|
}
|
|
|
|
let args = compute_inherent_assoc_ty_args(
|
|
selcx,
|
|
param_env,
|
|
alias_ty,
|
|
cause.clone(),
|
|
depth,
|
|
obligations,
|
|
);
|
|
|
|
// Register the obligations arising from the impl and from the associated type itself.
|
|
let predicates = tcx.predicates_of(alias_ty.def_id).instantiate(tcx, args);
|
|
for (predicate, span) in predicates {
|
|
let predicate = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
predicate,
|
|
obligations,
|
|
);
|
|
|
|
let nested_cause = ObligationCause::new(
|
|
cause.span,
|
|
cause.body_id,
|
|
// FIXME(inherent_associated_types): Since we can't pass along the self type to the
|
|
// cause code, inherent projections will be printed with identity instantiation in
|
|
// diagnostics which is not ideal.
|
|
// Consider creating separate cause codes for this specific situation.
|
|
if span.is_dummy() {
|
|
super::ItemObligation(alias_ty.def_id)
|
|
} else {
|
|
super::BindingObligation(alias_ty.def_id, span)
|
|
},
|
|
);
|
|
|
|
obligations.push(Obligation::with_depth(
|
|
tcx,
|
|
nested_cause,
|
|
depth + 1,
|
|
param_env,
|
|
predicate,
|
|
));
|
|
}
|
|
|
|
let ty = tcx.type_of(alias_ty.def_id).instantiate(tcx, args);
|
|
|
|
let mut ty = selcx.infcx.resolve_vars_if_possible(ty);
|
|
if ty.has_aliases() {
|
|
ty = normalize_with_depth_to(selcx, param_env, cause.clone(), depth + 1, ty, obligations);
|
|
}
|
|
|
|
ty
|
|
}
|
|
|
|
pub fn compute_inherent_assoc_ty_args<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
alias_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> ty::GenericArgsRef<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
let impl_def_id = tcx.parent(alias_ty.def_id);
|
|
let impl_args = selcx.infcx.fresh_args_for_item(cause.span, impl_def_id);
|
|
|
|
let mut impl_ty = tcx.type_of(impl_def_id).instantiate(tcx, impl_args);
|
|
if !selcx.infcx.next_trait_solver() {
|
|
impl_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
impl_ty,
|
|
obligations,
|
|
);
|
|
}
|
|
|
|
// Infer the generic parameters of the impl by unifying the
|
|
// impl type with the self type of the projection.
|
|
let mut self_ty = alias_ty.self_ty();
|
|
if !selcx.infcx.next_trait_solver() {
|
|
self_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
self_ty,
|
|
obligations,
|
|
);
|
|
}
|
|
|
|
match selcx.infcx.at(&cause, param_env).eq(DefineOpaqueTypes::No, impl_ty, self_ty) {
|
|
Ok(mut ok) => obligations.append(&mut ok.obligations),
|
|
Err(_) => {
|
|
tcx.dcx().span_bug(
|
|
cause.span,
|
|
format!("{self_ty:?} was equal to {impl_ty:?} during selection but now it is not"),
|
|
);
|
|
}
|
|
}
|
|
|
|
alias_ty.rebase_inherent_args_onto_impl(impl_args, tcx)
|
|
}
|
|
|
|
enum Projected<'tcx> {
|
|
Progress(Progress<'tcx>),
|
|
NoProgress(ty::Term<'tcx>),
|
|
}
|
|
|
|
struct Progress<'tcx> {
|
|
term: ty::Term<'tcx>,
|
|
obligations: Vec<PredicateObligation<'tcx>>,
|
|
}
|
|
|
|
impl<'tcx> Progress<'tcx> {
|
|
fn error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
|
|
Progress { term: Ty::new_error(tcx, guar).into(), obligations: vec![] }
|
|
}
|
|
|
|
fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
|
|
self.obligations.append(&mut obligations);
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Computes the result of a projection type (if we can).
|
|
///
|
|
/// IMPORTANT:
|
|
/// - `obligation` must be fully normalized
|
|
#[instrument(level = "info", skip(selcx))]
|
|
fn project<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
|
|
if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
|
|
// This should really be an immediate error, but some existing code
|
|
// relies on being able to recover from this.
|
|
return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
|
|
OverflowError::Canonical,
|
|
)));
|
|
}
|
|
|
|
if let Err(guar) = obligation.predicate.error_reported() {
|
|
return Ok(Projected::Progress(Progress::error(selcx.tcx(), guar)));
|
|
}
|
|
|
|
let mut candidates = ProjectionCandidateSet::None;
|
|
|
|
// Make sure that the following procedures are kept in order. ParamEnv
|
|
// needs to be first because it has highest priority, and Select checks
|
|
// the return value of push_candidate which assumes it's ran at last.
|
|
assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
|
|
|
|
assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
|
|
|
|
assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
|
|
|
|
if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
|
|
// Avoid normalization cycle from selection (see
|
|
// `assemble_candidates_from_object_ty`).
|
|
// FIXME(lazy_normalization): Lazy normalization should save us from
|
|
// having to special case this.
|
|
} else {
|
|
assemble_candidates_from_impls(selcx, obligation, &mut candidates);
|
|
};
|
|
|
|
match candidates {
|
|
ProjectionCandidateSet::Single(candidate) => {
|
|
Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
|
|
}
|
|
ProjectionCandidateSet::None => {
|
|
let tcx = selcx.tcx();
|
|
let term = match tcx.def_kind(obligation.predicate.def_id) {
|
|
DefKind::AssocTy => {
|
|
Ty::new_projection(tcx, obligation.predicate.def_id, obligation.predicate.args)
|
|
.into()
|
|
}
|
|
DefKind::AssocConst => ty::Const::new_unevaluated(
|
|
tcx,
|
|
ty::UnevaluatedConst::new(
|
|
obligation.predicate.def_id,
|
|
obligation.predicate.args,
|
|
),
|
|
tcx.type_of(obligation.predicate.def_id)
|
|
.instantiate(tcx, obligation.predicate.args),
|
|
)
|
|
.into(),
|
|
kind => {
|
|
bug!("unknown projection def-id: {}", kind.descr(obligation.predicate.def_id))
|
|
}
|
|
};
|
|
|
|
Ok(Projected::NoProgress(term))
|
|
}
|
|
// Error occurred while trying to processing impls.
|
|
ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
|
|
// Inherent ambiguity that prevents us from even enumerating the
|
|
// candidates.
|
|
ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
|
|
}
|
|
}
|
|
|
|
/// The first thing we have to do is scan through the parameter
|
|
/// environment to see whether there are any projection predicates
|
|
/// there that can answer this question.
|
|
fn assemble_candidates_from_param_env<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
assemble_candidates_from_predicates(
|
|
selcx,
|
|
obligation,
|
|
candidate_set,
|
|
ProjectionCandidate::ParamEnv,
|
|
obligation.param_env.caller_bounds().iter(),
|
|
false,
|
|
);
|
|
}
|
|
|
|
/// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
|
|
/// that the definition of `Foo` has some clues:
|
|
///
|
|
/// ```ignore (illustrative)
|
|
/// trait Foo {
|
|
/// type FooT : Bar<BarT=i32>
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here, for example, we could conclude that the result is `i32`.
|
|
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
debug!("assemble_candidates_from_trait_def(..)");
|
|
let mut ambiguous = false;
|
|
selcx.for_each_item_bound(
|
|
obligation.predicate.self_ty(),
|
|
|selcx, clause, _| {
|
|
let Some(clause) = clause.as_projection_clause() else {
|
|
return ControlFlow::Continue(());
|
|
};
|
|
if clause.projection_def_id() != obligation.predicate.def_id {
|
|
return ControlFlow::Continue(());
|
|
}
|
|
|
|
let is_match =
|
|
selcx.infcx.probe(|_| selcx.match_projection_projections(obligation, clause, true));
|
|
|
|
match is_match {
|
|
ProjectionMatchesProjection::Yes => {
|
|
candidate_set.push_candidate(ProjectionCandidate::TraitDef(clause));
|
|
|
|
if !obligation.predicate.has_non_region_infer() {
|
|
// HACK: Pick the first trait def candidate for a fully
|
|
// inferred predicate. This is to allow duplicates that
|
|
// differ only in normalization.
|
|
return ControlFlow::Break(());
|
|
}
|
|
}
|
|
ProjectionMatchesProjection::Ambiguous => {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
ProjectionMatchesProjection::No => {}
|
|
}
|
|
|
|
ControlFlow::Continue(())
|
|
},
|
|
// `ProjectionCandidateSet` is borrowed in the above closure,
|
|
// so just mark ambiguous outside of the closure.
|
|
|| ambiguous = true,
|
|
);
|
|
|
|
if ambiguous {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
}
|
|
|
|
/// In the case of a trait object like
|
|
/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
|
|
/// predicate in the trait object.
|
|
///
|
|
/// We don't go through the select candidate for these bounds to avoid cycles:
|
|
/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
|
|
/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
|
|
/// this then has to be normalized without having to prove
|
|
/// `dyn Iterator<Item = ()>: Iterator` again.
|
|
fn assemble_candidates_from_object_ty<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
debug!("assemble_candidates_from_object_ty(..)");
|
|
|
|
let tcx = selcx.tcx();
|
|
|
|
if !tcx.trait_def(obligation.predicate.trait_def_id(tcx)).implement_via_object {
|
|
return;
|
|
}
|
|
|
|
let self_ty = obligation.predicate.self_ty();
|
|
let object_ty = selcx.infcx.shallow_resolve(self_ty);
|
|
let data = match object_ty.kind() {
|
|
ty::Dynamic(data, ..) => data,
|
|
ty::Infer(ty::TyVar(_)) => {
|
|
// If the self-type is an inference variable, then it MAY wind up
|
|
// being an object type, so induce an ambiguity.
|
|
candidate_set.mark_ambiguous();
|
|
return;
|
|
}
|
|
_ => return,
|
|
};
|
|
let env_predicates = data
|
|
.projection_bounds()
|
|
.filter(|bound| bound.item_def_id() == obligation.predicate.def_id)
|
|
.map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
|
|
|
|
assemble_candidates_from_predicates(
|
|
selcx,
|
|
obligation,
|
|
candidate_set,
|
|
ProjectionCandidate::Object,
|
|
env_predicates,
|
|
false,
|
|
);
|
|
}
|
|
|
|
#[instrument(
|
|
level = "debug",
|
|
skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
|
|
)]
|
|
fn assemble_candidates_from_predicates<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
|
|
env_predicates: impl Iterator<Item = ty::Clause<'tcx>>,
|
|
potentially_unnormalized_candidates: bool,
|
|
) {
|
|
let infcx = selcx.infcx;
|
|
for predicate in env_predicates {
|
|
let bound_predicate = predicate.kind();
|
|
if let ty::ClauseKind::Projection(data) = predicate.kind().skip_binder() {
|
|
let data = bound_predicate.rebind(data);
|
|
if data.projection_def_id() != obligation.predicate.def_id {
|
|
continue;
|
|
}
|
|
|
|
let is_match = infcx.probe(|_| {
|
|
selcx.match_projection_projections(
|
|
obligation,
|
|
data,
|
|
potentially_unnormalized_candidates,
|
|
)
|
|
});
|
|
|
|
match is_match {
|
|
ProjectionMatchesProjection::Yes => {
|
|
candidate_set.push_candidate(ctor(data));
|
|
|
|
if potentially_unnormalized_candidates
|
|
&& !obligation.predicate.has_non_region_infer()
|
|
{
|
|
// HACK: Pick the first trait def candidate for a fully
|
|
// inferred predicate. This is to allow duplicates that
|
|
// differ only in normalization.
|
|
return;
|
|
}
|
|
}
|
|
ProjectionMatchesProjection::Ambiguous => {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
ProjectionMatchesProjection::No => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
|
|
fn assemble_candidates_from_impls<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
|
|
// start out by selecting the predicate `T as TraitRef<...>`:
|
|
let trait_ref = obligation.predicate.trait_ref(selcx.tcx());
|
|
let trait_obligation = obligation.with(selcx.tcx(), trait_ref);
|
|
let _ = selcx.infcx.commit_if_ok(|_| {
|
|
let impl_source = match selcx.select(&trait_obligation) {
|
|
Ok(Some(impl_source)) => impl_source,
|
|
Ok(None) => {
|
|
candidate_set.mark_ambiguous();
|
|
return Err(());
|
|
}
|
|
Err(e) => {
|
|
debug!(error = ?e, "selection error");
|
|
candidate_set.mark_error(e);
|
|
return Err(());
|
|
}
|
|
};
|
|
|
|
let eligible = match &impl_source {
|
|
ImplSource::UserDefined(impl_data) => {
|
|
// We have to be careful when projecting out of an
|
|
// impl because of specialization. If we are not in
|
|
// codegen (i.e., projection mode is not "any"), and the
|
|
// impl's type is declared as default, then we disable
|
|
// projection (even if the trait ref is fully
|
|
// monomorphic). In the case where trait ref is not
|
|
// fully monomorphic (i.e., includes type parameters),
|
|
// this is because those type parameters may
|
|
// ultimately be bound to types from other crates that
|
|
// may have specialized impls we can't see. In the
|
|
// case where the trait ref IS fully monomorphic, this
|
|
// is a policy decision that we made in the RFC in
|
|
// order to preserve flexibility for the crate that
|
|
// defined the specializable impl to specialize later
|
|
// for existing types.
|
|
//
|
|
// In either case, we handle this by not adding a
|
|
// candidate for an impl if it contains a `default`
|
|
// type.
|
|
//
|
|
// NOTE: This should be kept in sync with the similar code in
|
|
// `rustc_ty_utils::instance::resolve_associated_item()`.
|
|
let node_item =
|
|
specialization_graph::assoc_def(selcx.tcx(), impl_data.impl_def_id, obligation.predicate.def_id)
|
|
.map_err(|ErrorGuaranteed { .. }| ())?;
|
|
|
|
if node_item.is_final() {
|
|
// Non-specializable items are always projectable.
|
|
true
|
|
} else {
|
|
// Only reveal a specializable default if we're past type-checking
|
|
// and the obligation is monomorphic, otherwise passes such as
|
|
// transmute checking and polymorphic MIR optimizations could
|
|
// get a result which isn't correct for all monomorphizations.
|
|
if obligation.param_env.reveal() == Reveal::All {
|
|
// NOTE(eddyb) inference variables can resolve to parameters, so
|
|
// assume `poly_trait_ref` isn't monomorphic, if it contains any.
|
|
let poly_trait_ref = selcx.infcx.resolve_vars_if_possible(trait_ref);
|
|
!poly_trait_ref.still_further_specializable()
|
|
} else {
|
|
debug!(
|
|
assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
|
|
?obligation.predicate,
|
|
"assemble_candidates_from_impls: not eligible due to default",
|
|
);
|
|
false
|
|
}
|
|
}
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
|
|
// While a builtin impl may be known to exist, the associated type may not yet
|
|
// be known. Any type with multiple potential associated types is therefore
|
|
// not eligible.
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
|
|
let lang_items = selcx.tcx().lang_items();
|
|
if [
|
|
lang_items.coroutine_trait(),
|
|
lang_items.future_trait(),
|
|
lang_items.iterator_trait(),
|
|
lang_items.async_iterator_trait(),
|
|
lang_items.fn_trait(),
|
|
lang_items.fn_mut_trait(),
|
|
lang_items.fn_once_trait(),
|
|
lang_items.async_fn_trait(),
|
|
lang_items.async_fn_mut_trait(),
|
|
lang_items.async_fn_once_trait(),
|
|
].contains(&Some(trait_ref.def_id))
|
|
{
|
|
true
|
|
} else if lang_items.async_fn_kind_helper() == Some(trait_ref.def_id) {
|
|
// FIXME(async_closures): Validity constraints here could be cleaned up.
|
|
if obligation.predicate.args.type_at(0).is_ty_var()
|
|
|| obligation.predicate.args.type_at(4).is_ty_var()
|
|
|| obligation.predicate.args.type_at(5).is_ty_var()
|
|
{
|
|
candidate_set.mark_ambiguous();
|
|
true
|
|
} else {
|
|
obligation.predicate.args.type_at(0).to_opt_closure_kind().is_some()
|
|
&& obligation.predicate.args.type_at(1).to_opt_closure_kind().is_some()
|
|
}
|
|
} else if lang_items.discriminant_kind_trait() == Some(trait_ref.def_id) {
|
|
match self_ty.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Adt(..)
|
|
| ty::Foreign(_)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Pat(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
| ty::Tuple(..)
|
|
// Integers and floats always have `u8` as their discriminant.
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// type parameters, opaques, and unnormalized projections don't have
|
|
// a known discriminant and may need to be normalized further or rely
|
|
// on param env for discriminant projections
|
|
ty::Param(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(..)
|
|
| ty::Error(_) => false,
|
|
}
|
|
} else if lang_items.async_destruct_trait() == Some(trait_ref.def_id) {
|
|
match self_ty.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Adt(..)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Pat(..)
|
|
| ty::Never
|
|
| ty::Tuple(..)
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// type parameters, opaques, and unnormalized projections don't have
|
|
// a known discriminant and may need to be normalized further or rely
|
|
// on param env for async destructor projections
|
|
ty::Param(_)
|
|
| ty::Foreign(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(..)
|
|
| ty::Error(_) => false,
|
|
}
|
|
} else if lang_items.pointee_trait() == Some(trait_ref.def_id) {
|
|
let tail = selcx.tcx().struct_tail_with_normalize(
|
|
self_ty,
|
|
|ty| {
|
|
// We throw away any obligations we get from this, since we normalize
|
|
// and confirm these obligations once again during confirmation
|
|
normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
ty,
|
|
)
|
|
.value
|
|
},
|
|
|| {},
|
|
);
|
|
|
|
match tail.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Pat(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
// Extern types have unit metadata, according to RFC 2850
|
|
| ty::Foreign(_)
|
|
// If returned by `struct_tail_without_normalization` this is a unit struct
|
|
// without any fields, or not a struct, and therefore is Sized.
|
|
| ty::Adt(..)
|
|
// If returned by `struct_tail_without_normalization` this is the empty tuple.
|
|
| ty::Tuple(..)
|
|
// Integers and floats are always Sized, and so have unit type metadata.
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// We normalize from `Wrapper<Tail>::Metadata` to `Tail::Metadata` if able.
|
|
// Otherwise, type parameters, opaques, and unnormalized projections have
|
|
// unit metadata if they're known (e.g. by the param_env) to be sized.
|
|
ty::Param(_) | ty::Alias(..)
|
|
if self_ty != tail || selcx.infcx.predicate_must_hold_modulo_regions(
|
|
&obligation.with(
|
|
selcx.tcx(),
|
|
ty::TraitRef::from_lang_item(selcx.tcx(), LangItem::Sized, obligation.cause.span(),[self_ty]),
|
|
),
|
|
) =>
|
|
{
|
|
true
|
|
}
|
|
|
|
// FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
|
|
ty::Param(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(..)
|
|
| ty::Error(_) => {
|
|
if tail.has_infer_types() {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
false
|
|
}
|
|
}
|
|
} else {
|
|
bug!("unexpected builtin trait with associated type: {trait_ref:?}")
|
|
}
|
|
}
|
|
ImplSource::Param(..) => {
|
|
// This case tell us nothing about the value of an
|
|
// associated type. Consider:
|
|
//
|
|
// ```
|
|
// trait SomeTrait { type Foo; }
|
|
// fn foo<T:SomeTrait>(...) { }
|
|
// ```
|
|
//
|
|
// If the user writes `<T as SomeTrait>::Foo`, then the `T
|
|
// : SomeTrait` binding does not help us decide what the
|
|
// type `Foo` is (at least, not more specifically than
|
|
// what we already knew).
|
|
//
|
|
// But wait, you say! What about an example like this:
|
|
//
|
|
// ```
|
|
// fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
|
|
// ```
|
|
//
|
|
// Doesn't the `T : SomeTrait<Foo=usize>` predicate help
|
|
// resolve `T::Foo`? And of course it does, but in fact
|
|
// that single predicate is desugared into two predicates
|
|
// in the compiler: a trait predicate (`T : SomeTrait`) and a
|
|
// projection. And the projection where clause is handled
|
|
// in `assemble_candidates_from_param_env`.
|
|
false
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Object { .. }, _) => {
|
|
// Handled by the `Object` projection candidate. See
|
|
// `assemble_candidates_from_object_ty` for an explanation of
|
|
// why we special case object types.
|
|
false
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
|
|
| ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
|
|
// These traits have no associated types.
|
|
selcx.tcx().dcx().span_delayed_bug(
|
|
obligation.cause.span,
|
|
format!("Cannot project an associated type from `{impl_source:?}`"),
|
|
);
|
|
return Err(())
|
|
}
|
|
};
|
|
|
|
if eligible {
|
|
if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
|
|
Ok(())
|
|
} else {
|
|
Err(())
|
|
}
|
|
} else {
|
|
Err(())
|
|
}
|
|
});
|
|
}
|
|
|
|
fn confirm_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate: ProjectionCandidate<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
debug!(?obligation, ?candidate, "confirm_candidate");
|
|
let mut progress = match candidate {
|
|
ProjectionCandidate::ParamEnv(poly_projection)
|
|
| ProjectionCandidate::Object(poly_projection) => {
|
|
confirm_param_env_candidate(selcx, obligation, poly_projection, false)
|
|
}
|
|
|
|
ProjectionCandidate::TraitDef(poly_projection) => {
|
|
confirm_param_env_candidate(selcx, obligation, poly_projection, true)
|
|
}
|
|
|
|
ProjectionCandidate::Select(impl_source) => {
|
|
confirm_select_candidate(selcx, obligation, impl_source)
|
|
}
|
|
};
|
|
|
|
// When checking for cycle during evaluation, we compare predicates with
|
|
// "syntactic" equality. Since normalization generally introduces a type
|
|
// with new region variables, we need to resolve them to existing variables
|
|
// when possible for this to work. See `auto-trait-projection-recursion.rs`
|
|
// for a case where this matters.
|
|
if progress.term.has_infer_regions() {
|
|
progress.term = progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx));
|
|
}
|
|
progress
|
|
}
|
|
|
|
fn confirm_select_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
impl_source: Selection<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
match impl_source {
|
|
ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
|
|
ImplSource::Builtin(BuiltinImplSource::Misc, data) => {
|
|
let trait_def_id = obligation.predicate.trait_def_id(selcx.tcx());
|
|
let lang_items = selcx.tcx().lang_items();
|
|
if lang_items.coroutine_trait() == Some(trait_def_id) {
|
|
confirm_coroutine_candidate(selcx, obligation, data)
|
|
} else if lang_items.future_trait() == Some(trait_def_id) {
|
|
confirm_future_candidate(selcx, obligation, data)
|
|
} else if lang_items.iterator_trait() == Some(trait_def_id) {
|
|
confirm_iterator_candidate(selcx, obligation, data)
|
|
} else if lang_items.async_iterator_trait() == Some(trait_def_id) {
|
|
confirm_async_iterator_candidate(selcx, obligation, data)
|
|
} else if selcx.tcx().fn_trait_kind_from_def_id(trait_def_id).is_some() {
|
|
if obligation.predicate.self_ty().is_closure()
|
|
|| obligation.predicate.self_ty().is_coroutine_closure()
|
|
{
|
|
confirm_closure_candidate(selcx, obligation, data)
|
|
} else {
|
|
confirm_fn_pointer_candidate(selcx, obligation, data)
|
|
}
|
|
} else if selcx.tcx().async_fn_trait_kind_from_def_id(trait_def_id).is_some() {
|
|
confirm_async_closure_candidate(selcx, obligation, data)
|
|
} else if lang_items.async_fn_kind_helper() == Some(trait_def_id) {
|
|
confirm_async_fn_kind_helper_candidate(selcx, obligation, data)
|
|
} else {
|
|
confirm_builtin_candidate(selcx, obligation, data)
|
|
}
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)
|
|
| ImplSource::Param(..)
|
|
| ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
|
|
| ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
|
|
// we don't create Select candidates with this kind of resolution
|
|
span_bug!(
|
|
obligation.cause.span,
|
|
"Cannot project an associated type from `{:?}`",
|
|
impl_source
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn confirm_coroutine_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!(
|
|
"expected coroutine self type for built-in coroutine candidate, found {self_ty}"
|
|
)
|
|
};
|
|
let coroutine_sig = args.as_coroutine().sig();
|
|
let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_coroutine_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
|
|
let coroutine_def_id = tcx.require_lang_item(LangItem::Coroutine, None);
|
|
|
|
let (trait_ref, yield_ty, return_ty) = super::util::coroutine_trait_ref_and_outputs(
|
|
tcx,
|
|
coroutine_def_id,
|
|
obligation.predicate.self_ty(),
|
|
coroutine_sig,
|
|
);
|
|
|
|
let name = tcx.associated_item(obligation.predicate.def_id).name;
|
|
let ty = if name == sym::Return {
|
|
return_ty
|
|
} else if name == sym::Yield {
|
|
yield_ty
|
|
} else {
|
|
span_bug!(
|
|
tcx.def_span(obligation.predicate.def_id),
|
|
"unexpected associated type: `Coroutine::{name}`"
|
|
);
|
|
};
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_future_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!(
|
|
"expected coroutine self type for built-in async future candidate, found {self_ty}"
|
|
)
|
|
};
|
|
let coroutine_sig = args.as_coroutine().sig();
|
|
let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_future_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let fut_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
|
|
let (trait_ref, return_ty) = super::util::future_trait_ref_and_outputs(
|
|
tcx,
|
|
fut_def_id,
|
|
obligation.predicate.self_ty(),
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Output);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: return_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_iterator_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!("expected coroutine self type for built-in gen candidate, found {self_ty}")
|
|
};
|
|
let gen_sig = args.as_coroutine().sig();
|
|
let Normalized { value: gen_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
gen_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?gen_sig, ?obligations, "confirm_iterator_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let iter_def_id = tcx.require_lang_item(LangItem::Iterator, None);
|
|
|
|
let (trait_ref, yield_ty) = super::util::iterator_trait_ref_and_outputs(
|
|
tcx,
|
|
iter_def_id,
|
|
obligation.predicate.self_ty(),
|
|
gen_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: yield_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_async_iterator_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let ty::Coroutine(_, args) = selcx.infcx.shallow_resolve(obligation.predicate.self_ty()).kind()
|
|
else {
|
|
unreachable!()
|
|
};
|
|
let gen_sig = args.as_coroutine().sig();
|
|
let Normalized { value: gen_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
gen_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?gen_sig, ?obligations, "confirm_async_iterator_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let iter_def_id = tcx.require_lang_item(LangItem::AsyncIterator, None);
|
|
|
|
let (trait_ref, yield_ty) = super::util::async_iterator_trait_ref_and_outputs(
|
|
tcx,
|
|
iter_def_id,
|
|
obligation.predicate.self_ty(),
|
|
gen_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);
|
|
|
|
let ty::Adt(_poll_adt, args) = *yield_ty.kind() else {
|
|
bug!();
|
|
};
|
|
let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else {
|
|
bug!();
|
|
};
|
|
let item_ty = args.type_at(0);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: item_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_builtin_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
data: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = obligation.predicate.self_ty();
|
|
let lang_items = tcx.lang_items();
|
|
let item_def_id = obligation.predicate.def_id;
|
|
let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
|
|
let args = tcx.mk_args(&[self_ty.into()]);
|
|
let (term, obligations) = if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
|
|
let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
|
|
assert_eq!(discriminant_def_id, item_def_id);
|
|
|
|
(self_ty.discriminant_ty(tcx).into(), Vec::new())
|
|
} else if lang_items.async_destruct_trait() == Some(trait_def_id) {
|
|
let destructor_def_id = tcx.associated_item_def_ids(trait_def_id)[0];
|
|
assert_eq!(destructor_def_id, item_def_id);
|
|
|
|
(self_ty.async_destructor_ty(tcx, obligation.param_env).into(), Vec::new())
|
|
} else if lang_items.pointee_trait() == Some(trait_def_id) {
|
|
let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
|
|
assert_eq!(metadata_def_id, item_def_id);
|
|
|
|
let mut obligations = Vec::new();
|
|
let normalize = |ty| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
ty,
|
|
&mut obligations,
|
|
)
|
|
};
|
|
let metadata_ty = self_ty.ptr_metadata_ty_or_tail(tcx, normalize).unwrap_or_else(|tail| {
|
|
if tail == self_ty {
|
|
// This is the "fallback impl" for type parameters, unnormalizable projections
|
|
// and opaque types: If the `self_ty` is `Sized`, then the metadata is `()`.
|
|
// FIXME(ptr_metadata): This impl overlaps with the other impls and shouldn't
|
|
// exist. Instead, `Pointee<Metadata = ()>` should be a supertrait of `Sized`.
|
|
let sized_predicate = ty::TraitRef::from_lang_item(
|
|
tcx,
|
|
LangItem::Sized,
|
|
obligation.cause.span(),
|
|
[self_ty],
|
|
);
|
|
obligations.push(obligation.with(tcx, sized_predicate));
|
|
tcx.types.unit
|
|
} else {
|
|
// We know that `self_ty` has the same metadata as `tail`. This allows us
|
|
// to prove predicates like `Wrapper<Tail>::Metadata == Tail::Metadata`.
|
|
Ty::new_projection(tcx, metadata_def_id, [tail])
|
|
}
|
|
});
|
|
(metadata_ty.into(), obligations)
|
|
} else {
|
|
bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
|
|
};
|
|
|
|
let predicate =
|
|
ty::ProjectionPredicate { projection_ty: ty::AliasTy::new(tcx, item_def_id, args), term };
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(obligations)
|
|
.with_addl_obligations(data)
|
|
}
|
|
|
|
fn confirm_fn_pointer_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let fn_type = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let sig = fn_type.fn_sig(tcx);
|
|
let Normalized { value: sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
sig,
|
|
);
|
|
|
|
let host_effect_param = match *fn_type.kind() {
|
|
ty::FnDef(def_id, args) => tcx
|
|
.generics_of(def_id)
|
|
.host_effect_index
|
|
.map_or(tcx.consts.true_, |idx| args.const_at(idx)),
|
|
ty::FnPtr(_) => tcx.consts.true_,
|
|
_ => unreachable!("only expected FnPtr or FnDef in `confirm_fn_pointer_candidate`"),
|
|
};
|
|
|
|
confirm_callable_candidate(
|
|
selcx,
|
|
obligation,
|
|
sig,
|
|
util::TupleArgumentsFlag::Yes,
|
|
host_effect_param,
|
|
)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_closure_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let closure_sig = match *self_ty.kind() {
|
|
ty::Closure(_, args) => args.as_closure().sig(),
|
|
|
|
// Construct a "normal" `FnOnce` signature for coroutine-closure. This is
|
|
// basically duplicated with the `AsyncFnOnce::CallOnce` confirmation, but
|
|
// I didn't see a good way to unify those.
|
|
ty::CoroutineClosure(def_id, args) => {
|
|
let args = args.as_coroutine_closure();
|
|
let kind_ty = args.kind_ty();
|
|
args.coroutine_closure_sig().map_bound(|sig| {
|
|
// If we know the kind and upvars, use that directly.
|
|
// Otherwise, defer to `AsyncFnKindHelper::Upvars` to delay
|
|
// the projection, like the `AsyncFn*` traits do.
|
|
let output_ty = if let Some(_) = kind_ty.to_opt_closure_kind()
|
|
// Fall back to projection if upvars aren't constrained
|
|
&& !args.tupled_upvars_ty().is_ty_var()
|
|
{
|
|
sig.to_coroutine_given_kind_and_upvars(
|
|
tcx,
|
|
args.parent_args(),
|
|
tcx.coroutine_for_closure(def_id),
|
|
ty::ClosureKind::FnOnce,
|
|
tcx.lifetimes.re_static,
|
|
args.tupled_upvars_ty(),
|
|
args.coroutine_captures_by_ref_ty(),
|
|
)
|
|
} else {
|
|
let async_fn_kind_trait_def_id =
|
|
tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
|
|
let upvars_projection_def_id = tcx
|
|
.associated_items(async_fn_kind_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Upvars)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
let tupled_upvars_ty = Ty::new_projection(
|
|
tcx,
|
|
upvars_projection_def_id,
|
|
[
|
|
ty::GenericArg::from(kind_ty),
|
|
Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce).into(),
|
|
tcx.lifetimes.re_static.into(),
|
|
sig.tupled_inputs_ty.into(),
|
|
args.tupled_upvars_ty().into(),
|
|
args.coroutine_captures_by_ref_ty().into(),
|
|
],
|
|
);
|
|
sig.to_coroutine(
|
|
tcx,
|
|
args.parent_args(),
|
|
Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce),
|
|
tcx.coroutine_for_closure(def_id),
|
|
tupled_upvars_ty,
|
|
)
|
|
};
|
|
tcx.mk_fn_sig(
|
|
[sig.tupled_inputs_ty],
|
|
output_ty,
|
|
sig.c_variadic,
|
|
sig.unsafety,
|
|
sig.abi,
|
|
)
|
|
})
|
|
}
|
|
|
|
_ => {
|
|
unreachable!("expected closure self type for closure candidate, found {self_ty}");
|
|
}
|
|
};
|
|
|
|
let Normalized { value: closure_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
closure_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
|
|
|
|
confirm_callable_candidate(
|
|
selcx,
|
|
obligation,
|
|
closure_sig,
|
|
util::TupleArgumentsFlag::No,
|
|
// FIXME(effects): This doesn't handle const closures correctly!
|
|
selcx.tcx().consts.true_,
|
|
)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_callable_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
fn_sig: ty::PolyFnSig<'tcx>,
|
|
flag: util::TupleArgumentsFlag,
|
|
fn_host_effect: ty::Const<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
|
|
|
|
let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
|
|
let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
|
|
|
|
let predicate = super::util::closure_trait_ref_and_return_type(
|
|
tcx,
|
|
fn_once_def_id,
|
|
obligation.predicate.self_ty(),
|
|
fn_sig,
|
|
flag,
|
|
fn_host_effect,
|
|
)
|
|
.map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, fn_once_output_def_id, trait_ref.args),
|
|
term: ret_type.into(),
|
|
});
|
|
|
|
confirm_param_env_candidate(selcx, obligation, predicate, true)
|
|
}
|
|
|
|
fn confirm_async_closure_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
|
|
let goal_kind =
|
|
tcx.async_fn_trait_kind_from_def_id(obligation.predicate.trait_def_id(tcx)).unwrap();
|
|
let env_region = match goal_kind {
|
|
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => obligation.predicate.args.region_at(2),
|
|
ty::ClosureKind::FnOnce => tcx.lifetimes.re_static,
|
|
};
|
|
let item_name = tcx.item_name(obligation.predicate.def_id);
|
|
|
|
let poly_cache_entry = match *self_ty.kind() {
|
|
ty::CoroutineClosure(def_id, args) => {
|
|
let args = args.as_coroutine_closure();
|
|
let kind_ty = args.kind_ty();
|
|
let sig = args.coroutine_closure_sig().skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => {
|
|
if let Some(closure_kind) = kind_ty.to_opt_closure_kind()
|
|
// Fall back to projection if upvars aren't constrained
|
|
&& !args.tupled_upvars_ty().is_ty_var()
|
|
{
|
|
if !closure_kind.extends(goal_kind) {
|
|
bug!("we should not be confirming if the closure kind is not met");
|
|
}
|
|
sig.to_coroutine_given_kind_and_upvars(
|
|
tcx,
|
|
args.parent_args(),
|
|
tcx.coroutine_for_closure(def_id),
|
|
goal_kind,
|
|
env_region,
|
|
args.tupled_upvars_ty(),
|
|
args.coroutine_captures_by_ref_ty(),
|
|
)
|
|
} else {
|
|
let async_fn_kind_trait_def_id =
|
|
tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
|
|
let upvars_projection_def_id = tcx
|
|
.associated_items(async_fn_kind_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Upvars)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
// When we don't know the closure kind (and therefore also the closure's upvars,
|
|
// which are computed at the same time), we must delay the computation of the
|
|
// generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
|
|
// goal functions similarly to the old `ClosureKind` predicate, and ensures that
|
|
// the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
|
|
// will project to the right upvars for the generator, appending the inputs and
|
|
// coroutine upvars respecting the closure kind.
|
|
// N.B. No need to register a `AsyncFnKindHelper` goal here, it's already in `nested`.
|
|
let tupled_upvars_ty = Ty::new_projection(
|
|
tcx,
|
|
upvars_projection_def_id,
|
|
[
|
|
ty::GenericArg::from(kind_ty),
|
|
Ty::from_closure_kind(tcx, goal_kind).into(),
|
|
env_region.into(),
|
|
sig.tupled_inputs_ty.into(),
|
|
args.tupled_upvars_ty().into(),
|
|
args.coroutine_captures_by_ref_ty().into(),
|
|
],
|
|
);
|
|
sig.to_coroutine(
|
|
tcx,
|
|
args.parent_args(),
|
|
Ty::from_closure_kind(tcx, goal_kind),
|
|
tcx.coroutine_for_closure(def_id),
|
|
tupled_upvars_ty,
|
|
)
|
|
}
|
|
}
|
|
sym::Output => sig.return_ty,
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[self_ty, sig.tupled_inputs_ty],
|
|
),
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[ty::GenericArg::from(self_ty), sig.tupled_inputs_ty.into(), env_region.into()],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
args.coroutine_closure_sig()
|
|
.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
ty::FnDef(..) | ty::FnPtr(..) => {
|
|
let bound_sig = self_ty.fn_sig(tcx);
|
|
let sig = bound_sig.skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
|
|
sym::Output => {
|
|
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
let future_output_def_id = tcx
|
|
.associated_items(future_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Output)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
Ty::new_projection(tcx, future_output_def_id, [sig.output()])
|
|
}
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[self_ty, Ty::new_tup(tcx, sig.inputs())],
|
|
),
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[
|
|
ty::GenericArg::from(self_ty),
|
|
Ty::new_tup(tcx, sig.inputs()).into(),
|
|
env_region.into(),
|
|
],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
ty::Closure(_, args) => {
|
|
let args = args.as_closure();
|
|
let bound_sig = args.sig();
|
|
let sig = bound_sig.skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
|
|
sym::Output => {
|
|
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
let future_output_def_id = tcx
|
|
.associated_items(future_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Output)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
Ty::new_projection(tcx, future_output_def_id, [sig.output()])
|
|
}
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => {
|
|
ty::AliasTy::new(tcx, obligation.predicate.def_id, [self_ty, sig.inputs()[0]])
|
|
}
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[ty::GenericArg::from(self_ty), sig.inputs()[0].into(), env_region.into()],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
_ => bug!("expected callable type for AsyncFn candidate"),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, poly_cache_entry, true)
|
|
.with_addl_obligations(nested)
|
|
}
|
|
|
|
fn confirm_async_fn_kind_helper_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let [
|
|
// We already checked that the goal_kind >= closure_kind
|
|
_closure_kind_ty,
|
|
goal_kind_ty,
|
|
borrow_region,
|
|
tupled_inputs_ty,
|
|
tupled_upvars_ty,
|
|
coroutine_captures_by_ref_ty,
|
|
] = **obligation.predicate.args
|
|
else {
|
|
bug!();
|
|
};
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(
|
|
selcx.tcx(),
|
|
obligation.predicate.def_id,
|
|
obligation.predicate.args,
|
|
),
|
|
term: ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
|
|
selcx.tcx(),
|
|
goal_kind_ty.expect_ty().to_opt_closure_kind().unwrap(),
|
|
tupled_inputs_ty.expect_ty(),
|
|
tupled_upvars_ty.expect_ty(),
|
|
coroutine_captures_by_ref_ty.expect_ty(),
|
|
borrow_region.expect_region(),
|
|
)
|
|
.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
}
|
|
|
|
fn confirm_param_env_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
|
|
potentially_unnormalized_candidate: bool,
|
|
) -> Progress<'tcx> {
|
|
let infcx = selcx.infcx;
|
|
let cause = &obligation.cause;
|
|
let param_env = obligation.param_env;
|
|
|
|
let cache_entry = infcx.instantiate_binder_with_fresh_vars(
|
|
cause.span,
|
|
BoundRegionConversionTime::HigherRankedType,
|
|
poly_cache_entry,
|
|
);
|
|
|
|
let cache_projection = cache_entry.projection_ty;
|
|
let mut nested_obligations = Vec::new();
|
|
let obligation_projection = obligation.predicate;
|
|
let obligation_projection = ensure_sufficient_stack(|| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
obligation_projection,
|
|
&mut nested_obligations,
|
|
)
|
|
});
|
|
let cache_projection = if potentially_unnormalized_candidate {
|
|
ensure_sufficient_stack(|| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
cache_projection,
|
|
&mut nested_obligations,
|
|
)
|
|
})
|
|
} else {
|
|
cache_projection
|
|
};
|
|
|
|
debug!(?cache_projection, ?obligation_projection);
|
|
|
|
match infcx.at(cause, param_env).eq(
|
|
DefineOpaqueTypes::Yes,
|
|
cache_projection,
|
|
obligation_projection,
|
|
) {
|
|
Ok(InferOk { value: _, obligations }) => {
|
|
nested_obligations.extend(obligations);
|
|
assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
|
|
// FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
|
|
// a term instead.
|
|
Progress { term: cache_entry.term, obligations: nested_obligations }
|
|
}
|
|
Err(e) => {
|
|
let msg = format!(
|
|
"Failed to unify obligation `{obligation:?}` with poly_projection `{poly_cache_entry:?}`: {e:?}",
|
|
);
|
|
debug!("confirm_param_env_candidate: {}", msg);
|
|
let err = Ty::new_error_with_message(infcx.tcx, obligation.cause.span, msg);
|
|
Progress { term: err.into(), obligations: vec![] }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn confirm_impl_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
let ImplSourceUserDefinedData { impl_def_id, args, mut nested } = impl_impl_source;
|
|
let assoc_item_id = obligation.predicate.def_id;
|
|
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
|
|
|
|
let param_env = obligation.param_env;
|
|
let assoc_ty = match specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) {
|
|
Ok(assoc_ty) => assoc_ty,
|
|
Err(guar) => return Progress::error(tcx, guar),
|
|
};
|
|
|
|
if !assoc_ty.item.defaultness(tcx).has_value() {
|
|
// This means that the impl is missing a definition for the
|
|
// associated type. This error will be reported by the type
|
|
// checker method `check_impl_items_against_trait`, so here we
|
|
// just return Error.
|
|
debug!(
|
|
"confirm_impl_candidate: no associated type {:?} for {:?}",
|
|
assoc_ty.item.name, obligation.predicate
|
|
);
|
|
return Progress { term: Ty::new_misc_error(tcx).into(), obligations: nested };
|
|
}
|
|
// If we're trying to normalize `<Vec<u32> as X>::A<S>` using
|
|
//`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
|
|
//
|
|
// * `obligation.predicate.args` is `[Vec<u32>, S]`
|
|
// * `args` is `[u32]`
|
|
// * `args` ends up as `[u32, S]`
|
|
let args = obligation.predicate.args.rebase_onto(tcx, trait_def_id, args);
|
|
let args = translate_args(selcx.infcx, param_env, impl_def_id, args, assoc_ty.defining_node);
|
|
let ty = tcx.type_of(assoc_ty.item.def_id);
|
|
let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
|
|
let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
|
|
let did = assoc_ty.item.def_id;
|
|
let identity_args = crate::traits::GenericArgs::identity_for_item(tcx, did);
|
|
let uv = ty::UnevaluatedConst::new(did, identity_args);
|
|
ty.map_bound(|ty| ty::Const::new_unevaluated(tcx, uv, ty).into())
|
|
} else {
|
|
ty.map_bound(|ty| ty.into())
|
|
};
|
|
if !tcx.check_args_compatible(assoc_ty.item.def_id, args) {
|
|
let err = Ty::new_error_with_message(
|
|
tcx,
|
|
obligation.cause.span,
|
|
"impl item and trait item have different parameters",
|
|
);
|
|
Progress { term: err.into(), obligations: nested }
|
|
} else {
|
|
assoc_ty_own_obligations(selcx, obligation, &mut nested);
|
|
Progress { term: term.instantiate(tcx, args), obligations: nested }
|
|
}
|
|
}
|
|
|
|
// Get obligations corresponding to the predicates from the where-clause of the
|
|
// associated type itself.
|
|
fn assoc_ty_own_obligations<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: &mut Vec<PredicateObligation<'tcx>>,
|
|
) {
|
|
let tcx = selcx.tcx();
|
|
let predicates = tcx
|
|
.predicates_of(obligation.predicate.def_id)
|
|
.instantiate_own(tcx, obligation.predicate.args);
|
|
for (predicate, span) in predicates {
|
|
let normalized = normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
predicate,
|
|
nested,
|
|
);
|
|
|
|
let nested_cause = if matches!(
|
|
obligation.cause.code(),
|
|
super::CompareImplItemObligation { .. }
|
|
| super::CheckAssociatedTypeBounds { .. }
|
|
| super::AscribeUserTypeProvePredicate(..)
|
|
) {
|
|
obligation.cause.clone()
|
|
} else if span.is_dummy() {
|
|
ObligationCause::new(
|
|
obligation.cause.span,
|
|
obligation.cause.body_id,
|
|
super::ItemObligation(obligation.predicate.def_id),
|
|
)
|
|
} else {
|
|
ObligationCause::new(
|
|
obligation.cause.span,
|
|
obligation.cause.body_id,
|
|
super::BindingObligation(obligation.predicate.def_id, span),
|
|
)
|
|
};
|
|
nested.push(Obligation::with_depth(
|
|
tcx,
|
|
nested_cause,
|
|
obligation.recursion_depth + 1,
|
|
obligation.param_env,
|
|
normalized,
|
|
));
|
|
}
|
|
}
|
|
|
|
pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
|
|
fn from_poly_projection_predicate(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
predicate: ty::PolyProjectionPredicate<'tcx>,
|
|
) -> Option<Self>;
|
|
}
|
|
|
|
impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
|
|
fn from_poly_projection_predicate(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
predicate: ty::PolyProjectionPredicate<'tcx>,
|
|
) -> Option<Self> {
|
|
let infcx = selcx.infcx;
|
|
// We don't do cross-snapshot caching of obligations with escaping regions,
|
|
// so there's no cache key to use
|
|
predicate.no_bound_vars().map(|predicate| {
|
|
ProjectionCacheKey::new(
|
|
// We don't attempt to match up with a specific type-variable state
|
|
// from a specific call to `opt_normalize_projection_type` - if
|
|
// there's no precise match, the original cache entry is "stranded"
|
|
// anyway.
|
|
infcx.resolve_vars_if_possible(predicate.projection_ty),
|
|
)
|
|
})
|
|
}
|
|
}
|