1
Fork 0
rust/compiler/rustc_middle/src/ty/subst.rs
2022-12-13 09:28:25 -03:00

980 lines
33 KiB
Rust

// Type substitutions.
use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::ty::sty::{ClosureSubsts, GeneratorSubsts, InlineConstSubsts};
use crate::ty::visit::{TypeVisitable, TypeVisitor};
use crate::ty::{self, Lift, List, ParamConst, Ty, TyCtxt};
use rustc_data_structures::intern::Interned;
use rustc_hir::def_id::DefId;
use rustc_macros::HashStable;
use rustc_serialize::{self, Decodable, Encodable};
use rustc_type_ir::WithCachedTypeInfo;
use smallvec::SmallVec;
use core::intrinsics;
use std::cmp::Ordering;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::num::NonZeroUsize;
use std::ops::{ControlFlow, Deref};
use std::slice;
/// An entity in the Rust type system, which can be one of
/// several kinds (types, lifetimes, and consts).
/// To reduce memory usage, a `GenericArg` is an interned pointer,
/// with the lowest 2 bits being reserved for a tag to
/// indicate the type (`Ty`, `Region`, or `Const`) it points to.
///
/// Note: the `PartialEq`, `Eq` and `Hash` derives are only valid because `Ty`,
/// `Region` and `Const` are all interned.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct GenericArg<'tcx> {
ptr: NonZeroUsize,
marker: PhantomData<(Ty<'tcx>, ty::Region<'tcx>, ty::Const<'tcx>)>,
}
const TAG_MASK: usize = 0b11;
const TYPE_TAG: usize = 0b00;
const REGION_TAG: usize = 0b01;
const CONST_TAG: usize = 0b10;
#[derive(Debug, TyEncodable, TyDecodable, PartialEq, Eq, PartialOrd, Ord)]
pub enum GenericArgKind<'tcx> {
Lifetime(ty::Region<'tcx>),
Type(Ty<'tcx>),
Const(ty::Const<'tcx>),
}
/// This function goes from `&'a [Ty<'tcx>]` to `&'a [GenericArg<'tcx>]`
///
/// This is sound as, for types, `GenericArg` is just
/// `NonZeroUsize::new_unchecked(ty as *const _ as usize)` as
/// long as we use `0` for the `TYPE_TAG`.
pub fn ty_slice_as_generic_args<'a, 'tcx>(ts: &'a [Ty<'tcx>]) -> &'a [GenericArg<'tcx>] {
assert_eq!(TYPE_TAG, 0);
// SAFETY: the whole slice is valid and immutable.
// `Ty` and `GenericArg` is explained above.
unsafe { slice::from_raw_parts(ts.as_ptr().cast(), ts.len()) }
}
impl<'tcx> List<Ty<'tcx>> {
/// Allows to freely switch between `List<Ty<'tcx>>` and `List<GenericArg<'tcx>>`.
///
/// As lists are interned, `List<Ty<'tcx>>` and `List<GenericArg<'tcx>>` have
/// be interned together, see `intern_type_list` for more details.
#[inline]
pub fn as_substs(&'tcx self) -> SubstsRef<'tcx> {
assert_eq!(TYPE_TAG, 0);
// SAFETY: `List<T>` is `#[repr(C)]`. `Ty` and `GenericArg` is explained above.
unsafe { &*(self as *const List<Ty<'tcx>> as *const List<GenericArg<'tcx>>) }
}
}
impl<'tcx> GenericArgKind<'tcx> {
#[inline]
fn pack(self) -> GenericArg<'tcx> {
let (tag, ptr) = match self {
GenericArgKind::Lifetime(lt) => {
// Ensure we can use the tag bits.
assert_eq!(mem::align_of_val(&*lt.0.0) & TAG_MASK, 0);
(REGION_TAG, lt.0.0 as *const ty::RegionKind<'tcx> as usize)
}
GenericArgKind::Type(ty) => {
// Ensure we can use the tag bits.
assert_eq!(mem::align_of_val(&*ty.0.0) & TAG_MASK, 0);
(TYPE_TAG, ty.0.0 as *const WithCachedTypeInfo<ty::TyKind<'tcx>> as usize)
}
GenericArgKind::Const(ct) => {
// Ensure we can use the tag bits.
assert_eq!(mem::align_of_val(&*ct.0.0) & TAG_MASK, 0);
(CONST_TAG, ct.0.0 as *const ty::ConstS<'tcx> as usize)
}
};
GenericArg { ptr: unsafe { NonZeroUsize::new_unchecked(ptr | tag) }, marker: PhantomData }
}
}
impl<'tcx> fmt::Debug for GenericArg<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.unpack() {
GenericArgKind::Lifetime(lt) => lt.fmt(f),
GenericArgKind::Type(ty) => ty.fmt(f),
GenericArgKind::Const(ct) => ct.fmt(f),
}
}
}
impl<'tcx> Ord for GenericArg<'tcx> {
fn cmp(&self, other: &GenericArg<'tcx>) -> Ordering {
self.unpack().cmp(&other.unpack())
}
}
impl<'tcx> PartialOrd for GenericArg<'tcx> {
fn partial_cmp(&self, other: &GenericArg<'tcx>) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
impl<'tcx> From<ty::Region<'tcx>> for GenericArg<'tcx> {
#[inline]
fn from(r: ty::Region<'tcx>) -> GenericArg<'tcx> {
GenericArgKind::Lifetime(r).pack()
}
}
impl<'tcx> From<Ty<'tcx>> for GenericArg<'tcx> {
#[inline]
fn from(ty: Ty<'tcx>) -> GenericArg<'tcx> {
GenericArgKind::Type(ty).pack()
}
}
impl<'tcx> From<ty::Const<'tcx>> for GenericArg<'tcx> {
#[inline]
fn from(c: ty::Const<'tcx>) -> GenericArg<'tcx> {
GenericArgKind::Const(c).pack()
}
}
impl<'tcx> From<ty::Term<'tcx>> for GenericArg<'tcx> {
fn from(value: ty::Term<'tcx>) -> Self {
match value.unpack() {
ty::TermKind::Ty(t) => t.into(),
ty::TermKind::Const(c) => c.into(),
}
}
}
impl<'tcx> GenericArg<'tcx> {
#[inline]
pub fn unpack(self) -> GenericArgKind<'tcx> {
let ptr = self.ptr.get();
// SAFETY: use of `Interned::new_unchecked` here is ok because these
// pointers were originally created from `Interned` types in `pack()`,
// and this is just going in the other direction.
unsafe {
match ptr & TAG_MASK {
REGION_TAG => GenericArgKind::Lifetime(ty::Region(Interned::new_unchecked(
&*((ptr & !TAG_MASK) as *const ty::RegionKind<'tcx>),
))),
TYPE_TAG => GenericArgKind::Type(Ty(Interned::new_unchecked(
&*((ptr & !TAG_MASK) as *const WithCachedTypeInfo<ty::TyKind<'tcx>>),
))),
CONST_TAG => GenericArgKind::Const(ty::Const(Interned::new_unchecked(
&*((ptr & !TAG_MASK) as *const ty::ConstS<'tcx>),
))),
_ => intrinsics::unreachable(),
}
}
}
/// Unpack the `GenericArg` as a region when it is known certainly to be a region.
pub fn expect_region(self) -> ty::Region<'tcx> {
match self.unpack() {
GenericArgKind::Lifetime(lt) => lt,
_ => bug!("expected a region, but found another kind"),
}
}
/// Unpack the `GenericArg` as a type when it is known certainly to be a type.
/// This is true in cases where `Substs` is used in places where the kinds are known
/// to be limited (e.g. in tuples, where the only parameters are type parameters).
pub fn expect_ty(self) -> Ty<'tcx> {
match self.unpack() {
GenericArgKind::Type(ty) => ty,
_ => bug!("expected a type, but found another kind"),
}
}
/// Unpack the `GenericArg` as a const when it is known certainly to be a const.
pub fn expect_const(self) -> ty::Const<'tcx> {
match self.unpack() {
GenericArgKind::Const(c) => c,
_ => bug!("expected a const, but found another kind"),
}
}
pub fn is_non_region_infer(self) -> bool {
match self.unpack() {
GenericArgKind::Lifetime(_) => false,
GenericArgKind::Type(ty) => ty.is_ty_infer(),
GenericArgKind::Const(ct) => ct.is_ct_infer(),
}
}
}
impl<'a, 'tcx> Lift<'tcx> for GenericArg<'a> {
type Lifted = GenericArg<'tcx>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
match self.unpack() {
GenericArgKind::Lifetime(lt) => tcx.lift(lt).map(|lt| lt.into()),
GenericArgKind::Type(ty) => tcx.lift(ty).map(|ty| ty.into()),
GenericArgKind::Const(ct) => tcx.lift(ct).map(|ct| ct.into()),
}
}
}
impl<'tcx> TypeFoldable<'tcx> for GenericArg<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
match self.unpack() {
GenericArgKind::Lifetime(lt) => lt.try_fold_with(folder).map(Into::into),
GenericArgKind::Type(ty) => ty.try_fold_with(folder).map(Into::into),
GenericArgKind::Const(ct) => ct.try_fold_with(folder).map(Into::into),
}
}
}
impl<'tcx> TypeVisitable<'tcx> for GenericArg<'tcx> {
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
match self.unpack() {
GenericArgKind::Lifetime(lt) => lt.visit_with(visitor),
GenericArgKind::Type(ty) => ty.visit_with(visitor),
GenericArgKind::Const(ct) => ct.visit_with(visitor),
}
}
}
impl<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<E> for GenericArg<'tcx> {
fn encode(&self, e: &mut E) {
self.unpack().encode(e)
}
}
impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<D> for GenericArg<'tcx> {
fn decode(d: &mut D) -> GenericArg<'tcx> {
GenericArgKind::decode(d).pack()
}
}
/// List of generic arguments that are gonna be used to substitute generic parameters.
pub type InternalSubsts<'tcx> = List<GenericArg<'tcx>>;
pub type SubstsRef<'tcx> = &'tcx InternalSubsts<'tcx>;
impl<'tcx> InternalSubsts<'tcx> {
/// Checks whether all elements of this list are types, if so, transmute.
pub fn try_as_type_list(&'tcx self) -> Option<&'tcx List<Ty<'tcx>>> {
if self.iter().all(|arg| matches!(arg.unpack(), GenericArgKind::Type(_))) {
assert_eq!(TYPE_TAG, 0);
// SAFETY: All elements are types, see `List<Ty<'tcx>>::as_substs`.
Some(unsafe { &*(self as *const List<GenericArg<'tcx>> as *const List<Ty<'tcx>>) })
} else {
None
}
}
/// Interpret these substitutions as the substitutions of a closure type.
/// Closure substitutions have a particular structure controlled by the
/// compiler that encodes information like the signature and closure kind;
/// see `ty::ClosureSubsts` struct for more comments.
pub fn as_closure(&'tcx self) -> ClosureSubsts<'tcx> {
ClosureSubsts { substs: self }
}
/// Interpret these substitutions as the substitutions of a generator type.
/// Generator substitutions have a particular structure controlled by the
/// compiler that encodes information like the signature and generator kind;
/// see `ty::GeneratorSubsts` struct for more comments.
pub fn as_generator(&'tcx self) -> GeneratorSubsts<'tcx> {
GeneratorSubsts { substs: self }
}
/// Interpret these substitutions as the substitutions of an inline const.
/// Inline const substitutions have a particular structure controlled by the
/// compiler that encodes information like the inferred type;
/// see `ty::InlineConstSubsts` struct for more comments.
pub fn as_inline_const(&'tcx self) -> InlineConstSubsts<'tcx> {
InlineConstSubsts { substs: self }
}
/// Creates an `InternalSubsts` that maps each generic parameter to itself.
pub fn identity_for_item(tcx: TyCtxt<'tcx>, def_id: DefId) -> SubstsRef<'tcx> {
Self::for_item(tcx, def_id, |param, _| tcx.mk_param_from_def(param))
}
/// Creates an `InternalSubsts` for generic parameter definitions,
/// by calling closures to obtain each kind.
/// The closures get to observe the `InternalSubsts` as they're
/// being built, which can be used to correctly
/// substitute defaults of generic parameters.
pub fn for_item<F>(tcx: TyCtxt<'tcx>, def_id: DefId, mut mk_kind: F) -> SubstsRef<'tcx>
where
F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
{
let defs = tcx.generics_of(def_id);
let count = defs.count();
let mut substs = SmallVec::with_capacity(count);
Self::fill_item(&mut substs, tcx, defs, &mut mk_kind);
tcx.intern_substs(&substs)
}
pub fn extend_to<F>(&self, tcx: TyCtxt<'tcx>, def_id: DefId, mut mk_kind: F) -> SubstsRef<'tcx>
where
F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
{
Self::for_item(tcx, def_id, |param, substs| {
self.get(param.index as usize).cloned().unwrap_or_else(|| mk_kind(param, substs))
})
}
pub fn fill_item<F>(
substs: &mut SmallVec<[GenericArg<'tcx>; 8]>,
tcx: TyCtxt<'tcx>,
defs: &ty::Generics,
mk_kind: &mut F,
) where
F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
{
if let Some(def_id) = defs.parent {
let parent_defs = tcx.generics_of(def_id);
Self::fill_item(substs, tcx, parent_defs, mk_kind);
}
Self::fill_single(substs, defs, mk_kind)
}
pub fn fill_single<F>(
substs: &mut SmallVec<[GenericArg<'tcx>; 8]>,
defs: &ty::Generics,
mk_kind: &mut F,
) where
F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>,
{
substs.reserve(defs.params.len());
for param in &defs.params {
let kind = mk_kind(param, substs);
assert_eq!(param.index as usize, substs.len());
substs.push(kind);
}
}
// Extend an `original_substs` list to the full number of substs expected by `def_id`,
// filling in the missing parameters with error ty/ct or 'static regions.
pub fn extend_with_error(
tcx: TyCtxt<'tcx>,
def_id: DefId,
original_substs: &[GenericArg<'tcx>],
) -> SubstsRef<'tcx> {
ty::InternalSubsts::for_item(tcx, def_id, |def, substs| {
if let Some(subst) = original_substs.get(def.index as usize) {
*subst
} else {
def.to_error(tcx, substs)
}
})
}
#[inline]
pub fn types(&'tcx self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> + 'tcx {
self.iter()
.filter_map(|k| if let GenericArgKind::Type(ty) = k.unpack() { Some(ty) } else { None })
}
#[inline]
pub fn regions(&'tcx self) -> impl DoubleEndedIterator<Item = ty::Region<'tcx>> + 'tcx {
self.iter().filter_map(|k| {
if let GenericArgKind::Lifetime(lt) = k.unpack() { Some(lt) } else { None }
})
}
#[inline]
pub fn consts(&'tcx self) -> impl DoubleEndedIterator<Item = ty::Const<'tcx>> + 'tcx {
self.iter().filter_map(|k| {
if let GenericArgKind::Const(ct) = k.unpack() { Some(ct) } else { None }
})
}
#[inline]
pub fn non_erasable_generics(
&'tcx self,
) -> impl DoubleEndedIterator<Item = GenericArgKind<'tcx>> + 'tcx {
self.iter().filter_map(|k| match k.unpack() {
GenericArgKind::Lifetime(_) => None,
generic => Some(generic),
})
}
#[inline]
pub fn type_at(&self, i: usize) -> Ty<'tcx> {
if let GenericArgKind::Type(ty) = self[i].unpack() {
ty
} else {
bug!("expected type for param #{} in {:?}", i, self);
}
}
#[inline]
pub fn region_at(&self, i: usize) -> ty::Region<'tcx> {
if let GenericArgKind::Lifetime(lt) = self[i].unpack() {
lt
} else {
bug!("expected region for param #{} in {:?}", i, self);
}
}
#[inline]
pub fn const_at(&self, i: usize) -> ty::Const<'tcx> {
if let GenericArgKind::Const(ct) = self[i].unpack() {
ct
} else {
bug!("expected const for param #{} in {:?}", i, self);
}
}
#[inline]
pub fn type_for_def(&self, def: &ty::GenericParamDef) -> GenericArg<'tcx> {
self.type_at(def.index as usize).into()
}
/// Transform from substitutions for a child of `source_ancestor`
/// (e.g., a trait or impl) to substitutions for the same child
/// in a different item, with `target_substs` as the base for
/// the target impl/trait, with the source child-specific
/// parameters (e.g., method parameters) on top of that base.
///
/// For example given:
///
/// ```no_run
/// trait X<S> { fn f<T>(); }
/// impl<U> X<U> for U { fn f<V>() {} }
/// ```
///
/// * If `self` is `[Self, S, T]`: the identity substs of `f` in the trait.
/// * If `source_ancestor` is the def_id of the trait.
/// * If `target_substs` is `[U]`, the substs for the impl.
/// * Then we will return `[U, T]`, the subst for `f` in the impl that
/// are needed for it to match the trait.
pub fn rebase_onto(
&self,
tcx: TyCtxt<'tcx>,
source_ancestor: DefId,
target_substs: SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
let defs = tcx.generics_of(source_ancestor);
tcx.mk_substs(target_substs.iter().chain(self.iter().skip(defs.params.len())))
}
pub fn truncate_to(&self, tcx: TyCtxt<'tcx>, generics: &ty::Generics) -> SubstsRef<'tcx> {
tcx.mk_substs(self.iter().take(generics.count()))
}
}
impl<'tcx> TypeFoldable<'tcx> for SubstsRef<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
// This code is hot enough that it's worth specializing for the most
// common length lists, to avoid the overhead of `SmallVec` creation.
// The match arms are in order of frequency. The 1, 2, and 0 cases are
// typically hit in 90--99.99% of cases. When folding doesn't change
// the substs, it's faster to reuse the existing substs rather than
// calling `intern_substs`.
match self.len() {
1 => {
let param0 = self[0].try_fold_with(folder)?;
if param0 == self[0] { Ok(self) } else { Ok(folder.tcx().intern_substs(&[param0])) }
}
2 => {
let param0 = self[0].try_fold_with(folder)?;
let param1 = self[1].try_fold_with(folder)?;
if param0 == self[0] && param1 == self[1] {
Ok(self)
} else {
Ok(folder.tcx().intern_substs(&[param0, param1]))
}
}
0 => Ok(self),
_ => ty::util::fold_list(self, folder, |tcx, v| tcx.intern_substs(v)),
}
}
}
impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List<Ty<'tcx>> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
// This code is fairly hot, though not as hot as `SubstsRef`.
//
// When compiling stage 2, I get the following results:
//
// len | total | %
// --- | --------- | -----
// 2 | 15083590 | 48.1
// 3 | 7540067 | 24.0
// 1 | 5300377 | 16.9
// 4 | 1351897 | 4.3
// 0 | 1256849 | 4.0
//
// I've tried it with some private repositories and got
// close to the same result, with 4 and 0 swapping places
// sometimes.
match self.len() {
2 => {
let param0 = self[0].try_fold_with(folder)?;
let param1 = self[1].try_fold_with(folder)?;
if param0 == self[0] && param1 == self[1] {
Ok(self)
} else {
Ok(folder.tcx().intern_type_list(&[param0, param1]))
}
}
_ => ty::util::fold_list(self, folder, |tcx, v| tcx.intern_type_list(v)),
}
}
}
impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for &'tcx ty::List<T> {
#[inline]
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
/// Similar to [`super::Binder`] except that it tracks early bound generics, i.e. `struct Foo<T>(T)`
/// needs `T` substituted immediately. This type primarily exists to avoid forgetting to call
/// `subst`.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable)]
pub struct EarlyBinder<T>(pub T);
/// For early binders, you should first call `subst` before using any visitors.
impl<'tcx, T> !TypeFoldable<'tcx> for ty::EarlyBinder<T> {}
impl<'tcx, T> !TypeVisitable<'tcx> for ty::EarlyBinder<T> {}
impl<T> EarlyBinder<T> {
pub fn as_ref(&self) -> EarlyBinder<&T> {
EarlyBinder(&self.0)
}
pub fn map_bound_ref<F, U>(&self, f: F) -> EarlyBinder<U>
where
F: FnOnce(&T) -> U,
{
self.as_ref().map_bound(f)
}
pub fn map_bound<F, U>(self, f: F) -> EarlyBinder<U>
where
F: FnOnce(T) -> U,
{
let value = f(self.0);
EarlyBinder(value)
}
pub fn try_map_bound<F, U, E>(self, f: F) -> Result<EarlyBinder<U>, E>
where
F: FnOnce(T) -> Result<U, E>,
{
let value = f(self.0)?;
Ok(EarlyBinder(value))
}
pub fn rebind<U>(&self, value: U) -> EarlyBinder<U> {
EarlyBinder(value)
}
}
impl<T> EarlyBinder<Option<T>> {
pub fn transpose(self) -> Option<EarlyBinder<T>> {
self.0.map(|v| EarlyBinder(v))
}
}
impl<T, U> EarlyBinder<(T, U)> {
pub fn transpose_tuple2(self) -> (EarlyBinder<T>, EarlyBinder<U>) {
(EarlyBinder(self.0.0), EarlyBinder(self.0.1))
}
}
impl<'tcx, 's, I: IntoIterator> EarlyBinder<I>
where
I::Item: TypeFoldable<'tcx>,
{
pub fn subst_iter(
self,
tcx: TyCtxt<'tcx>,
substs: &'s [GenericArg<'tcx>],
) -> SubstIter<'s, 'tcx, I> {
SubstIter { it: self.0.into_iter(), tcx, substs }
}
}
pub struct SubstIter<'s, 'tcx, I: IntoIterator> {
it: I::IntoIter,
tcx: TyCtxt<'tcx>,
substs: &'s [GenericArg<'tcx>],
}
impl<'tcx, I: IntoIterator> Iterator for SubstIter<'_, 'tcx, I>
where
I::Item: TypeFoldable<'tcx>,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
Some(EarlyBinder(self.it.next()?).subst(self.tcx, self.substs))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
impl<'tcx, I: IntoIterator> DoubleEndedIterator for SubstIter<'_, 'tcx, I>
where
I::IntoIter: DoubleEndedIterator,
I::Item: TypeFoldable<'tcx>,
{
fn next_back(&mut self) -> Option<Self::Item> {
Some(EarlyBinder(self.it.next_back()?).subst(self.tcx, self.substs))
}
}
impl<'tcx, 's, I: IntoIterator> EarlyBinder<I>
where
I::Item: Deref,
<I::Item as Deref>::Target: Copy + TypeFoldable<'tcx>,
{
pub fn subst_iter_copied(
self,
tcx: TyCtxt<'tcx>,
substs: &'s [GenericArg<'tcx>],
) -> SubstIterCopied<'s, 'tcx, I> {
SubstIterCopied { it: self.0.into_iter(), tcx, substs }
}
}
pub struct SubstIterCopied<'a, 'tcx, I: IntoIterator> {
it: I::IntoIter,
tcx: TyCtxt<'tcx>,
substs: &'a [GenericArg<'tcx>],
}
impl<'tcx, I: IntoIterator> Iterator for SubstIterCopied<'_, 'tcx, I>
where
I::Item: Deref,
<I::Item as Deref>::Target: Copy + TypeFoldable<'tcx>,
{
type Item = <I::Item as Deref>::Target;
fn next(&mut self) -> Option<Self::Item> {
Some(EarlyBinder(*self.it.next()?).subst(self.tcx, self.substs))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
impl<'tcx, I: IntoIterator> DoubleEndedIterator for SubstIterCopied<'_, 'tcx, I>
where
I::IntoIter: DoubleEndedIterator,
I::Item: Deref,
<I::Item as Deref>::Target: Copy + TypeFoldable<'tcx>,
{
fn next_back(&mut self) -> Option<Self::Item> {
Some(EarlyBinder(*self.it.next_back()?).subst(self.tcx, self.substs))
}
}
pub struct EarlyBinderIter<T> {
t: T,
}
impl<T: IntoIterator> EarlyBinder<T> {
pub fn transpose_iter(self) -> EarlyBinderIter<T::IntoIter> {
EarlyBinderIter { t: self.0.into_iter() }
}
}
impl<T: Iterator> Iterator for EarlyBinderIter<T> {
type Item = EarlyBinder<T::Item>;
fn next(&mut self) -> Option<Self::Item> {
self.t.next().map(|i| EarlyBinder(i))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.t.size_hint()
}
}
impl<'tcx, T: TypeFoldable<'tcx>> ty::EarlyBinder<T> {
pub fn subst(self, tcx: TyCtxt<'tcx>, substs: &[GenericArg<'tcx>]) -> T {
let mut folder = SubstFolder { tcx, substs, binders_passed: 0 };
self.0.fold_with(&mut folder)
}
}
///////////////////////////////////////////////////////////////////////////
// The actual substitution engine itself is a type folder.
struct SubstFolder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
substs: &'a [GenericArg<'tcx>],
/// Number of region binders we have passed through while doing the substitution
binders_passed: u32,
}
impl<'a, 'tcx> TypeFolder<'tcx> for SubstFolder<'a, 'tcx> {
#[inline]
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_binder<T: TypeFoldable<'tcx>>(
&mut self,
t: ty::Binder<'tcx, T>,
) -> ty::Binder<'tcx, T> {
self.binders_passed += 1;
let t = t.super_fold_with(self);
self.binders_passed -= 1;
t
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
#[cold]
#[inline(never)]
fn region_param_out_of_range(data: ty::EarlyBoundRegion, substs: &[GenericArg<'_>]) -> ! {
bug!(
"Region parameter out of range when substituting in region {} (index={}, substs = {:?})",
data.name,
data.index,
substs,
)
}
#[cold]
#[inline(never)]
fn region_param_invalid(data: ty::EarlyBoundRegion, other: GenericArgKind<'_>) -> ! {
bug!(
"Unexpected parameter {:?} when substituting in region {} (index={})",
other,
data.name,
data.index
)
}
// Note: This routine only handles regions that are bound on
// type declarations and other outer declarations, not those
// bound in *fn types*. Region substitution of the bound
// regions that appear in a function signature is done using
// the specialized routine `ty::replace_late_regions()`.
match *r {
ty::ReEarlyBound(data) => {
let rk = self.substs.get(data.index as usize).map(|k| k.unpack());
match rk {
Some(GenericArgKind::Lifetime(lt)) => self.shift_region_through_binders(lt),
Some(other) => region_param_invalid(data, other),
None => region_param_out_of_range(data, self.substs),
}
}
_ => r,
}
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if !t.needs_subst() {
return t;
}
match *t.kind() {
ty::Param(p) => self.ty_for_param(p, t),
_ => t.super_fold_with(self),
}
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Param(p) = c.kind() {
self.const_for_param(p, c)
} else {
c.super_fold_with(self)
}
}
}
impl<'a, 'tcx> SubstFolder<'a, 'tcx> {
fn ty_for_param(&self, p: ty::ParamTy, source_ty: Ty<'tcx>) -> Ty<'tcx> {
// Look up the type in the substitutions. It really should be in there.
let opt_ty = self.substs.get(p.index as usize).map(|k| k.unpack());
let ty = match opt_ty {
Some(GenericArgKind::Type(ty)) => ty,
Some(kind) => self.type_param_expected(p, source_ty, kind),
None => self.type_param_out_of_range(p, source_ty),
};
self.shift_vars_through_binders(ty)
}
#[cold]
#[inline(never)]
fn type_param_expected(&self, p: ty::ParamTy, ty: Ty<'tcx>, kind: GenericArgKind<'tcx>) -> ! {
bug!(
"expected type for `{:?}` ({:?}/{}) but found {:?} when substituting, substs={:?}",
p,
ty,
p.index,
kind,
self.substs,
)
}
#[cold]
#[inline(never)]
fn type_param_out_of_range(&self, p: ty::ParamTy, ty: Ty<'tcx>) -> ! {
bug!(
"type parameter `{:?}` ({:?}/{}) out of range when substituting, substs={:?}",
p,
ty,
p.index,
self.substs,
)
}
fn const_for_param(&self, p: ParamConst, source_ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
// Look up the const in the substitutions. It really should be in there.
let opt_ct = self.substs.get(p.index as usize).map(|k| k.unpack());
let ct = match opt_ct {
Some(GenericArgKind::Const(ct)) => ct,
Some(kind) => self.const_param_expected(p, source_ct, kind),
None => self.const_param_out_of_range(p, source_ct),
};
self.shift_vars_through_binders(ct)
}
#[cold]
#[inline(never)]
fn const_param_expected(
&self,
p: ty::ParamConst,
ct: ty::Const<'tcx>,
kind: GenericArgKind<'tcx>,
) -> ! {
bug!(
"expected const for `{:?}` ({:?}/{}) but found {:?} when substituting substs={:?}",
p,
ct,
p.index,
kind,
self.substs,
)
}
#[cold]
#[inline(never)]
fn const_param_out_of_range(&self, p: ty::ParamConst, ct: ty::Const<'tcx>) -> ! {
bug!(
"const parameter `{:?}` ({:?}/{}) out of range when substituting substs={:?}",
p,
ct,
p.index,
self.substs,
)
}
/// It is sometimes necessary to adjust the De Bruijn indices during substitution. This occurs
/// when we are substituting a type with escaping bound vars into a context where we have
/// passed through binders. That's quite a mouthful. Let's see an example:
///
/// ```
/// type Func<A> = fn(A);
/// type MetaFunc = for<'a> fn(Func<&'a i32>);
/// ```
///
/// The type `MetaFunc`, when fully expanded, will be
/// ```ignore (illustrative)
/// for<'a> fn(fn(&'a i32))
/// // ^~ ^~ ^~~
/// // | | |
/// // | | DebruijnIndex of 2
/// // Binders
/// ```
/// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the
/// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip
/// over the inner binder (remember that we count De Bruijn indices from 1). However, in the
/// definition of `MetaFunc`, the binder is not visible, so the type `&'a i32` will have a
/// De Bruijn index of 1. It's only during the substitution that we can see we must increase the
/// depth by 1 to account for the binder that we passed through.
///
/// As a second example, consider this twist:
///
/// ```
/// type FuncTuple<A> = (A,fn(A));
/// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a i32>);
/// ```
///
/// Here the final type will be:
/// ```ignore (illustrative)
/// for<'a> fn((&'a i32, fn(&'a i32)))
/// // ^~~ ^~~
/// // | |
/// // DebruijnIndex of 1 |
/// // DebruijnIndex of 2
/// ```
/// As indicated in the diagram, here the same type `&'a i32` is substituted once, but in the
/// first case we do not increase the De Bruijn index and in the second case we do. The reason
/// is that only in the second case have we passed through a fn binder.
fn shift_vars_through_binders<T: TypeFoldable<'tcx>>(&self, val: T) -> T {
debug!(
"shift_vars(val={:?}, binders_passed={:?}, has_escaping_bound_vars={:?})",
val,
self.binders_passed,
val.has_escaping_bound_vars()
);
if self.binders_passed == 0 || !val.has_escaping_bound_vars() {
return val;
}
let result = ty::fold::shift_vars(TypeFolder::tcx(self), val, self.binders_passed);
debug!("shift_vars: shifted result = {:?}", result);
result
}
fn shift_region_through_binders(&self, region: ty::Region<'tcx>) -> ty::Region<'tcx> {
if self.binders_passed == 0 || !region.has_escaping_bound_vars() {
return region;
}
ty::fold::shift_region(self.tcx, region, self.binders_passed)
}
}
/// Stores the user-given substs to reach some fully qualified path
/// (e.g., `<T>::Item` or `<T as Trait>::Item`).
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct UserSubsts<'tcx> {
/// The substitutions for the item as given by the user.
pub substs: SubstsRef<'tcx>,
/// The self type, in the case of a `<T>::Item` path (when applied
/// to an inherent impl). See `UserSelfTy` below.
pub user_self_ty: Option<UserSelfTy<'tcx>>,
}
/// Specifies the user-given self type. In the case of a path that
/// refers to a member in an inherent impl, this self type is
/// sometimes needed to constrain the type parameters on the impl. For
/// example, in this code:
///
/// ```ignore (illustrative)
/// struct Foo<T> { }
/// impl<A> Foo<A> { fn method() { } }
/// ```
///
/// when you then have a path like `<Foo<&'static u32>>::method`,
/// this struct would carry the `DefId` of the impl along with the
/// self type `Foo<u32>`. Then we can instantiate the parameters of
/// the impl (with the substs from `UserSubsts`) and apply those to
/// the self type, giving `Foo<?A>`. Finally, we unify that with
/// the self type here, which contains `?A` to be `&'static u32`
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct UserSelfTy<'tcx> {
pub impl_def_id: DefId,
pub self_ty: Ty<'tcx>,
}