1450 lines
58 KiB
Rust
1450 lines
58 KiB
Rust
use std::assert_matches::assert_matches;
|
|
use std::fmt::Debug;
|
|
use std::hash::Hash;
|
|
use std::marker::PhantomData;
|
|
use std::sync::Arc;
|
|
use std::sync::atomic::{AtomicU32, Ordering};
|
|
|
|
use rustc_data_structures::fingerprint::{Fingerprint, PackedFingerprint};
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::outline;
|
|
use rustc_data_structures::profiling::QueryInvocationId;
|
|
use rustc_data_structures::sharded::{self, ShardedHashMap};
|
|
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
|
|
use rustc_data_structures::sync::{AtomicU64, Lock};
|
|
use rustc_data_structures::unord::UnordMap;
|
|
use rustc_errors::DiagInner;
|
|
use rustc_index::IndexVec;
|
|
use rustc_macros::{Decodable, Encodable};
|
|
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
|
|
use rustc_session::Session;
|
|
use tracing::{debug, instrument};
|
|
#[cfg(debug_assertions)]
|
|
use {super::debug::EdgeFilter, std::env};
|
|
|
|
use super::query::DepGraphQuery;
|
|
use super::serialized::{GraphEncoder, SerializedDepGraph, SerializedDepNodeIndex};
|
|
use super::{DepContext, DepKind, DepNode, Deps, HasDepContext, WorkProductId};
|
|
use crate::dep_graph::edges::EdgesVec;
|
|
use crate::ich::StableHashingContext;
|
|
use crate::query::{QueryContext, QuerySideEffect};
|
|
|
|
#[derive(Clone)]
|
|
pub struct DepGraph<D: Deps> {
|
|
data: Option<Arc<DepGraphData<D>>>,
|
|
|
|
/// This field is used for assigning DepNodeIndices when running in
|
|
/// non-incremental mode. Even in non-incremental mode we make sure that
|
|
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
|
|
/// ID is used for self-profiling.
|
|
virtual_dep_node_index: Arc<AtomicU32>,
|
|
}
|
|
|
|
rustc_index::newtype_index! {
|
|
pub struct DepNodeIndex {}
|
|
}
|
|
|
|
// We store a large collection of these in `prev_index_to_index` during
|
|
// non-full incremental builds, and want to ensure that the element size
|
|
// doesn't inadvertently increase.
|
|
rustc_data_structures::static_assert_size!(Option<DepNodeIndex>, 4);
|
|
|
|
impl DepNodeIndex {
|
|
const SINGLETON_ZERO_DEPS_ANON_NODE: DepNodeIndex = DepNodeIndex::ZERO;
|
|
pub const FOREVER_RED_NODE: DepNodeIndex = DepNodeIndex::from_u32(1);
|
|
}
|
|
|
|
impl From<DepNodeIndex> for QueryInvocationId {
|
|
#[inline(always)]
|
|
fn from(dep_node_index: DepNodeIndex) -> Self {
|
|
QueryInvocationId(dep_node_index.as_u32())
|
|
}
|
|
}
|
|
|
|
pub struct MarkFrame<'a> {
|
|
index: SerializedDepNodeIndex,
|
|
parent: Option<&'a MarkFrame<'a>>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(super) enum DepNodeColor {
|
|
Red,
|
|
Green(DepNodeIndex),
|
|
}
|
|
|
|
impl DepNodeColor {
|
|
#[inline]
|
|
fn is_green(self) -> bool {
|
|
match self {
|
|
DepNodeColor::Red => false,
|
|
DepNodeColor::Green(_) => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct DepGraphData<D: Deps> {
|
|
/// The new encoding of the dependency graph, optimized for red/green
|
|
/// tracking. The `current` field is the dependency graph of only the
|
|
/// current compilation session: We don't merge the previous dep-graph into
|
|
/// current one anymore, but we do reference shared data to save space.
|
|
current: CurrentDepGraph<D>,
|
|
|
|
/// The dep-graph from the previous compilation session. It contains all
|
|
/// nodes and edges as well as all fingerprints of nodes that have them.
|
|
previous: Arc<SerializedDepGraph>,
|
|
|
|
colors: DepNodeColorMap,
|
|
|
|
/// When we load, there may be `.o` files, cached MIR, or other such
|
|
/// things available to us. If we find that they are not dirty, we
|
|
/// load the path to the file storing those work-products here into
|
|
/// this map. We can later look for and extract that data.
|
|
previous_work_products: WorkProductMap,
|
|
|
|
dep_node_debug: Lock<FxHashMap<DepNode, String>>,
|
|
|
|
/// Used by incremental compilation tests to assert that
|
|
/// a particular query result was decoded from disk
|
|
/// (not just marked green)
|
|
debug_loaded_from_disk: Lock<FxHashSet<DepNode>>,
|
|
}
|
|
|
|
pub fn hash_result<R>(hcx: &mut StableHashingContext<'_>, result: &R) -> Fingerprint
|
|
where
|
|
R: for<'a> HashStable<StableHashingContext<'a>>,
|
|
{
|
|
let mut stable_hasher = StableHasher::new();
|
|
result.hash_stable(hcx, &mut stable_hasher);
|
|
stable_hasher.finish()
|
|
}
|
|
|
|
impl<D: Deps> DepGraph<D> {
|
|
pub fn new(
|
|
session: &Session,
|
|
prev_graph: Arc<SerializedDepGraph>,
|
|
prev_work_products: WorkProductMap,
|
|
encoder: FileEncoder,
|
|
record_graph: bool,
|
|
record_stats: bool,
|
|
) -> DepGraph<D> {
|
|
let prev_graph_node_count = prev_graph.node_count();
|
|
|
|
let current = CurrentDepGraph::new(
|
|
session,
|
|
prev_graph_node_count,
|
|
encoder,
|
|
record_graph,
|
|
record_stats,
|
|
Arc::clone(&prev_graph),
|
|
);
|
|
|
|
let colors = DepNodeColorMap::new(prev_graph_node_count);
|
|
|
|
// Instantiate a node with zero dependencies only once for anonymous queries.
|
|
let _green_node_index = current.alloc_new_node(
|
|
DepNode { kind: D::DEP_KIND_ANON_ZERO_DEPS, hash: current.anon_id_seed.into() },
|
|
EdgesVec::new(),
|
|
Fingerprint::ZERO,
|
|
);
|
|
assert_eq!(_green_node_index, DepNodeIndex::SINGLETON_ZERO_DEPS_ANON_NODE);
|
|
|
|
// Instantiate a dependy-less red node only once for anonymous queries.
|
|
let red_node_index = current.alloc_new_node(
|
|
DepNode { kind: D::DEP_KIND_RED, hash: Fingerprint::ZERO.into() },
|
|
EdgesVec::new(),
|
|
Fingerprint::ZERO,
|
|
);
|
|
assert_eq!(red_node_index, DepNodeIndex::FOREVER_RED_NODE);
|
|
if prev_graph_node_count > 0 {
|
|
colors.insert(
|
|
SerializedDepNodeIndex::from_u32(DepNodeIndex::FOREVER_RED_NODE.as_u32()),
|
|
DepNodeColor::Red,
|
|
);
|
|
}
|
|
|
|
DepGraph {
|
|
data: Some(Arc::new(DepGraphData {
|
|
previous_work_products: prev_work_products,
|
|
dep_node_debug: Default::default(),
|
|
current,
|
|
previous: prev_graph,
|
|
colors,
|
|
debug_loaded_from_disk: Default::default(),
|
|
})),
|
|
virtual_dep_node_index: Arc::new(AtomicU32::new(0)),
|
|
}
|
|
}
|
|
|
|
pub fn new_disabled() -> DepGraph<D> {
|
|
DepGraph { data: None, virtual_dep_node_index: Arc::new(AtomicU32::new(0)) }
|
|
}
|
|
|
|
#[inline]
|
|
pub(crate) fn data(&self) -> Option<&DepGraphData<D>> {
|
|
self.data.as_deref()
|
|
}
|
|
|
|
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
|
|
#[inline]
|
|
pub fn is_fully_enabled(&self) -> bool {
|
|
self.data.is_some()
|
|
}
|
|
|
|
pub fn with_query(&self, f: impl Fn(&DepGraphQuery)) {
|
|
if let Some(data) = &self.data {
|
|
data.current.encoder.with_query(f)
|
|
}
|
|
}
|
|
|
|
pub fn assert_ignored(&self) {
|
|
if let Some(..) = self.data {
|
|
D::read_deps(|task_deps| {
|
|
assert_matches!(
|
|
task_deps,
|
|
TaskDepsRef::Ignore,
|
|
"expected no task dependency tracking"
|
|
);
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn with_ignore<OP, R>(&self, op: OP) -> R
|
|
where
|
|
OP: FnOnce() -> R,
|
|
{
|
|
D::with_deps(TaskDepsRef::Ignore, op)
|
|
}
|
|
|
|
/// Used to wrap the deserialization of a query result from disk,
|
|
/// This method enforces that no new `DepNodes` are created during
|
|
/// query result deserialization.
|
|
///
|
|
/// Enforcing this makes the query dep graph simpler - all nodes
|
|
/// must be created during the query execution, and should be
|
|
/// created from inside the 'body' of a query (the implementation
|
|
/// provided by a particular compiler crate).
|
|
///
|
|
/// Consider the case of three queries `A`, `B`, and `C`, where
|
|
/// `A` invokes `B` and `B` invokes `C`:
|
|
///
|
|
/// `A -> B -> C`
|
|
///
|
|
/// Suppose that decoding the result of query `B` required re-computing
|
|
/// the query `C`. If we did not create a fresh `TaskDeps` when
|
|
/// decoding `B`, we would still be using the `TaskDeps` for query `A`
|
|
/// (if we needed to re-execute `A`). This would cause us to create
|
|
/// a new edge `A -> C`. If this edge did not previously
|
|
/// exist in the `DepGraph`, then we could end up with a different
|
|
/// `DepGraph` at the end of compilation, even if there were no
|
|
/// meaningful changes to the overall program (e.g. a newline was added).
|
|
/// In addition, this edge might cause a subsequent compilation run
|
|
/// to try to force `C` before marking other necessary nodes green. If
|
|
/// `C` did not exist in the new compilation session, then we could
|
|
/// get an ICE. Normally, we would have tried (and failed) to mark
|
|
/// some other query green (e.g. `item_children`) which was used
|
|
/// to obtain `C`, which would prevent us from ever trying to force
|
|
/// a nonexistent `D`.
|
|
///
|
|
/// It might be possible to enforce that all `DepNode`s read during
|
|
/// deserialization already exist in the previous `DepGraph`. In
|
|
/// the above example, we would invoke `D` during the deserialization
|
|
/// of `B`. Since we correctly create a new `TaskDeps` from the decoding
|
|
/// of `B`, this would result in an edge `B -> D`. If that edge already
|
|
/// existed (with the same `DepPathHash`es), then it should be correct
|
|
/// to allow the invocation of the query to proceed during deserialization
|
|
/// of a query result. We would merely assert that the dep-graph fragment
|
|
/// that would have been added by invoking `C` while decoding `B`
|
|
/// is equivalent to the dep-graph fragment that we already instantiated for B
|
|
/// (at the point where we successfully marked B as green).
|
|
///
|
|
/// However, this would require additional complexity
|
|
/// in the query infrastructure, and is not currently needed by the
|
|
/// decoding of any query results. Should the need arise in the future,
|
|
/// we should consider extending the query system with this functionality.
|
|
pub fn with_query_deserialization<OP, R>(&self, op: OP) -> R
|
|
where
|
|
OP: FnOnce() -> R,
|
|
{
|
|
D::with_deps(TaskDepsRef::Forbid, op)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn with_task<Ctxt: HasDepContext<Deps = D>, A: Debug, R>(
|
|
&self,
|
|
key: DepNode,
|
|
cx: Ctxt,
|
|
arg: A,
|
|
task: fn(Ctxt, A) -> R,
|
|
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
|
|
) -> (R, DepNodeIndex) {
|
|
match self.data() {
|
|
Some(data) => data.with_task(key, cx, arg, task, hash_result),
|
|
None => (task(cx, arg), self.next_virtual_depnode_index()),
|
|
}
|
|
}
|
|
|
|
pub fn with_anon_task<Tcx: DepContext<Deps = D>, OP, R>(
|
|
&self,
|
|
cx: Tcx,
|
|
dep_kind: DepKind,
|
|
op: OP,
|
|
) -> (R, DepNodeIndex)
|
|
where
|
|
OP: FnOnce() -> R,
|
|
{
|
|
match self.data() {
|
|
Some(data) => {
|
|
let (result, index) = data.with_anon_task_inner(cx, dep_kind, op);
|
|
self.read_index(index);
|
|
(result, index)
|
|
}
|
|
None => (op(), self.next_virtual_depnode_index()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraphData<D> {
|
|
/// Starts a new dep-graph task. Dep-graph tasks are specified
|
|
/// using a free function (`task`) and **not** a closure -- this
|
|
/// is intentional because we want to exercise tight control over
|
|
/// what state they have access to. In particular, we want to
|
|
/// prevent implicit 'leaks' of tracked state into the task (which
|
|
/// could then be read without generating correct edges in the
|
|
/// dep-graph -- see the [rustc dev guide] for more details on
|
|
/// the dep-graph). To this end, the task function gets exactly two
|
|
/// pieces of state: the context `cx` and an argument `arg`. Both
|
|
/// of these bits of state must be of some type that implements
|
|
/// `DepGraphSafe` and hence does not leak.
|
|
///
|
|
/// The choice of two arguments is not fundamental. One argument
|
|
/// would work just as well, since multiple values can be
|
|
/// collected using tuples. However, using two arguments works out
|
|
/// to be quite convenient, since it is common to need a context
|
|
/// (`cx`) and some argument (e.g., a `DefId` identifying what
|
|
/// item to process).
|
|
///
|
|
/// For cases where you need some other number of arguments:
|
|
///
|
|
/// - If you only need one argument, just use `()` for the `arg`
|
|
/// parameter.
|
|
/// - If you need 3+ arguments, use a tuple for the
|
|
/// `arg` parameter.
|
|
///
|
|
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html
|
|
#[inline(always)]
|
|
pub(crate) fn with_task<Ctxt: HasDepContext<Deps = D>, A: Debug, R>(
|
|
&self,
|
|
key: DepNode,
|
|
cx: Ctxt,
|
|
arg: A,
|
|
task: fn(Ctxt, A) -> R,
|
|
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
|
|
) -> (R, DepNodeIndex) {
|
|
// If the following assertion triggers, it can have two reasons:
|
|
// 1. Something is wrong with DepNode creation, either here or
|
|
// in `DepGraph::try_mark_green()`.
|
|
// 2. Two distinct query keys get mapped to the same `DepNode`
|
|
// (see for example #48923).
|
|
self.assert_dep_node_not_yet_allocated_in_current_session(&key, || {
|
|
format!(
|
|
"forcing query with already existing `DepNode`\n\
|
|
- query-key: {arg:?}\n\
|
|
- dep-node: {key:?}"
|
|
)
|
|
});
|
|
|
|
let with_deps = |task_deps| D::with_deps(task_deps, || task(cx, arg));
|
|
let (result, edges) = if cx.dep_context().is_eval_always(key.kind) {
|
|
(with_deps(TaskDepsRef::EvalAlways), EdgesVec::new())
|
|
} else {
|
|
let task_deps = Lock::new(TaskDeps {
|
|
#[cfg(debug_assertions)]
|
|
node: Some(key),
|
|
reads: EdgesVec::new(),
|
|
read_set: Default::default(),
|
|
phantom_data: PhantomData,
|
|
});
|
|
(with_deps(TaskDepsRef::Allow(&task_deps)), task_deps.into_inner().reads)
|
|
};
|
|
|
|
let dcx = cx.dep_context();
|
|
let dep_node_index = self.hash_result_and_alloc_node(dcx, key, edges, &result, hash_result);
|
|
|
|
(result, dep_node_index)
|
|
}
|
|
|
|
/// Executes something within an "anonymous" task, that is, a task the
|
|
/// `DepNode` of which is determined by the list of inputs it read from.
|
|
///
|
|
/// NOTE: this does not actually count as a read of the DepNode here.
|
|
/// Using the result of this task without reading the DepNode will result
|
|
/// in untracked dependencies which may lead to ICEs as nodes are
|
|
/// incorrectly marked green.
|
|
///
|
|
/// FIXME: This could perhaps return a `WithDepNode` to ensure that the
|
|
/// user of this function actually performs the read; we'll have to see
|
|
/// how to make that work with `anon` in `execute_job_incr`, though.
|
|
pub(crate) fn with_anon_task_inner<Tcx: DepContext<Deps = D>, OP, R>(
|
|
&self,
|
|
cx: Tcx,
|
|
dep_kind: DepKind,
|
|
op: OP,
|
|
) -> (R, DepNodeIndex)
|
|
where
|
|
OP: FnOnce() -> R,
|
|
{
|
|
debug_assert!(!cx.is_eval_always(dep_kind));
|
|
|
|
let task_deps = Lock::new(TaskDeps::default());
|
|
let result = D::with_deps(TaskDepsRef::Allow(&task_deps), op);
|
|
let task_deps = task_deps.into_inner();
|
|
let task_deps = task_deps.reads;
|
|
|
|
let dep_node_index = match task_deps.len() {
|
|
0 => {
|
|
// Because the dep-node id of anon nodes is computed from the sets of its
|
|
// dependencies we already know what the ID of this dependency-less node is
|
|
// going to be (i.e. equal to the precomputed
|
|
// `SINGLETON_DEPENDENCYLESS_ANON_NODE`). As a consequence we can skip creating
|
|
// a `StableHasher` and sending the node through interning.
|
|
DepNodeIndex::SINGLETON_ZERO_DEPS_ANON_NODE
|
|
}
|
|
1 => {
|
|
// When there is only one dependency, don't bother creating a node.
|
|
task_deps[0]
|
|
}
|
|
_ => {
|
|
// The dep node indices are hashed here instead of hashing the dep nodes of the
|
|
// dependencies. These indices may refer to different nodes per session, but this isn't
|
|
// a problem here because we that ensure the final dep node hash is per session only by
|
|
// combining it with the per session random number `anon_id_seed`. This hash only need
|
|
// to map the dependencies to a single value on a per session basis.
|
|
let mut hasher = StableHasher::new();
|
|
task_deps.hash(&mut hasher);
|
|
|
|
let target_dep_node = DepNode {
|
|
kind: dep_kind,
|
|
// Fingerprint::combine() is faster than sending Fingerprint
|
|
// through the StableHasher (at least as long as StableHasher
|
|
// is so slow).
|
|
hash: self.current.anon_id_seed.combine(hasher.finish()).into(),
|
|
};
|
|
|
|
// The DepNodes generated by the process above are not unique. 2 queries could
|
|
// have exactly the same dependencies. However, deserialization does not handle
|
|
// duplicated nodes, so we do the deduplication here directly.
|
|
//
|
|
// As anonymous nodes are a small quantity compared to the full dep-graph, the
|
|
// memory impact of this `anon_node_to_index` map remains tolerable, and helps
|
|
// us avoid useless growth of the graph with almost-equivalent nodes.
|
|
self.current.anon_node_to_index.get_or_insert_with(target_dep_node, || {
|
|
self.current.alloc_new_node(target_dep_node, task_deps, Fingerprint::ZERO)
|
|
})
|
|
}
|
|
};
|
|
|
|
(result, dep_node_index)
|
|
}
|
|
|
|
/// Intern the new `DepNode` with the dependencies up-to-now.
|
|
fn hash_result_and_alloc_node<Ctxt: DepContext<Deps = D>, R>(
|
|
&self,
|
|
cx: &Ctxt,
|
|
node: DepNode,
|
|
edges: EdgesVec,
|
|
result: &R,
|
|
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
|
|
) -> DepNodeIndex {
|
|
let hashing_timer = cx.profiler().incr_result_hashing();
|
|
let current_fingerprint = hash_result.map(|hash_result| {
|
|
cx.with_stable_hashing_context(|mut hcx| hash_result(&mut hcx, result))
|
|
});
|
|
let dep_node_index = self.alloc_and_color_node(node, edges, current_fingerprint);
|
|
hashing_timer.finish_with_query_invocation_id(dep_node_index.into());
|
|
dep_node_index
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraph<D> {
|
|
#[inline]
|
|
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
|
|
if let Some(ref data) = self.data {
|
|
D::read_deps(|task_deps| {
|
|
let mut task_deps = match task_deps {
|
|
TaskDepsRef::Allow(deps) => deps.lock(),
|
|
TaskDepsRef::EvalAlways => {
|
|
// We don't need to record dependencies of eval_always
|
|
// queries. They are re-evaluated unconditionally anyway.
|
|
return;
|
|
}
|
|
TaskDepsRef::Ignore => return,
|
|
TaskDepsRef::Forbid => {
|
|
// Reading is forbidden in this context. ICE with a useful error message.
|
|
panic_on_forbidden_read(data, dep_node_index)
|
|
}
|
|
};
|
|
let task_deps = &mut *task_deps;
|
|
|
|
if cfg!(debug_assertions) {
|
|
data.current.total_read_count.fetch_add(1, Ordering::Relaxed);
|
|
}
|
|
|
|
// As long as we only have a low number of reads we can avoid doing a hash
|
|
// insert and potentially allocating/reallocating the hashmap
|
|
let new_read = if task_deps.reads.len() < EdgesVec::INLINE_CAPACITY {
|
|
task_deps.reads.iter().all(|other| *other != dep_node_index)
|
|
} else {
|
|
task_deps.read_set.insert(dep_node_index)
|
|
};
|
|
if new_read {
|
|
task_deps.reads.push(dep_node_index);
|
|
if task_deps.reads.len() == EdgesVec::INLINE_CAPACITY {
|
|
// Fill `read_set` with what we have so far so we can use the hashset
|
|
// next time
|
|
task_deps.read_set.extend(task_deps.reads.iter().copied());
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
{
|
|
if let Some(target) = task_deps.node {
|
|
if let Some(ref forbidden_edge) = data.current.forbidden_edge {
|
|
let src = forbidden_edge.index_to_node.lock()[&dep_node_index];
|
|
if forbidden_edge.test(&src, &target) {
|
|
panic!("forbidden edge {:?} -> {:?} created", src, target)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if cfg!(debug_assertions) {
|
|
data.current.total_duplicate_read_count.fetch_add(1, Ordering::Relaxed);
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
/// This encodes a diagnostic by creating a node with an unique index and assoicating
|
|
/// `diagnostic` with it, for use in the next session.
|
|
#[inline]
|
|
pub fn record_diagnostic<Qcx: QueryContext>(&self, qcx: Qcx, diagnostic: &DiagInner) {
|
|
if let Some(ref data) = self.data {
|
|
D::read_deps(|task_deps| match task_deps {
|
|
TaskDepsRef::EvalAlways | TaskDepsRef::Ignore => return,
|
|
TaskDepsRef::Forbid | TaskDepsRef::Allow(..) => {
|
|
self.read_index(data.encode_diagnostic(qcx, diagnostic));
|
|
}
|
|
})
|
|
}
|
|
}
|
|
/// This forces a diagnostic node green by running its side effect. `prev_index` would
|
|
/// refer to a node created used `encode_diagnostic` in the previous session.
|
|
#[inline]
|
|
pub fn force_diagnostic_node<Qcx: QueryContext>(
|
|
&self,
|
|
qcx: Qcx,
|
|
prev_index: SerializedDepNodeIndex,
|
|
) {
|
|
if let Some(ref data) = self.data {
|
|
data.force_diagnostic_node(qcx, prev_index);
|
|
}
|
|
}
|
|
|
|
/// Create a node when we force-feed a value into the query cache.
|
|
/// This is used to remove cycles during type-checking const generic parameters.
|
|
///
|
|
/// As usual in the query system, we consider the current state of the calling query
|
|
/// only depends on the list of dependencies up to now. As a consequence, the value
|
|
/// that this query gives us can only depend on those dependencies too. Therefore,
|
|
/// it is sound to use the current dependency set for the created node.
|
|
///
|
|
/// During replay, the order of the nodes is relevant in the dependency graph.
|
|
/// So the unchanged replay will mark the caller query before trying to mark this one.
|
|
/// If there is a change to report, the caller query will be re-executed before this one.
|
|
///
|
|
/// FIXME: If the code is changed enough for this node to be marked before requiring the
|
|
/// caller's node, we suppose that those changes will be enough to mark this node red and
|
|
/// force a recomputation using the "normal" way.
|
|
pub fn with_feed_task<Ctxt: DepContext<Deps = D>, R: Debug>(
|
|
&self,
|
|
node: DepNode,
|
|
cx: Ctxt,
|
|
result: &R,
|
|
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
|
|
) -> DepNodeIndex {
|
|
if let Some(data) = self.data.as_ref() {
|
|
// The caller query has more dependencies than the node we are creating. We may
|
|
// encounter a case where this created node is marked as green, but the caller query is
|
|
// subsequently marked as red or recomputed. In this case, we will end up feeding a
|
|
// value to an existing node.
|
|
//
|
|
// For sanity, we still check that the loaded stable hash and the new one match.
|
|
if let Some(prev_index) = data.previous.node_to_index_opt(&node) {
|
|
let dep_node_index = data.colors.current(prev_index);
|
|
if let Some(dep_node_index) = dep_node_index {
|
|
crate::query::incremental_verify_ich(
|
|
cx,
|
|
data,
|
|
result,
|
|
prev_index,
|
|
hash_result,
|
|
|value| format!("{value:?}"),
|
|
);
|
|
|
|
#[cfg(debug_assertions)]
|
|
if hash_result.is_some() {
|
|
data.current.record_edge(
|
|
dep_node_index,
|
|
node,
|
|
data.prev_fingerprint_of(prev_index),
|
|
);
|
|
}
|
|
|
|
return dep_node_index;
|
|
}
|
|
}
|
|
|
|
let mut edges = EdgesVec::new();
|
|
D::read_deps(|task_deps| match task_deps {
|
|
TaskDepsRef::Allow(deps) => edges.extend(deps.lock().reads.iter().copied()),
|
|
TaskDepsRef::EvalAlways => {
|
|
edges.push(DepNodeIndex::FOREVER_RED_NODE);
|
|
}
|
|
TaskDepsRef::Ignore => {}
|
|
TaskDepsRef::Forbid => {
|
|
panic!("Cannot summarize when dependencies are not recorded.")
|
|
}
|
|
});
|
|
|
|
data.hash_result_and_alloc_node(&cx, node, edges, result, hash_result)
|
|
} else {
|
|
// Incremental compilation is turned off. We just execute the task
|
|
// without tracking. We still provide a dep-node index that uniquely
|
|
// identifies the task so that we have a cheap way of referring to
|
|
// the query for self-profiling.
|
|
self.next_virtual_depnode_index()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraphData<D> {
|
|
fn assert_dep_node_not_yet_allocated_in_current_session<S: std::fmt::Display>(
|
|
&self,
|
|
dep_node: &DepNode,
|
|
msg: impl FnOnce() -> S,
|
|
) {
|
|
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
|
|
let current = self.colors.get(prev_index);
|
|
assert!(current.is_none(), "{}", msg())
|
|
} else if let Some(nodes_in_current_session) = &self.current.nodes_in_current_session {
|
|
outline(|| {
|
|
let seen = nodes_in_current_session.lock().contains_key(dep_node);
|
|
assert!(!seen, "{}", msg());
|
|
});
|
|
}
|
|
}
|
|
|
|
fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
|
|
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
|
|
self.colors.get(prev_index)
|
|
} else {
|
|
// This is a node that did not exist in the previous compilation session.
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns true if the given node has been marked as green during the
|
|
/// current compilation session. Used in various assertions
|
|
#[inline]
|
|
pub(crate) fn is_index_green(&self, prev_index: SerializedDepNodeIndex) -> bool {
|
|
self.colors.get(prev_index).is_some_and(|c| c.is_green())
|
|
}
|
|
|
|
#[inline]
|
|
pub(crate) fn prev_fingerprint_of(&self, prev_index: SerializedDepNodeIndex) -> Fingerprint {
|
|
self.previous.fingerprint_by_index(prev_index)
|
|
}
|
|
|
|
#[inline]
|
|
pub(crate) fn prev_node_of(&self, prev_index: SerializedDepNodeIndex) -> DepNode {
|
|
self.previous.index_to_node(prev_index)
|
|
}
|
|
|
|
pub(crate) fn mark_debug_loaded_from_disk(&self, dep_node: DepNode) {
|
|
self.debug_loaded_from_disk.lock().insert(dep_node);
|
|
}
|
|
|
|
/// This encodes a diagnostic by creating a node with an unique index and assoicating
|
|
/// `diagnostic` with it, for use in the next session.
|
|
#[inline]
|
|
fn encode_diagnostic<Qcx: QueryContext>(
|
|
&self,
|
|
qcx: Qcx,
|
|
diagnostic: &DiagInner,
|
|
) -> DepNodeIndex {
|
|
// Use `send_new` so we get an unique index, even though the dep node is not.
|
|
let dep_node_index = self.current.encoder.send_new(
|
|
DepNode {
|
|
kind: D::DEP_KIND_SIDE_EFFECT,
|
|
hash: PackedFingerprint::from(Fingerprint::ZERO),
|
|
},
|
|
Fingerprint::ZERO,
|
|
// We want the side effect node to always be red so it will be forced and emit the
|
|
// diagnostic.
|
|
std::iter::once(DepNodeIndex::FOREVER_RED_NODE).collect(),
|
|
);
|
|
let side_effect = QuerySideEffect::Diagnostic(diagnostic.clone());
|
|
qcx.store_side_effect(dep_node_index, side_effect);
|
|
dep_node_index
|
|
}
|
|
|
|
/// This forces a diagnostic node green by running its side effect. `prev_index` would
|
|
/// refer to a node created used `encode_diagnostic` in the previous session.
|
|
#[inline]
|
|
fn force_diagnostic_node<Qcx: QueryContext>(
|
|
&self,
|
|
qcx: Qcx,
|
|
prev_index: SerializedDepNodeIndex,
|
|
) {
|
|
D::with_deps(TaskDepsRef::Ignore, || {
|
|
let side_effect = qcx.load_side_effect(prev_index).unwrap();
|
|
|
|
match &side_effect {
|
|
QuerySideEffect::Diagnostic(diagnostic) => {
|
|
qcx.dep_context().sess().dcx().emit_diagnostic(diagnostic.clone());
|
|
}
|
|
}
|
|
|
|
// Use `send_and_color` as `promote_node_and_deps_to_current` expects all
|
|
// green dependencies. `send_and_color` will also prevent multiple nodes
|
|
// being encoded for concurrent calls.
|
|
let dep_node_index = self.current.encoder.send_and_color(
|
|
prev_index,
|
|
&self.colors,
|
|
DepNode {
|
|
kind: D::DEP_KIND_SIDE_EFFECT,
|
|
hash: PackedFingerprint::from(Fingerprint::ZERO),
|
|
},
|
|
Fingerprint::ZERO,
|
|
std::iter::once(DepNodeIndex::FOREVER_RED_NODE).collect(),
|
|
true,
|
|
);
|
|
// This will just overwrite the same value for concurrent calls.
|
|
qcx.store_side_effect(dep_node_index, side_effect);
|
|
})
|
|
}
|
|
|
|
fn alloc_and_color_node(
|
|
&self,
|
|
key: DepNode,
|
|
edges: EdgesVec,
|
|
fingerprint: Option<Fingerprint>,
|
|
) -> DepNodeIndex {
|
|
if let Some(prev_index) = self.previous.node_to_index_opt(&key) {
|
|
// Determine the color and index of the new `DepNode`.
|
|
let is_green = if let Some(fingerprint) = fingerprint {
|
|
if fingerprint == self.previous.fingerprint_by_index(prev_index) {
|
|
// This is a green node: it existed in the previous compilation,
|
|
// its query was re-executed, and it has the same result as before.
|
|
true
|
|
} else {
|
|
// This is a red node: it existed in the previous compilation, its query
|
|
// was re-executed, but it has a different result from before.
|
|
false
|
|
}
|
|
} else {
|
|
// This is a red node, effectively: it existed in the previous compilation
|
|
// session, its query was re-executed, but it doesn't compute a result hash
|
|
// (i.e. it represents a `no_hash` query), so we have no way of determining
|
|
// whether or not the result was the same as before.
|
|
false
|
|
};
|
|
|
|
let fingerprint = fingerprint.unwrap_or(Fingerprint::ZERO);
|
|
|
|
let dep_node_index = self.current.encoder.send_and_color(
|
|
prev_index,
|
|
&self.colors,
|
|
key,
|
|
fingerprint,
|
|
edges,
|
|
is_green,
|
|
);
|
|
|
|
self.current.record_node(dep_node_index, key, fingerprint);
|
|
|
|
dep_node_index
|
|
} else {
|
|
self.current.alloc_new_node(key, edges, fingerprint.unwrap_or(Fingerprint::ZERO))
|
|
}
|
|
}
|
|
|
|
fn promote_node_and_deps_to_current(&self, prev_index: SerializedDepNodeIndex) -> DepNodeIndex {
|
|
self.current.debug_assert_not_in_new_nodes(&self.previous, prev_index);
|
|
|
|
let dep_node_index = self.current.encoder.send_promoted(prev_index, &self.colors);
|
|
|
|
#[cfg(debug_assertions)]
|
|
self.current.record_edge(
|
|
dep_node_index,
|
|
self.previous.index_to_node(prev_index),
|
|
self.previous.fingerprint_by_index(prev_index),
|
|
);
|
|
|
|
dep_node_index
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraph<D> {
|
|
/// Checks whether a previous work product exists for `v` and, if
|
|
/// so, return the path that leads to it. Used to skip doing work.
|
|
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
|
|
self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
|
|
}
|
|
|
|
/// Access the map of work-products created during the cached run. Only
|
|
/// used during saving of the dep-graph.
|
|
pub fn previous_work_products(&self) -> &WorkProductMap {
|
|
&self.data.as_ref().unwrap().previous_work_products
|
|
}
|
|
|
|
pub fn debug_was_loaded_from_disk(&self, dep_node: DepNode) -> bool {
|
|
self.data.as_ref().unwrap().debug_loaded_from_disk.lock().contains(&dep_node)
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
#[inline(always)]
|
|
pub(crate) fn register_dep_node_debug_str<F>(&self, dep_node: DepNode, debug_str_gen: F)
|
|
where
|
|
F: FnOnce() -> String,
|
|
{
|
|
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
|
|
|
|
if dep_node_debug.borrow().contains_key(&dep_node) {
|
|
return;
|
|
}
|
|
let debug_str = self.with_ignore(debug_str_gen);
|
|
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
|
|
}
|
|
|
|
pub fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
|
|
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
|
|
}
|
|
|
|
fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
|
|
if let Some(ref data) = self.data {
|
|
return data.node_color(dep_node);
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
pub fn try_mark_green<Qcx: QueryContext<Deps = D>>(
|
|
&self,
|
|
qcx: Qcx,
|
|
dep_node: &DepNode,
|
|
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
|
|
self.data().and_then(|data| data.try_mark_green(qcx, dep_node))
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraphData<D> {
|
|
/// Try to mark a node index for the node dep_node.
|
|
///
|
|
/// A node will have an index, when it's already been marked green, or when we can mark it
|
|
/// green. This function will mark the current task as a reader of the specified node, when
|
|
/// a node index can be found for that node.
|
|
pub(crate) fn try_mark_green<Qcx: QueryContext<Deps = D>>(
|
|
&self,
|
|
qcx: Qcx,
|
|
dep_node: &DepNode,
|
|
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
|
|
debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
|
|
|
|
// Return None if the dep node didn't exist in the previous session
|
|
let prev_index = self.previous.node_to_index_opt(dep_node)?;
|
|
|
|
match self.colors.get(prev_index) {
|
|
Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
|
|
Some(DepNodeColor::Red) => None,
|
|
None => {
|
|
// This DepNode and the corresponding query invocation existed
|
|
// in the previous compilation session too, so we can try to
|
|
// mark it as green by recursively marking all of its
|
|
// dependencies green.
|
|
self.try_mark_previous_green(qcx, prev_index, dep_node, None)
|
|
.map(|dep_node_index| (prev_index, dep_node_index))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(self, qcx, parent_dep_node_index, frame), level = "debug")]
|
|
fn try_mark_parent_green<Qcx: QueryContext<Deps = D>>(
|
|
&self,
|
|
qcx: Qcx,
|
|
parent_dep_node_index: SerializedDepNodeIndex,
|
|
frame: Option<&MarkFrame<'_>>,
|
|
) -> Option<()> {
|
|
let dep_dep_node_color = self.colors.get(parent_dep_node_index);
|
|
let dep_dep_node = &self.previous.index_to_node(parent_dep_node_index);
|
|
|
|
match dep_dep_node_color {
|
|
Some(DepNodeColor::Green(_)) => {
|
|
// This dependency has been marked as green before, we are
|
|
// still fine and can continue with checking the other
|
|
// dependencies.
|
|
debug!("dependency {dep_dep_node:?} was immediately green");
|
|
return Some(());
|
|
}
|
|
Some(DepNodeColor::Red) => {
|
|
// We found a dependency the value of which has changed
|
|
// compared to the previous compilation session. We cannot
|
|
// mark the DepNode as green and also don't need to bother
|
|
// with checking any of the other dependencies.
|
|
debug!("dependency {dep_dep_node:?} was immediately red");
|
|
return None;
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
// We don't know the state of this dependency. If it isn't
|
|
// an eval_always node, let's try to mark it green recursively.
|
|
if !qcx.dep_context().is_eval_always(dep_dep_node.kind) {
|
|
debug!(
|
|
"state of dependency {:?} ({}) is unknown, trying to mark it green",
|
|
dep_dep_node, dep_dep_node.hash,
|
|
);
|
|
|
|
let node_index =
|
|
self.try_mark_previous_green(qcx, parent_dep_node_index, dep_dep_node, frame);
|
|
|
|
if node_index.is_some() {
|
|
debug!("managed to MARK dependency {dep_dep_node:?} as green");
|
|
return Some(());
|
|
}
|
|
}
|
|
|
|
// We failed to mark it green, so we try to force the query.
|
|
debug!("trying to force dependency {dep_dep_node:?}");
|
|
if !qcx.dep_context().try_force_from_dep_node(*dep_dep_node, parent_dep_node_index, frame) {
|
|
// The DepNode could not be forced.
|
|
debug!("dependency {dep_dep_node:?} could not be forced");
|
|
return None;
|
|
}
|
|
|
|
let dep_dep_node_color = self.colors.get(parent_dep_node_index);
|
|
|
|
match dep_dep_node_color {
|
|
Some(DepNodeColor::Green(_)) => {
|
|
debug!("managed to FORCE dependency {dep_dep_node:?} to green");
|
|
return Some(());
|
|
}
|
|
Some(DepNodeColor::Red) => {
|
|
debug!("dependency {dep_dep_node:?} was red after forcing");
|
|
return None;
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
if let None = qcx.dep_context().sess().dcx().has_errors_or_delayed_bugs() {
|
|
panic!("try_mark_previous_green() - Forcing the DepNode should have set its color")
|
|
}
|
|
|
|
// If the query we just forced has resulted in
|
|
// some kind of compilation error, we cannot rely on
|
|
// the dep-node color having been properly updated.
|
|
// This means that the query system has reached an
|
|
// invalid state. We let the compiler continue (by
|
|
// returning `None`) so it can emit error messages
|
|
// and wind down, but rely on the fact that this
|
|
// invalid state will not be persisted to the
|
|
// incremental compilation cache because of
|
|
// compilation errors being present.
|
|
debug!("dependency {dep_dep_node:?} resulted in compilation error");
|
|
return None;
|
|
}
|
|
|
|
/// Try to mark a dep-node which existed in the previous compilation session as green.
|
|
#[instrument(skip(self, qcx, prev_dep_node_index, frame), level = "debug")]
|
|
fn try_mark_previous_green<Qcx: QueryContext<Deps = D>>(
|
|
&self,
|
|
qcx: Qcx,
|
|
prev_dep_node_index: SerializedDepNodeIndex,
|
|
dep_node: &DepNode,
|
|
frame: Option<&MarkFrame<'_>>,
|
|
) -> Option<DepNodeIndex> {
|
|
let frame = MarkFrame { index: prev_dep_node_index, parent: frame };
|
|
|
|
// We never try to mark eval_always nodes as green
|
|
debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
|
|
|
|
debug_assert_eq!(self.previous.index_to_node(prev_dep_node_index), *dep_node);
|
|
|
|
let prev_deps = self.previous.edge_targets_from(prev_dep_node_index);
|
|
|
|
for dep_dep_node_index in prev_deps {
|
|
self.try_mark_parent_green(qcx, dep_dep_node_index, Some(&frame))?;
|
|
}
|
|
|
|
// If we got here without hitting a `return` that means that all
|
|
// dependencies of this DepNode could be marked as green. Therefore we
|
|
// can also mark this DepNode as green.
|
|
|
|
// There may be multiple threads trying to mark the same dep node green concurrently
|
|
|
|
// We allocating an entry for the node in the current dependency graph and
|
|
// adding all the appropriate edges imported from the previous graph
|
|
let dep_node_index = self.promote_node_and_deps_to_current(prev_dep_node_index);
|
|
|
|
// ... and finally storing a "Green" entry in the color map.
|
|
// Multiple threads can all write the same color here
|
|
|
|
debug!("successfully marked {dep_node:?} as green");
|
|
Some(dep_node_index)
|
|
}
|
|
}
|
|
|
|
impl<D: Deps> DepGraph<D> {
|
|
/// Returns true if the given node has been marked as red during the
|
|
/// current compilation session. Used in various assertions
|
|
pub fn is_red(&self, dep_node: &DepNode) -> bool {
|
|
matches!(self.node_color(dep_node), Some(DepNodeColor::Red))
|
|
}
|
|
|
|
/// Returns true if the given node has been marked as green during the
|
|
/// current compilation session. Used in various assertions
|
|
pub fn is_green(&self, dep_node: &DepNode) -> bool {
|
|
self.node_color(dep_node).is_some_and(|c| c.is_green())
|
|
}
|
|
|
|
pub fn assert_dep_node_not_yet_allocated_in_current_session<S: std::fmt::Display>(
|
|
&self,
|
|
dep_node: &DepNode,
|
|
msg: impl FnOnce() -> S,
|
|
) {
|
|
if let Some(data) = &self.data {
|
|
data.assert_dep_node_not_yet_allocated_in_current_session(dep_node, msg)
|
|
}
|
|
}
|
|
|
|
/// This method loads all on-disk cacheable query results into memory, so
|
|
/// they can be written out to the new cache file again. Most query results
|
|
/// will already be in memory but in the case where we marked something as
|
|
/// green but then did not need the value, that value will never have been
|
|
/// loaded from disk.
|
|
///
|
|
/// This method will only load queries that will end up in the disk cache.
|
|
/// Other queries will not be executed.
|
|
pub fn exec_cache_promotions<Tcx: DepContext>(&self, tcx: Tcx) {
|
|
let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
|
|
|
|
let data = self.data.as_ref().unwrap();
|
|
for prev_index in data.colors.values.indices() {
|
|
match data.colors.get(prev_index) {
|
|
Some(DepNodeColor::Green(_)) => {
|
|
let dep_node = data.previous.index_to_node(prev_index);
|
|
tcx.try_load_from_on_disk_cache(dep_node);
|
|
}
|
|
None | Some(DepNodeColor::Red) => {
|
|
// We can skip red nodes because a node can only be marked
|
|
// as red if the query result was recomputed and thus is
|
|
// already in memory.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn print_incremental_info(&self) {
|
|
if let Some(data) = &self.data {
|
|
data.current.encoder.print_incremental_info(
|
|
data.current.total_read_count.load(Ordering::Relaxed),
|
|
data.current.total_duplicate_read_count.load(Ordering::Relaxed),
|
|
)
|
|
}
|
|
}
|
|
|
|
pub fn finish_encoding(&self) -> FileEncodeResult {
|
|
if let Some(data) = &self.data { data.current.encoder.finish() } else { Ok(0) }
|
|
}
|
|
|
|
pub(crate) fn next_virtual_depnode_index(&self) -> DepNodeIndex {
|
|
debug_assert!(self.data.is_none());
|
|
let index = self.virtual_dep_node_index.fetch_add(1, Ordering::Relaxed);
|
|
DepNodeIndex::from_u32(index)
|
|
}
|
|
}
|
|
|
|
/// A "work product" is an intermediate result that we save into the
|
|
/// incremental directory for later re-use. The primary example are
|
|
/// the object files that we save for each partition at code
|
|
/// generation time.
|
|
///
|
|
/// Each work product is associated with a dep-node, representing the
|
|
/// process that produced the work-product. If that dep-node is found
|
|
/// to be dirty when we load up, then we will delete the work-product
|
|
/// at load time. If the work-product is found to be clean, then we
|
|
/// will keep a record in the `previous_work_products` list.
|
|
///
|
|
/// In addition, work products have an associated hash. This hash is
|
|
/// an extra hash that can be used to decide if the work-product from
|
|
/// a previous compilation can be re-used (in addition to the dirty
|
|
/// edges check).
|
|
///
|
|
/// As the primary example, consider the object files we generate for
|
|
/// each partition. In the first run, we create partitions based on
|
|
/// the symbols that need to be compiled. For each partition P, we
|
|
/// hash the symbols in P and create a `WorkProduct` record associated
|
|
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
|
|
/// in P.
|
|
///
|
|
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
|
|
/// judged to be clean (which means none of the things we read to
|
|
/// generate the partition were found to be dirty), it will be loaded
|
|
/// into previous work products. We will then regenerate the set of
|
|
/// symbols in the partition P and hash them (note that new symbols
|
|
/// may be added -- for example, new monomorphizations -- even if
|
|
/// nothing in P changed!). We will compare that hash against the
|
|
/// previous hash. If it matches up, we can reuse the object file.
|
|
#[derive(Clone, Debug, Encodable, Decodable)]
|
|
pub struct WorkProduct {
|
|
pub cgu_name: String,
|
|
/// Saved files associated with this CGU. In each key/value pair, the value is the path to the
|
|
/// saved file and the key is some identifier for the type of file being saved.
|
|
///
|
|
/// By convention, file extensions are currently used as identifiers, i.e. the key "o" maps to
|
|
/// the object file's path, and "dwo" to the dwarf object file's path.
|
|
pub saved_files: UnordMap<String, String>,
|
|
}
|
|
|
|
pub type WorkProductMap = UnordMap<WorkProductId, WorkProduct>;
|
|
|
|
// Index type for `DepNodeData`'s edges.
|
|
rustc_index::newtype_index! {
|
|
struct EdgeIndex {}
|
|
}
|
|
|
|
/// `CurrentDepGraph` stores the dependency graph for the current session. It
|
|
/// will be populated as we run queries or tasks. We never remove nodes from the
|
|
/// graph: they are only added.
|
|
///
|
|
/// The nodes in it are identified by a `DepNodeIndex`. We avoid keeping the nodes
|
|
/// in memory. This is important, because these graph structures are some of the
|
|
/// largest in the compiler.
|
|
///
|
|
/// For this reason, we avoid storing `DepNode`s more than once as map
|
|
/// keys. The `anon_node_to_index` map only contains nodes of anonymous queries not in the previous
|
|
/// graph, and we map nodes in the previous graph to indices via a two-step
|
|
/// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
|
|
/// and the `prev_index_to_index` vector (which is more compact and faster than
|
|
/// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
|
|
///
|
|
/// This struct uses three locks internally. The `data`, `anon_node_to_index`,
|
|
/// and `prev_index_to_index` fields are locked separately. Operations that take
|
|
/// a `DepNodeIndex` typically just access the `data` field.
|
|
///
|
|
/// We only need to manipulate at most two locks simultaneously:
|
|
/// `anon_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
|
|
/// manipulating both, we acquire `anon_node_to_index` or `prev_index_to_index`
|
|
/// first, and `data` second.
|
|
pub(super) struct CurrentDepGraph<D: Deps> {
|
|
encoder: GraphEncoder<D>,
|
|
anon_node_to_index: ShardedHashMap<DepNode, DepNodeIndex>,
|
|
|
|
/// This is used to verify that fingerprints do not change between the creation of a node
|
|
/// and its recomputation.
|
|
#[cfg(debug_assertions)]
|
|
fingerprints: Lock<IndexVec<DepNodeIndex, Option<Fingerprint>>>,
|
|
|
|
/// Used to trap when a specific edge is added to the graph.
|
|
/// This is used for debug purposes and is only active with `debug_assertions`.
|
|
#[cfg(debug_assertions)]
|
|
forbidden_edge: Option<EdgeFilter>,
|
|
|
|
/// Used to verify the absence of hash collisions among DepNodes.
|
|
/// This field is only `Some` if the `-Z incremental_verify_ich` option is present
|
|
/// or if `debug_assertions` are enabled.
|
|
///
|
|
/// The map contains all DepNodes that have been allocated in the current session so far.
|
|
nodes_in_current_session: Option<Lock<FxHashMap<DepNode, DepNodeIndex>>>,
|
|
|
|
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
|
|
/// their edges. This has the beneficial side-effect that multiple anonymous
|
|
/// nodes can be coalesced into one without changing the semantics of the
|
|
/// dependency graph. However, the merging of nodes can lead to a subtle
|
|
/// problem during red-green marking: The color of an anonymous node from
|
|
/// the current session might "shadow" the color of the node with the same
|
|
/// ID from the previous session. In order to side-step this problem, we make
|
|
/// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
|
|
/// This is implemented by mixing a session-key into the ID fingerprint of
|
|
/// each anon node. The session-key is just a random number generated when
|
|
/// the `DepGraph` is created.
|
|
anon_id_seed: Fingerprint,
|
|
|
|
/// These are simple counters that are for profiling and
|
|
/// debugging and only active with `debug_assertions`.
|
|
total_read_count: AtomicU64,
|
|
total_duplicate_read_count: AtomicU64,
|
|
}
|
|
|
|
impl<D: Deps> CurrentDepGraph<D> {
|
|
fn new(
|
|
session: &Session,
|
|
prev_graph_node_count: usize,
|
|
encoder: FileEncoder,
|
|
record_graph: bool,
|
|
record_stats: bool,
|
|
previous: Arc<SerializedDepGraph>,
|
|
) -> Self {
|
|
use std::time::{SystemTime, UNIX_EPOCH};
|
|
|
|
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
|
|
let nanos = duration.as_nanos();
|
|
let mut stable_hasher = StableHasher::new();
|
|
nanos.hash(&mut stable_hasher);
|
|
let anon_id_seed = stable_hasher.finish();
|
|
|
|
#[cfg(debug_assertions)]
|
|
let forbidden_edge = match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
|
|
Ok(s) => match EdgeFilter::new(&s) {
|
|
Ok(f) => Some(f),
|
|
Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
|
|
},
|
|
Err(_) => None,
|
|
};
|
|
|
|
let new_node_count_estimate = 102 * prev_graph_node_count / 100 + 200;
|
|
|
|
let new_node_dbg =
|
|
session.opts.unstable_opts.incremental_verify_ich || cfg!(debug_assertions);
|
|
|
|
CurrentDepGraph {
|
|
encoder: GraphEncoder::new(
|
|
encoder,
|
|
prev_graph_node_count,
|
|
record_graph,
|
|
record_stats,
|
|
&session.prof,
|
|
previous,
|
|
),
|
|
anon_node_to_index: ShardedHashMap::with_capacity(
|
|
// FIXME: The count estimate is off as anon nodes are only a portion of the nodes.
|
|
new_node_count_estimate / sharded::shards(),
|
|
),
|
|
anon_id_seed,
|
|
#[cfg(debug_assertions)]
|
|
forbidden_edge,
|
|
#[cfg(debug_assertions)]
|
|
fingerprints: Lock::new(IndexVec::from_elem_n(None, new_node_count_estimate)),
|
|
nodes_in_current_session: new_node_dbg.then(|| {
|
|
Lock::new(FxHashMap::with_capacity_and_hasher(
|
|
new_node_count_estimate,
|
|
Default::default(),
|
|
))
|
|
}),
|
|
total_read_count: AtomicU64::new(0),
|
|
total_duplicate_read_count: AtomicU64::new(0),
|
|
}
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn record_edge(&self, dep_node_index: DepNodeIndex, key: DepNode, fingerprint: Fingerprint) {
|
|
if let Some(forbidden_edge) = &self.forbidden_edge {
|
|
forbidden_edge.index_to_node.lock().insert(dep_node_index, key);
|
|
}
|
|
let previous = *self.fingerprints.lock().get_or_insert_with(dep_node_index, || fingerprint);
|
|
assert_eq!(previous, fingerprint, "Unstable fingerprints for {:?}", key);
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn record_node(
|
|
&self,
|
|
dep_node_index: DepNodeIndex,
|
|
key: DepNode,
|
|
_current_fingerprint: Fingerprint,
|
|
) {
|
|
#[cfg(debug_assertions)]
|
|
self.record_edge(dep_node_index, key, _current_fingerprint);
|
|
|
|
if let Some(ref nodes_in_current_session) = self.nodes_in_current_session {
|
|
outline(|| {
|
|
if nodes_in_current_session.lock().insert(key, dep_node_index).is_some() {
|
|
panic!("Found duplicate dep-node {key:?}");
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Writes the node to the current dep-graph and allocates a `DepNodeIndex` for it.
|
|
/// Assumes that this is a node that has no equivalent in the previous dep-graph.
|
|
#[inline(always)]
|
|
fn alloc_new_node(
|
|
&self,
|
|
key: DepNode,
|
|
edges: EdgesVec,
|
|
current_fingerprint: Fingerprint,
|
|
) -> DepNodeIndex {
|
|
let dep_node_index = self.encoder.send_new(key, current_fingerprint, edges);
|
|
|
|
self.record_node(dep_node_index, key, current_fingerprint);
|
|
|
|
dep_node_index
|
|
}
|
|
|
|
#[inline]
|
|
fn debug_assert_not_in_new_nodes(
|
|
&self,
|
|
prev_graph: &SerializedDepGraph,
|
|
prev_index: SerializedDepNodeIndex,
|
|
) {
|
|
if let Some(ref nodes_in_current_session) = self.nodes_in_current_session {
|
|
debug_assert!(
|
|
!nodes_in_current_session
|
|
.lock()
|
|
.contains_key(&prev_graph.index_to_node(prev_index)),
|
|
"node from previous graph present in new node collection"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum TaskDepsRef<'a> {
|
|
/// New dependencies can be added to the
|
|
/// `TaskDeps`. This is used when executing a 'normal' query
|
|
/// (no `eval_always` modifier)
|
|
Allow(&'a Lock<TaskDeps>),
|
|
/// This is used when executing an `eval_always` query. We don't
|
|
/// need to track dependencies for a query that's always
|
|
/// re-executed -- but we need to know that this is an `eval_always`
|
|
/// query in order to emit dependencies to `DepNodeIndex::FOREVER_RED_NODE`
|
|
/// when directly feeding other queries.
|
|
EvalAlways,
|
|
/// New dependencies are ignored. This is also used for `dep_graph.with_ignore`.
|
|
Ignore,
|
|
/// Any attempt to add new dependencies will cause a panic.
|
|
/// This is used when decoding a query result from disk,
|
|
/// to ensure that the decoding process doesn't itself
|
|
/// require the execution of any queries.
|
|
Forbid,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct TaskDeps {
|
|
#[cfg(debug_assertions)]
|
|
node: Option<DepNode>,
|
|
reads: EdgesVec,
|
|
read_set: FxHashSet<DepNodeIndex>,
|
|
phantom_data: PhantomData<DepNode>,
|
|
}
|
|
|
|
impl Default for TaskDeps {
|
|
fn default() -> Self {
|
|
Self {
|
|
#[cfg(debug_assertions)]
|
|
node: None,
|
|
reads: EdgesVec::new(),
|
|
read_set: FxHashSet::with_capacity_and_hasher(128, Default::default()),
|
|
phantom_data: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
// A data structure that stores Option<DepNodeColor> values as a contiguous
|
|
// array, using one u32 per entry.
|
|
pub(super) struct DepNodeColorMap {
|
|
values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
|
|
}
|
|
|
|
const COMPRESSED_NONE: u32 = u32::MAX;
|
|
const COMPRESSED_RED: u32 = u32::MAX - 1;
|
|
|
|
impl DepNodeColorMap {
|
|
fn new(size: usize) -> DepNodeColorMap {
|
|
debug_assert!(COMPRESSED_RED > DepNodeIndex::MAX_AS_U32);
|
|
DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
|
|
}
|
|
|
|
#[inline]
|
|
pub(super) fn current(&self, index: SerializedDepNodeIndex) -> Option<DepNodeIndex> {
|
|
let value = self.values[index].load(Ordering::Relaxed);
|
|
if value <= DepNodeIndex::MAX_AS_U32 { Some(DepNodeIndex::from_u32(value)) } else { None }
|
|
}
|
|
|
|
#[inline]
|
|
pub(super) fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
|
|
match self.values[index].load(Ordering::Acquire) {
|
|
COMPRESSED_NONE => None,
|
|
COMPRESSED_RED => Some(DepNodeColor::Red),
|
|
value => Some(DepNodeColor::Green(DepNodeIndex::from_u32(value))),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub(super) fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
|
|
self.values[index].store(
|
|
match color {
|
|
DepNodeColor::Red => COMPRESSED_RED,
|
|
DepNodeColor::Green(index) => index.as_u32(),
|
|
},
|
|
Ordering::Release,
|
|
)
|
|
}
|
|
}
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
pub(crate) fn print_markframe_trace<D: Deps>(graph: &DepGraph<D>, frame: Option<&MarkFrame<'_>>) {
|
|
let data = graph.data.as_ref().unwrap();
|
|
|
|
eprintln!("there was a panic while trying to force a dep node");
|
|
eprintln!("try_mark_green dep node stack:");
|
|
|
|
let mut i = 0;
|
|
let mut current = frame;
|
|
while let Some(frame) = current {
|
|
let node = data.previous.index_to_node(frame.index);
|
|
eprintln!("#{i} {node:?}");
|
|
current = frame.parent;
|
|
i += 1;
|
|
}
|
|
|
|
eprintln!("end of try_mark_green dep node stack");
|
|
}
|
|
|
|
#[cold]
|
|
#[inline(never)]
|
|
fn panic_on_forbidden_read<D: Deps>(data: &DepGraphData<D>, dep_node_index: DepNodeIndex) -> ! {
|
|
// We have to do an expensive reverse-lookup of the DepNode that
|
|
// corresponds to `dep_node_index`, but that's OK since we are about
|
|
// to ICE anyway.
|
|
let mut dep_node = None;
|
|
|
|
// First try to find the dep node among those that already existed in the
|
|
// previous session and has been marked green
|
|
for prev_index in data.colors.values.indices() {
|
|
if data.colors.current(prev_index) == Some(dep_node_index) {
|
|
dep_node = Some(data.previous.index_to_node(prev_index));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if dep_node.is_none()
|
|
&& let Some(nodes) = &data.current.nodes_in_current_session
|
|
{
|
|
// Try to find it among the nodes allocated so far in this session
|
|
if let Some((node, _)) = nodes.lock().iter().find(|&(_, index)| *index == dep_node_index) {
|
|
dep_node = Some(*node);
|
|
}
|
|
}
|
|
|
|
let dep_node = dep_node.map_or_else(
|
|
|| format!("with index {:?}", dep_node_index),
|
|
|dep_node| format!("`{:?}`", dep_node),
|
|
);
|
|
|
|
panic!(
|
|
"Error: trying to record dependency on DepNode {dep_node} in a \
|
|
context that does not allow it (e.g. during query deserialization). \
|
|
The most common case of recording a dependency on a DepNode `foo` is \
|
|
when the corresponding query `foo` is invoked. Invoking queries is not \
|
|
allowed as part of loading something from the incremental on-disk cache. \
|
|
See <https://github.com/rust-lang/rust/pull/91919>."
|
|
)
|
|
}
|