rust/src/libstd/sys/unix/process/process_common.rs
Alex Crichton 1747ce25ad Add support for test suites emulated in QEMU
This commit adds support to the build system to execute test suites that cannot
run natively but can instead run inside of a QEMU emulator. A proof-of-concept
builder was added for the `arm-unknown-linux-gnueabihf` target to show off how
this might work.

In general the architecture is to have a server running inside of the emulator
which a local client connects to. The protocol between the server/client
supports compiling tests on the host and running them on the target inside the
emulator.

Closes #33114
2017-01-29 14:16:41 -08:00

484 lines
15 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use os::unix::prelude::*;
use collections::hash_map::{HashMap, Entry};
use env;
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io;
use libc::{self, c_int, gid_t, uid_t, c_char};
use ptr;
use sys::fd::FileDesc;
use sys::fs::{File, OpenOptions};
use sys::pipe::{self, AnonPipe};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
pub struct Command {
// Currently we try hard to ensure that the call to `.exec()` doesn't
// actually allocate any memory. While many platforms try to ensure that
// memory allocation works after a fork in a multithreaded process, it's
// been observed to be buggy and somewhat unreliable, so we do our best to
// just not do it at all!
//
// Along those lines, the `argv` and `envp` raw pointers here are exactly
// what's gonna get passed to `execvp`. The `argv` array starts with the
// `program` and ends with a NULL, and the `envp` pointer, if present, is
// also null-terminated.
//
// Right now we don't support removing arguments, so there's no much fancy
// support there, but we support adding and removing environment variables,
// so a side table is used to track where in the `envp` array each key is
// located. Whenever we add a key we update it in place if it's already
// present, and whenever we remove a key we update the locations of all
// other keys.
program: CString,
args: Vec<CString>,
env: Option<HashMap<OsString, (usize, CString)>>,
argv: Vec<*const c_char>,
envp: Option<Vec<*const c_char>>,
cwd: Option<CString>,
uid: Option<uid_t>,
gid: Option<gid_t>,
saw_nul: bool,
closures: Vec<Box<FnMut() -> io::Result<()> + Send + Sync>>,
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
// passed back to std::process with the pipes connected to the child, if any
// were requested
pub struct StdioPipes {
pub stdin: Option<AnonPipe>,
pub stdout: Option<AnonPipe>,
pub stderr: Option<AnonPipe>,
}
// passed to do_exec() with configuration of what the child stdio should look
// like
pub struct ChildPipes {
pub stdin: ChildStdio,
pub stdout: ChildStdio,
pub stderr: ChildStdio,
}
pub enum ChildStdio {
Inherit,
Explicit(c_int),
Owned(FileDesc),
}
pub enum Stdio {
Inherit,
Null,
MakePipe,
Fd(FileDesc),
}
impl Command {
pub fn new(program: &OsStr) -> Command {
let mut saw_nul = false;
let program = os2c(program, &mut saw_nul);
Command {
argv: vec![program.as_ptr(), ptr::null()],
program: program,
args: Vec::new(),
env: None,
envp: None,
cwd: None,
uid: None,
gid: None,
saw_nul: saw_nul,
closures: Vec::new(),
stdin: None,
stdout: None,
stderr: None,
}
}
pub fn arg(&mut self, arg: &OsStr) {
// Overwrite the trailing NULL pointer in `argv` and then add a new null
// pointer.
let arg = os2c(arg, &mut self.saw_nul);
self.argv[self.args.len() + 1] = arg.as_ptr();
self.argv.push(ptr::null());
// Also make sure we keep track of the owned value to schedule a
// destructor for this memory.
self.args.push(arg);
}
fn init_env_map(&mut self) -> (&mut HashMap<OsString, (usize, CString)>,
&mut Vec<*const c_char>) {
if self.env.is_none() {
let mut map = HashMap::new();
let mut envp = Vec::new();
for (k, v) in env::vars_os() {
let s = pair_to_key(&k, &v, &mut self.saw_nul);
envp.push(s.as_ptr());
map.insert(k, (envp.len() - 1, s));
}
envp.push(ptr::null());
self.env = Some(map);
self.envp = Some(envp);
}
(self.env.as_mut().unwrap(), self.envp.as_mut().unwrap())
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
let new_key = pair_to_key(key, val, &mut self.saw_nul);
let (map, envp) = self.init_env_map();
// If `key` is already present then we just update `envp` in place
// (and store the owned value), but if it's not there we override the
// trailing NULL pointer, add a new NULL pointer, and store where we
// were located.
match map.entry(key.to_owned()) {
Entry::Occupied(mut e) => {
let (i, ref mut s) = *e.get_mut();
envp[i] = new_key.as_ptr();
*s = new_key;
}
Entry::Vacant(e) => {
let len = envp.len();
envp[len - 1] = new_key.as_ptr();
envp.push(ptr::null());
e.insert((len - 1, new_key));
}
}
}
pub fn env_remove(&mut self, key: &OsStr) {
let (map, envp) = self.init_env_map();
// If we actually ended up removing a key, then we need to update the
// position of all keys that come after us in `envp` because they're all
// one element sooner now.
if let Some((i, _)) = map.remove(key) {
envp.remove(i);
for (_, &mut (ref mut j, _)) in map.iter_mut() {
if *j >= i {
*j -= 1;
}
}
}
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new());
self.envp = Some(vec![ptr::null()]);
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(os2c(dir, &mut self.saw_nul));
}
pub fn uid(&mut self, id: uid_t) {
self.uid = Some(id);
}
pub fn gid(&mut self, id: gid_t) {
self.gid = Some(id);
}
pub fn saw_nul(&self) -> bool {
self.saw_nul
}
pub fn get_envp(&self) -> &Option<Vec<*const c_char>> {
&self.envp
}
pub fn get_argv(&self) -> &Vec<*const c_char> {
&self.argv
}
#[allow(dead_code)]
pub fn get_cwd(&self) -> &Option<CString> {
&self.cwd
}
#[allow(dead_code)]
pub fn get_uid(&self) -> Option<uid_t> {
self.uid
}
#[allow(dead_code)]
pub fn get_gid(&self) -> Option<gid_t> {
self.gid
}
pub fn get_closures(&mut self) -> &mut Vec<Box<FnMut() -> io::Result<()> + Send + Sync>> {
&mut self.closures
}
pub fn before_exec(&mut self,
f: Box<FnMut() -> io::Result<()> + Send + Sync>) {
self.closures.push(f);
}
pub fn stdin(&mut self, stdin: Stdio) {
self.stdin = Some(stdin);
}
pub fn stdout(&mut self, stdout: Stdio) {
self.stdout = Some(stdout);
}
pub fn stderr(&mut self, stderr: Stdio) {
self.stderr = Some(stderr);
}
pub fn setup_io(&self, default: Stdio, needs_stdin: bool)
-> io::Result<(StdioPipes, ChildPipes)> {
let null = Stdio::Null;
let default_stdin = if needs_stdin {&default} else {&null};
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?;
let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?;
let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?;
let ours = StdioPipes {
stdin: our_stdin,
stdout: our_stdout,
stderr: our_stderr,
};
let theirs = ChildPipes {
stdin: their_stdin,
stdout: their_stdout,
stderr: their_stderr,
};
Ok((ours, theirs))
}
}
fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString {
CString::new(s.as_bytes()).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("<string-with-nul>").unwrap()
})
}
impl Stdio {
pub fn to_child_stdio(&self, readable: bool)
-> io::Result<(ChildStdio, Option<AnonPipe>)> {
match *self {
Stdio::Inherit => {
Ok((ChildStdio::Inherit, None))
},
// Make sure that the source descriptors are not an stdio
// descriptor, otherwise the order which we set the child's
// descriptors may blow away a descriptor which we are hoping to
// save. For example, suppose we want the child's stderr to be the
// parent's stdout, and the child's stdout to be the parent's
// stderr. No matter which we dup first, the second will get
// overwritten prematurely.
Stdio::Fd(ref fd) => {
if fd.raw() >= 0 && fd.raw() <= libc::STDERR_FILENO {
Ok((ChildStdio::Owned(fd.duplicate()?), None))
} else {
Ok((ChildStdio::Explicit(fd.raw()), None))
}
}
Stdio::MakePipe => {
let (reader, writer) = pipe::anon_pipe()?;
let (ours, theirs) = if readable {
(writer, reader)
} else {
(reader, writer)
};
Ok((ChildStdio::Owned(theirs.into_fd()), Some(ours)))
}
Stdio::Null => {
let mut opts = OpenOptions::new();
opts.read(readable);
opts.write(!readable);
let path = unsafe {
CStr::from_ptr("/dev/null\0".as_ptr() as *const _)
};
let fd = File::open_c(&path, &opts)?;
Ok((ChildStdio::Owned(fd.into_fd()), None))
}
}
}
}
impl ChildStdio {
pub fn fd(&self) -> Option<c_int> {
match *self {
ChildStdio::Inherit => None,
ChildStdio::Explicit(fd) => Some(fd),
ChildStdio::Owned(ref fd) => Some(fd.raw()),
}
}
}
fn pair_to_key(key: &OsStr, value: &OsStr, saw_nul: &mut bool) -> CString {
let (key, value) = (key.as_bytes(), value.as_bytes());
let mut v = Vec::with_capacity(key.len() + value.len() + 1);
v.extend(key);
v.push(b'=');
v.extend(value);
CString::new(v).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("foo=bar").unwrap()
})
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.program)?;
for arg in &self.args {
write!(f, " {:?}", arg)?;
}
Ok(())
}
}
/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c_int);
impl ExitStatus {
pub fn new(status: c_int) -> ExitStatus {
ExitStatus(status)
}
fn exited(&self) -> bool {
unsafe { libc::WIFEXITED(self.0) }
}
pub fn success(&self) -> bool {
self.code() == Some(0)
}
pub fn code(&self) -> Option<i32> {
if self.exited() {
Some(unsafe { libc::WEXITSTATUS(self.0) })
} else {
None
}
}
pub fn signal(&self) -> Option<i32> {
if !self.exited() {
Some(unsafe { libc::WTERMSIG(self.0) })
} else {
None
}
}
}
impl From<c_int> for ExitStatus {
fn from(a: c_int) -> ExitStatus {
ExitStatus(a)
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(code) = self.code() {
write!(f, "exit code: {}", code)
} else {
let signal = self.signal().unwrap();
write!(f, "signal: {}", signal)
}
}
}
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use super::*;
use ffi::OsStr;
use mem;
use ptr;
use libc;
use sys::cvt;
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
}
}
#[cfg(not(target_os = "android"))]
extern {
#[cfg_attr(target_os = "netbsd", link_name = "__sigaddset14")]
fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int;
}
#[cfg(target_os = "android")]
unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int {
use slice;
let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>());
let bit = (signum - 1) as usize;
raw[bit / 8] |= 1 << (bit % 8);
return 0;
}
// See #14232 for more information, but it appears that signal delivery to a
// newly spawned process may just be raced in the OSX, so to prevent this
// test from being flaky we ignore it on OSX.
#[test]
#[cfg_attr(target_os = "macos", ignore)]
#[cfg_attr(target_os = "nacl", ignore)] // no signals on NaCl.
// When run under our current QEMU emulation test suite this test fails,
// although the reason isn't very clear as to why. For now this test is
// ignored there.
#[cfg_attr(target_arch = "arm", ignore)]
fn test_process_mask() {
unsafe {
// Test to make sure that a signal mask does not get inherited.
let mut cmd = Command::new(OsStr::new("cat"));
let mut set: libc::sigset_t = mem::uninitialized();
let mut old_set: libc::sigset_t = mem::uninitialized();
t!(cvt(libc::sigemptyset(&mut set)));
t!(cvt(sigaddset(&mut set, libc::SIGINT)));
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, &mut old_set)));
cmd.stdin(Stdio::MakePipe);
cmd.stdout(Stdio::MakePipe);
let (mut cat, mut pipes) = t!(cmd.spawn(Stdio::Null, true));
let stdin_write = pipes.stdin.take().unwrap();
let stdout_read = pipes.stdout.take().unwrap();
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &old_set,
ptr::null_mut())));
t!(cvt(libc::kill(cat.id() as libc::pid_t, libc::SIGINT)));
// We need to wait until SIGINT is definitely delivered. The
// easiest way is to write something to cat, and try to read it
// back: if SIGINT is unmasked, it'll get delivered when cat is
// next scheduled.
let _ = stdin_write.write(b"Hello");
drop(stdin_write);
// Either EOF or failure (EPIPE) is okay.
let mut buf = [0; 5];
if let Ok(ret) = stdout_read.read(&mut buf) {
assert_eq!(ret, 0);
}
t!(cat.wait());
}
}
}