1
Fork 0
rust/compiler/rustc_middle/src/dep_graph/dep_node.rs
Michael Baikov 12f8d12b41 local_def_path_hash_to_def_id can fail
local_def_path_hash_to_def_id is used by Debug impl for DepNode and it
looks for DefPathHash inside the current compilation. During incremental
compilation we are going through nodes that belong to a previous
compilation and might not be present and a simple attempt to print such
node with tracing::debug (try_mark_parent_green does it for example)
results in a otherwise avoidable panic

Panic was added in https://github.com/rust-lang/rust/pull/82183,
specifically in 2b60338ee9, with a comment "We only use this mapping for
cases where we know that it must succeed.", but I'm not sure if this
property holds when we traverse nodes from the old compilation in order
to figure out if they are valid or not
2024-06-19 07:45:47 -04:00

450 lines
16 KiB
Rust

//! Nodes in the dependency graph.
//!
//! A node in the [dependency graph] is represented by a [`DepNode`].
//! A `DepNode` consists of a [`DepKind`] (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc.)
//! and a [`Fingerprint`], a 128-bit hash value, the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g., `NodeId`, `DefId`, `Symbol`) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit. The fingerprinting approach has
//! a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//! without the need to do any "rebasing" (like we have to do for Spans and
//! NodeIds) or "retracing" (like we had to do for `DefId` in earlier
//! implementations of the dependency graph).
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//! implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//! memory without any post-processing (e.g., "abomination-style" pointer
//! reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//! refer to things that do not exist anymore. In previous implementations
//! `DepNode` contained a `DefId`. A `DepNode` referring to something that
//! had been removed between the previous and the current compilation session
//! could not be instantiated because the current compilation session
//! contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro
//! defines the `DepKind` enum. Each `DepKind` has its own parameters that are
//! needed at runtime in order to construct a valid `DepNode` fingerprint.
//! However, only `CompileCodegenUnit` and `CompileMonoItem` are constructed
//! explicitly (with `make_compile_codegen_unit` cq `make_compile_mono_item`).
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//! `DepNode`s could represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//! in which case it is possible to map the node's fingerprint back to the
//! `DefId` it was computed from. In other cases, too much information gets
//! lost during fingerprint computation.
//!
//! `make_compile_codegen_unit` and `make_compile_mono_items`, together with
//! `DepNode::new()`, ensures that only valid `DepNode` instances can be
//! constructed. For example, the API does not allow for constructing
//! parameterless `DepNode`s with anything other than a zeroed out fingerprint.
//! More generally speaking, it relieves the user of the `DepNode` API of
//! having to know how to compute the expected fingerprint for a given set of
//! node parameters.
//!
//! [dependency graph]: https://rustc-dev-guide.rust-lang.org/query.html
use crate::mir::mono::MonoItem;
use crate::ty::TyCtxt;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalModDefId, ModDefId, LOCAL_CRATE};
use rustc_hir::definitions::DefPathHash;
use rustc_hir::{HirId, ItemLocalId, OwnerId};
use rustc_query_system::dep_graph::FingerprintStyle;
use rustc_span::symbol::Symbol;
pub use rustc_query_system::dep_graph::dep_node::DepKind;
pub use rustc_query_system::dep_graph::{DepContext, DepNode, DepNodeParams};
macro_rules! define_dep_nodes {
(
$($(#[$attr:meta])*
[$($modifiers:tt)*] fn $variant:ident($($K:tt)*) -> $V:ty,)*) => {
#[macro_export]
macro_rules! make_dep_kind_array {
($mod:ident) => {[ $($mod::$variant()),* ]};
}
/// This enum serves as an index into arrays built by `make_dep_kind_array`.
// This enum has more than u8::MAX variants so we need some kind of multi-byte
// encoding. The derived Encodable/Decodable uses leb128 encoding which is
// dense when only considering this enum. But DepKind is encoded in a larger
// struct, and there we can take advantage of the unused bits in the u16.
#[allow(non_camel_case_types)]
#[repr(u16)] // Must be kept in sync with the inner type of `DepKind`.
enum DepKindDefs {
$( $( #[$attr] )* $variant),*
}
#[allow(non_upper_case_globals)]
pub mod dep_kinds {
use super::*;
$(
// The `as u16` cast must be kept in sync with the inner type of `DepKind`.
pub const $variant: DepKind = DepKind::new(DepKindDefs::$variant as u16);
)*
}
// This checks that the discriminants of the variants have been assigned consecutively
// from 0 so that they can be used as a dense index.
pub const DEP_KIND_VARIANTS: u16 = {
let deps = &[$(dep_kinds::$variant,)*];
let mut i = 0;
while i < deps.len() {
if i != deps[i].as_usize() {
panic!();
}
i += 1;
}
deps.len() as u16
};
pub(super) fn dep_kind_from_label_string(label: &str) -> Result<DepKind, ()> {
match label {
$(stringify!($variant) => Ok(dep_kinds::$variant),)*
_ => Err(()),
}
}
/// Contains variant => str representations for constructing
/// DepNode groups for tests.
#[allow(dead_code, non_upper_case_globals)]
pub mod label_strs {
$(
pub const $variant: &str = stringify!($variant);
)*
}
};
}
rustc_query_append!(define_dep_nodes![
/// We use this for most things when incr. comp. is turned off.
[] fn Null() -> (),
/// We use this to create a forever-red node.
[] fn Red() -> (),
[] fn TraitSelect() -> (),
[] fn CompileCodegenUnit() -> (),
[] fn CompileMonoItem() -> (),
]);
// WARNING: `construct` is generic and does not know that `CompileCodegenUnit` takes `Symbol`s as keys.
// Be very careful changing this type signature!
pub(crate) fn make_compile_codegen_unit(tcx: TyCtxt<'_>, name: Symbol) -> DepNode {
DepNode::construct(tcx, dep_kinds::CompileCodegenUnit, &name)
}
// WARNING: `construct` is generic and does not know that `CompileMonoItem` takes `MonoItem`s as keys.
// Be very careful changing this type signature!
pub(crate) fn make_compile_mono_item<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
) -> DepNode {
DepNode::construct(tcx, dep_kinds::CompileMonoItem, mono_item)
}
pub trait DepNodeExt: Sized {
/// Extracts the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option<DefId>;
/// Used in testing
fn from_label_string(
tcx: TyCtxt<'_>,
label: &str,
def_path_hash: DefPathHash,
) -> Result<Self, ()>;
/// Used in testing
fn has_label_string(label: &str) -> bool;
}
impl DepNodeExt for DepNode {
/// Extracts the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
if tcx.fingerprint_style(self.kind) == FingerprintStyle::DefPathHash {
tcx.def_path_hash_to_def_id(DefPathHash(self.hash.into()))
} else {
None
}
}
/// Used in testing
fn from_label_string(
tcx: TyCtxt<'_>,
label: &str,
def_path_hash: DefPathHash,
) -> Result<DepNode, ()> {
let kind = dep_kind_from_label_string(label)?;
match tcx.fingerprint_style(kind) {
FingerprintStyle::Opaque | FingerprintStyle::HirId => Err(()),
FingerprintStyle::Unit => Ok(DepNode::new_no_params(tcx, kind)),
FingerprintStyle::DefPathHash => {
Ok(DepNode::from_def_path_hash(tcx, def_path_hash, kind))
}
}
}
/// Used in testing
fn has_label_string(label: &str) -> bool {
dep_kind_from_label_string(label).is_ok()
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for () {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::Unit
}
#[inline(always)]
fn to_fingerprint(&self, _: TyCtxt<'tcx>) -> Fingerprint {
Fingerprint::ZERO
}
#[inline(always)]
fn recover(_: TyCtxt<'tcx>, _: &DepNode) -> Option<Self> {
Some(())
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for DefId {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
tcx.def_path_hash(*self).0
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.def_path_str(*self)
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx)
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for LocalDefId {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
self.to_def_id().to_fingerprint(tcx)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
self.to_def_id().to_debug_str(tcx)
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.expect_local())
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for OwnerId {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
self.to_def_id().to_fingerprint(tcx)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
self.to_def_id().to_debug_str(tcx)
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| OwnerId { def_id: id.expect_local() })
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for CrateNum {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let def_id = self.as_def_id();
def_id.to_fingerprint(tcx)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.crate_name(*self).to_string()
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.krate)
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for (DefId, DefId) {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::Opaque
}
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let (def_id_0, def_id_1) = *self;
let def_path_hash_0 = tcx.def_path_hash(def_id_0);
let def_path_hash_1 = tcx.def_path_hash(def_id_1);
def_path_hash_0.0.combine(def_path_hash_1.0)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
let (def_id_0, def_id_1) = *self;
format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1))
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for HirId {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::HirId
}
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let HirId { owner, local_id } = *self;
let def_path_hash = tcx.def_path_hash(owner.to_def_id());
Fingerprint::new(
// `owner` is local, so is completely defined by the local hash
def_path_hash.local_hash(),
local_id.as_u32() as u64,
)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
let HirId { owner, local_id } = *self;
format!("{}.{}", tcx.def_path_str(owner), local_id.as_u32())
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
if tcx.fingerprint_style(dep_node.kind) == FingerprintStyle::HirId {
let (local_hash, local_id) = Fingerprint::from(dep_node.hash).split();
let def_path_hash = DefPathHash::new(tcx.stable_crate_id(LOCAL_CRATE), local_hash);
let def_id = tcx.def_path_hash_to_def_id(def_path_hash)?.expect_local();
let local_id = local_id
.as_u64()
.try_into()
.unwrap_or_else(|_| panic!("local id should be u32, found {local_id:?}"));
Some(HirId { owner: OwnerId { def_id }, local_id: ItemLocalId::from_u32(local_id) })
} else {
None
}
}
}
macro_rules! impl_for_typed_def_id {
($Name:ident, $LocalName:ident) => {
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for $Name {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
self.to_def_id().to_fingerprint(tcx)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
self.to_def_id().to_debug_str(tcx)
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
DefId::recover(tcx, dep_node).map($Name::new_unchecked)
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for $LocalName {
#[inline(always)]
fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::DefPathHash
}
#[inline(always)]
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
self.to_def_id().to_fingerprint(tcx)
}
#[inline(always)]
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
self.to_def_id().to_debug_str(tcx)
}
#[inline(always)]
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
LocalDefId::recover(tcx, dep_node).map($LocalName::new_unchecked)
}
}
};
}
impl_for_typed_def_id! { ModDefId, LocalModDefId }