rust/library/std/src/sync/once.rs
Chayim Refael Friedman d0a2ca4867 Implement ACP 429: add Lazy{Cell,Lock}::get[_mut] and force_mut
In the implementation of `force_mut`, I chose performance over safety.
For `LazyLock` this isn't really a choice; the code has to be unsafe.
But for `LazyCell`, we can have a full-safe implementation, but it will
be a bit less performant, so I went with the unsafe approach.
2024-09-17 09:40:34 -07:00

390 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! A "once initialization" primitive
//!
//! This primitive is meant to be used to run one-time initialization. An
//! example use case would be for initializing an FFI library.
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::fmt;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sys::sync as sys;
/// A low-level synchronization primitive for one-time global execution.
///
/// Previously this was the only "execute once" synchronization in `std`.
/// Other libraries implemented novel synchronizing types with `Once`, like
/// [`OnceLock<T>`] or [`LazyLock<T, F>`], before those were added to `std`.
/// `OnceLock<T>` in particular supersedes `Once` in functionality and should
/// be preferred for the common case where the `Once` is associated with data.
///
/// This type can only be constructed with [`Once::new()`].
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static START: Once = Once::new();
///
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
///
/// [`OnceLock<T>`]: crate::sync::OnceLock
/// [`LazyLock<T, F>`]: crate::sync::LazyLock
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Once {
inner: sys::Once,
}
#[stable(feature = "sync_once_unwind_safe", since = "1.59.0")]
impl UnwindSafe for Once {}
#[stable(feature = "sync_once_unwind_safe", since = "1.59.0")]
impl RefUnwindSafe for Once {}
/// State yielded to [`Once::call_once_force()`]s closure parameter. The state
/// can be used to query the poison status of the [`Once`].
#[stable(feature = "once_poison", since = "1.51.0")]
pub struct OnceState {
pub(crate) inner: sys::OnceState,
}
pub(crate) enum ExclusiveState {
Incomplete,
Poisoned,
Complete,
}
/// Initialization value for static [`Once`] values.
///
/// # Examples
///
/// ```
/// use std::sync::{Once, ONCE_INIT};
///
/// static START: Once = ONCE_INIT;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(
since = "1.38.0",
note = "the `Once::new()` function is now preferred",
suggestion = "Once::new()"
)]
pub const ONCE_INIT: Once = Once::new();
impl Once {
/// Creates a new `Once` value.
#[inline]
#[stable(feature = "once_new", since = "1.2.0")]
#[rustc_const_stable(feature = "const_once_new", since = "1.32.0")]
#[must_use]
pub const fn new() -> Once {
Once { inner: sys::Once::new() }
}
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it might not be the closure specified). It is also
/// guaranteed that any memory writes performed by the executed closure can
/// be reliably observed by other threads at this point (there is a
/// happens-before relation between the closure and code executing after the
/// return).
///
/// If the given closure recursively invokes `call_once` on the same [`Once`]
/// instance, the exact behavior is not specified: allowed outcomes are
/// a panic or a deadlock.
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static mut VAL: usize = 0;
/// static INIT: Once = Once::new();
///
/// // Accessing a `static mut` is unsafe much of the time, but if we do so
/// // in a synchronized fashion (e.g., write once or read all) then we're
/// // good to go!
/// //
/// // This function will only call `expensive_computation` once, and will
/// // otherwise always return the value returned from the first invocation.
/// fn get_cached_val() -> usize {
/// unsafe {
/// INIT.call_once(|| {
/// VAL = expensive_computation();
/// });
/// VAL
/// }
/// }
///
/// fn expensive_computation() -> usize {
/// // ...
/// # 2
/// }
/// ```
///
/// # Panics
///
/// The closure `f` will only be executed once even if this is called
/// concurrently amongst many threads. If that closure panics, however, then
/// it will *poison* this [`Once`] instance, causing all future invocations of
/// `call_once` to also panic.
///
/// This is similar to [poisoning with mutexes][poison].
///
/// [poison]: struct.Mutex.html#poisoning
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn call_once<F>(&self, f: F)
where
F: FnOnce(),
{
// Fast path check
if self.inner.is_completed() {
return;
}
let mut f = Some(f);
self.inner.call(false, &mut |_| f.take().unwrap()());
}
/// Performs the same function as [`call_once()`] except ignores poisoning.
///
/// Unlike [`call_once()`], if this [`Once`] has been poisoned (i.e., a previous
/// call to [`call_once()`] or [`call_once_force()`] caused a panic), calling
/// [`call_once_force()`] will still invoke the closure `f` and will _not_
/// result in an immediate panic. If `f` panics, the [`Once`] will remain
/// in a poison state. If `f` does _not_ panic, the [`Once`] will no
/// longer be in a poison state and all future calls to [`call_once()`] or
/// [`call_once_force()`] will be no-ops.
///
/// The closure `f` is yielded a [`OnceState`] structure which can be used
/// to query the poison status of the [`Once`].
///
/// [`call_once()`]: Once::call_once
/// [`call_once_force()`]: Once::call_once_force
///
/// # Examples
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// // poison the once
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
///
/// // poisoning propagates
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| {});
/// });
/// assert!(handle.join().is_err());
///
/// // call_once_force will still run and reset the poisoned state
/// INIT.call_once_force(|state| {
/// assert!(state.is_poisoned());
/// });
///
/// // once any success happens, we stop propagating the poison
/// INIT.call_once(|| {});
/// ```
#[inline]
#[stable(feature = "once_poison", since = "1.51.0")]
pub fn call_once_force<F>(&self, f: F)
where
F: FnOnce(&OnceState),
{
// Fast path check
if self.inner.is_completed() {
return;
}
let mut f = Some(f);
self.inner.call(true, &mut |p| f.take().unwrap()(p));
}
/// Returns `true` if some [`call_once()`] call has completed
/// successfully. Specifically, `is_completed` will return false in
/// the following situations:
/// * [`call_once()`] was not called at all,
/// * [`call_once()`] was called, but has not yet completed,
/// * the [`Once`] instance is poisoned
///
/// This function returning `false` does not mean that [`Once`] has not been
/// executed. For example, it may have been executed in the time between
/// when `is_completed` starts executing and when it returns, in which case
/// the `false` return value would be stale (but still permissible).
///
/// [`call_once()`]: Once::call_once
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static INIT: Once = Once::new();
///
/// assert_eq!(INIT.is_completed(), false);
/// INIT.call_once(|| {
/// assert_eq!(INIT.is_completed(), false);
/// });
/// assert_eq!(INIT.is_completed(), true);
/// ```
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// assert_eq!(INIT.is_completed(), false);
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
/// assert_eq!(INIT.is_completed(), false);
/// ```
#[stable(feature = "once_is_completed", since = "1.43.0")]
#[inline]
pub fn is_completed(&self) -> bool {
self.inner.is_completed()
}
/// Blocks the current thread until initialization has completed.
///
/// # Example
///
/// ```rust
/// #![feature(once_wait)]
///
/// use std::sync::Once;
/// use std::thread;
///
/// static READY: Once = Once::new();
///
/// let thread = thread::spawn(|| {
/// READY.wait();
/// println!("everything is ready");
/// });
///
/// READY.call_once(|| println!("performing setup"));
/// ```
///
/// # Panics
///
/// If this [`Once`] has been poisoned because an initialization closure has
/// panicked, this method will also panic. Use [`wait_force`](Self::wait_force)
/// if this behaviour is not desired.
#[unstable(feature = "once_wait", issue = "127527")]
pub fn wait(&self) {
if !self.inner.is_completed() {
self.inner.wait(false);
}
}
/// Blocks the current thread until initialization has completed, ignoring
/// poisoning.
#[unstable(feature = "once_wait", issue = "127527")]
pub fn wait_force(&self) {
if !self.inner.is_completed() {
self.inner.wait(true);
}
}
/// Returns the current state of the `Once` instance.
///
/// Since this takes a mutable reference, no initialization can currently
/// be running, so the state must be either "incomplete", "poisoned" or
/// "complete".
#[inline]
pub(crate) fn state(&mut self) -> ExclusiveState {
self.inner.state()
}
/// Sets current state of the `Once` instance.
///
/// Since this takes a mutable reference, no initialization can currently
/// be running, so the state must be either "incomplete", "poisoned" or
/// "complete".
#[inline]
pub(crate) fn set_state(&mut self, new_state: ExclusiveState) {
self.inner.set_state(new_state);
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Once {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Once").finish_non_exhaustive()
}
}
impl OnceState {
/// Returns `true` if the associated [`Once`] was poisoned prior to the
/// invocation of the closure passed to [`Once::call_once_force()`].
///
/// # Examples
///
/// A poisoned [`Once`]:
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// // poison the once
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
///
/// INIT.call_once_force(|state| {
/// assert!(state.is_poisoned());
/// });
/// ```
///
/// An unpoisoned [`Once`]:
///
/// ```
/// use std::sync::Once;
///
/// static INIT: Once = Once::new();
///
/// INIT.call_once_force(|state| {
/// assert!(!state.is_poisoned());
/// });
#[stable(feature = "once_poison", since = "1.51.0")]
#[inline]
pub fn is_poisoned(&self) -> bool {
self.inner.is_poisoned()
}
/// Poison the associated [`Once`] without explicitly panicking.
// NOTE: This is currently only exposed for `OnceLock`.
#[inline]
pub(crate) fn poison(&self) {
self.inner.poison();
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for OnceState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OnceState").field("poisoned", &self.is_poisoned()).finish()
}
}