
Let's avoid using two different terms for the same thing -- let's just call it "provenance" everywhere. In Miri, provenance consists of an AllocId and an SbTag (Stacked Borrows tag), which made this even more confusing.
463 lines
19 KiB
Rust
463 lines
19 KiB
Rust
use std::convert::TryFrom;
|
|
|
|
use rustc_apfloat::Float;
|
|
use rustc_middle::mir;
|
|
use rustc_middle::mir::interpret::{InterpResult, Scalar};
|
|
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
|
|
use rustc_middle::ty::{self, FloatTy, Ty};
|
|
use rustc_target::abi::Abi;
|
|
|
|
use super::{ImmTy, Immediate, InterpCx, Machine, PlaceTy};
|
|
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
|
|
/// and a boolean signifying the potential overflow to the destination.
|
|
///
|
|
/// `force_overflow_checks` indicates whether overflow checks should be done even when
|
|
/// `tcx.sess.overflow_checks()` is `false`.
|
|
pub fn binop_with_overflow(
|
|
&mut self,
|
|
op: mir::BinOp,
|
|
force_overflow_checks: bool,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
dest: &PlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx> {
|
|
let (val, overflowed, ty) = self.overflowing_binary_op(op, &left, &right)?;
|
|
debug_assert_eq!(
|
|
self.tcx.intern_tup(&[ty, self.tcx.types.bool]),
|
|
dest.layout.ty,
|
|
"type mismatch for result of {:?}",
|
|
op,
|
|
);
|
|
// As per https://github.com/rust-lang/rust/pull/98738, we always return `false` in the 2nd
|
|
// component when overflow checking is disabled.
|
|
let overflowed =
|
|
overflowed && (force_overflow_checks || M::checked_binop_checks_overflow(self));
|
|
// Write the result to `dest`.
|
|
if let Abi::ScalarPair(..) = dest.layout.abi {
|
|
// We can use the optimized path and avoid `place_field` (which might do
|
|
// `force_allocation`).
|
|
let pair = Immediate::ScalarPair(val.into(), Scalar::from_bool(overflowed).into());
|
|
self.write_immediate(pair, dest)?;
|
|
} else {
|
|
assert!(self.tcx.sess.opts.unstable_opts.randomize_layout);
|
|
// With randomized layout, `(int, bool)` might cease to be a `ScalarPair`, so we have to
|
|
// do a component-wise write here. This code path is slower than the above because
|
|
// `place_field` will have to `force_allocate` locals here.
|
|
let val_field = self.place_field(&dest, 0)?;
|
|
self.write_scalar(val, &val_field)?;
|
|
let overflowed_field = self.place_field(&dest, 1)?;
|
|
self.write_scalar(Scalar::from_bool(overflowed), &overflowed_field)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Applies the binary operation `op` to the arguments and writes the result to the
|
|
/// destination.
|
|
pub fn binop_ignore_overflow(
|
|
&mut self,
|
|
op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
dest: &PlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx> {
|
|
let (val, _overflowed, ty) = self.overflowing_binary_op(op, left, right)?;
|
|
assert_eq!(ty, dest.layout.ty, "type mismatch for result of {:?}", op);
|
|
self.write_scalar(val, dest)
|
|
}
|
|
}
|
|
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
fn binary_char_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
l: char,
|
|
r: char,
|
|
) -> (Scalar<M::Provenance>, bool, Ty<'tcx>) {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
let res = match bin_op {
|
|
Eq => l == r,
|
|
Ne => l != r,
|
|
Lt => l < r,
|
|
Le => l <= r,
|
|
Gt => l > r,
|
|
Ge => l >= r,
|
|
_ => span_bug!(self.cur_span(), "Invalid operation on char: {:?}", bin_op),
|
|
};
|
|
(Scalar::from_bool(res), false, self.tcx.types.bool)
|
|
}
|
|
|
|
fn binary_bool_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
l: bool,
|
|
r: bool,
|
|
) -> (Scalar<M::Provenance>, bool, Ty<'tcx>) {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
let res = match bin_op {
|
|
Eq => l == r,
|
|
Ne => l != r,
|
|
Lt => l < r,
|
|
Le => l <= r,
|
|
Gt => l > r,
|
|
Ge => l >= r,
|
|
BitAnd => l & r,
|
|
BitOr => l | r,
|
|
BitXor => l ^ r,
|
|
_ => span_bug!(self.cur_span(), "Invalid operation on bool: {:?}", bin_op),
|
|
};
|
|
(Scalar::from_bool(res), false, self.tcx.types.bool)
|
|
}
|
|
|
|
fn binary_float_op<F: Float + Into<Scalar<M::Provenance>>>(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
ty: Ty<'tcx>,
|
|
l: F,
|
|
r: F,
|
|
) -> (Scalar<M::Provenance>, bool, Ty<'tcx>) {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
let (val, ty) = match bin_op {
|
|
Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
|
|
Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
|
|
Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
|
|
Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
|
|
Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
|
|
Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
|
|
Add => ((l + r).value.into(), ty),
|
|
Sub => ((l - r).value.into(), ty),
|
|
Mul => ((l * r).value.into(), ty),
|
|
Div => ((l / r).value.into(), ty),
|
|
Rem => ((l % r).value.into(), ty),
|
|
_ => span_bug!(self.cur_span(), "invalid float op: `{:?}`", bin_op),
|
|
};
|
|
(val, false, ty)
|
|
}
|
|
|
|
fn binary_int_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
// passing in raw bits
|
|
l: u128,
|
|
left_layout: TyAndLayout<'tcx>,
|
|
r: u128,
|
|
right_layout: TyAndLayout<'tcx>,
|
|
) -> InterpResult<'tcx, (Scalar<M::Provenance>, bool, Ty<'tcx>)> {
|
|
use rustc_middle::mir::BinOp::*;
|
|
|
|
// Shift ops can have an RHS with a different numeric type.
|
|
if bin_op == Shl || bin_op == Shr {
|
|
let size = u128::from(left_layout.size.bits());
|
|
// Even if `r` is signed, we treat it as if it was unsigned (i.e., we use its
|
|
// zero-extended form). This matches the codegen backend:
|
|
// <https://github.com/rust-lang/rust/blob/c274e4969f058b1c644243181ece9f829efa7594/compiler/rustc_codegen_ssa/src/base.rs#L315-L317>.
|
|
// The overflow check is also ignorant to the sign:
|
|
// <https://github.com/rust-lang/rust/blob/c274e4969f058b1c644243181ece9f829efa7594/compiler/rustc_codegen_ssa/src/mir/rvalue.rs#L728>.
|
|
// This would behave rather strangely if we had integer types of size 256: a shift by
|
|
// -1i8 would actually shift by 255, but that would *not* be considered overflowing. A
|
|
// shift by -1i16 though would be considered overflowing. If we had integers of size
|
|
// 512, then a shift by -1i8 would even produce a different result than one by -1i16:
|
|
// the first shifts by 255, the latter by u16::MAX % 512 = 511. Lucky enough, our
|
|
// integers are maximally 128bits wide, so negative shifts *always* overflow and we have
|
|
// consistent results for the same value represented at different bit widths.
|
|
assert!(size <= 128);
|
|
let overflow = r >= size;
|
|
// The shift offset is implicitly masked to the type size, to make sure this operation
|
|
// is always defined. This is the one MIR operator that does *not* directly map to a
|
|
// single LLVM operation. See
|
|
// <https://github.com/rust-lang/rust/blob/c274e4969f058b1c644243181ece9f829efa7594/compiler/rustc_codegen_ssa/src/common.rs#L131-L158>
|
|
// for the corresponding truncation in our codegen backends.
|
|
let r = r % size;
|
|
let r = u32::try_from(r).unwrap(); // we masked so this will always fit
|
|
let result = if left_layout.abi.is_signed() {
|
|
let l = self.sign_extend(l, left_layout) as i128;
|
|
let result = match bin_op {
|
|
Shl => l.checked_shl(r).unwrap(),
|
|
Shr => l.checked_shr(r).unwrap(),
|
|
_ => bug!(),
|
|
};
|
|
result as u128
|
|
} else {
|
|
match bin_op {
|
|
Shl => l.checked_shl(r).unwrap(),
|
|
Shr => l.checked_shr(r).unwrap(),
|
|
_ => bug!(),
|
|
}
|
|
};
|
|
let truncated = self.truncate(result, left_layout);
|
|
return Ok((Scalar::from_uint(truncated, left_layout.size), overflow, left_layout.ty));
|
|
}
|
|
|
|
// For the remaining ops, the types must be the same on both sides
|
|
if left_layout.ty != right_layout.ty {
|
|
span_bug!(
|
|
self.cur_span(),
|
|
"invalid asymmetric binary op {:?}: {:?} ({:?}), {:?} ({:?})",
|
|
bin_op,
|
|
l,
|
|
left_layout.ty,
|
|
r,
|
|
right_layout.ty,
|
|
)
|
|
}
|
|
|
|
let size = left_layout.size;
|
|
|
|
// Operations that need special treatment for signed integers
|
|
if left_layout.abi.is_signed() {
|
|
let op: Option<fn(&i128, &i128) -> bool> = match bin_op {
|
|
Lt => Some(i128::lt),
|
|
Le => Some(i128::le),
|
|
Gt => Some(i128::gt),
|
|
Ge => Some(i128::ge),
|
|
_ => None,
|
|
};
|
|
if let Some(op) = op {
|
|
let l = self.sign_extend(l, left_layout) as i128;
|
|
let r = self.sign_extend(r, right_layout) as i128;
|
|
return Ok((Scalar::from_bool(op(&l, &r)), false, self.tcx.types.bool));
|
|
}
|
|
let op: Option<fn(i128, i128) -> (i128, bool)> = match bin_op {
|
|
Div if r == 0 => throw_ub!(DivisionByZero),
|
|
Rem if r == 0 => throw_ub!(RemainderByZero),
|
|
Div => Some(i128::overflowing_div),
|
|
Rem => Some(i128::overflowing_rem),
|
|
Add => Some(i128::overflowing_add),
|
|
Sub => Some(i128::overflowing_sub),
|
|
Mul => Some(i128::overflowing_mul),
|
|
_ => None,
|
|
};
|
|
if let Some(op) = op {
|
|
let l = self.sign_extend(l, left_layout) as i128;
|
|
let r = self.sign_extend(r, right_layout) as i128;
|
|
|
|
// We need a special check for overflowing Rem and Div since they are *UB*
|
|
// on overflow, which can happen with "int_min $OP -1".
|
|
if matches!(bin_op, Rem | Div) {
|
|
if l == size.signed_int_min() && r == -1 {
|
|
if bin_op == Rem {
|
|
throw_ub!(RemainderOverflow)
|
|
} else {
|
|
throw_ub!(DivisionOverflow)
|
|
}
|
|
}
|
|
}
|
|
|
|
let (result, oflo) = op(l, r);
|
|
// This may be out-of-bounds for the result type, so we have to truncate ourselves.
|
|
// If that truncation loses any information, we have an overflow.
|
|
let result = result as u128;
|
|
let truncated = self.truncate(result, left_layout);
|
|
return Ok((
|
|
Scalar::from_uint(truncated, size),
|
|
oflo || self.sign_extend(truncated, left_layout) != result,
|
|
left_layout.ty,
|
|
));
|
|
}
|
|
}
|
|
|
|
let (val, ty) = match bin_op {
|
|
Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
|
|
Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
|
|
|
|
Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
|
|
Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
|
|
Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
|
|
Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
|
|
|
|
BitOr => (Scalar::from_uint(l | r, size), left_layout.ty),
|
|
BitAnd => (Scalar::from_uint(l & r, size), left_layout.ty),
|
|
BitXor => (Scalar::from_uint(l ^ r, size), left_layout.ty),
|
|
|
|
Add | Sub | Mul | Rem | Div => {
|
|
assert!(!left_layout.abi.is_signed());
|
|
let op: fn(u128, u128) -> (u128, bool) = match bin_op {
|
|
Add => u128::overflowing_add,
|
|
Sub => u128::overflowing_sub,
|
|
Mul => u128::overflowing_mul,
|
|
Div if r == 0 => throw_ub!(DivisionByZero),
|
|
Rem if r == 0 => throw_ub!(RemainderByZero),
|
|
Div => u128::overflowing_div,
|
|
Rem => u128::overflowing_rem,
|
|
_ => bug!(),
|
|
};
|
|
let (result, oflo) = op(l, r);
|
|
// Truncate to target type.
|
|
// If that truncation loses any information, we have an overflow.
|
|
let truncated = self.truncate(result, left_layout);
|
|
return Ok((
|
|
Scalar::from_uint(truncated, size),
|
|
oflo || truncated != result,
|
|
left_layout.ty,
|
|
));
|
|
}
|
|
|
|
_ => span_bug!(
|
|
self.cur_span(),
|
|
"invalid binary op {:?}: {:?}, {:?} (both {:?})",
|
|
bin_op,
|
|
l,
|
|
r,
|
|
right_layout.ty,
|
|
),
|
|
};
|
|
|
|
Ok((val, false, ty))
|
|
}
|
|
|
|
/// Returns the result of the specified operation, whether it overflowed, and
|
|
/// the result type.
|
|
pub fn overflowing_binary_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, (Scalar<M::Provenance>, bool, Ty<'tcx>)> {
|
|
trace!(
|
|
"Running binary op {:?}: {:?} ({:?}), {:?} ({:?})",
|
|
bin_op,
|
|
*left,
|
|
left.layout.ty,
|
|
*right,
|
|
right.layout.ty
|
|
);
|
|
|
|
match left.layout.ty.kind() {
|
|
ty::Char => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let left = left.to_scalar()?;
|
|
let right = right.to_scalar()?;
|
|
Ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?))
|
|
}
|
|
ty::Bool => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let left = left.to_scalar()?;
|
|
let right = right.to_scalar()?;
|
|
Ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?))
|
|
}
|
|
ty::Float(fty) => {
|
|
assert_eq!(left.layout.ty, right.layout.ty);
|
|
let ty = left.layout.ty;
|
|
let left = left.to_scalar()?;
|
|
let right = right.to_scalar()?;
|
|
Ok(match fty {
|
|
FloatTy::F32 => {
|
|
self.binary_float_op(bin_op, ty, left.to_f32()?, right.to_f32()?)
|
|
}
|
|
FloatTy::F64 => {
|
|
self.binary_float_op(bin_op, ty, left.to_f64()?, right.to_f64()?)
|
|
}
|
|
})
|
|
}
|
|
_ if left.layout.ty.is_integral() => {
|
|
// the RHS type can be different, e.g. for shifts -- but it has to be integral, too
|
|
assert!(
|
|
right.layout.ty.is_integral(),
|
|
"Unexpected types for BinOp: {:?} {:?} {:?}",
|
|
left.layout.ty,
|
|
bin_op,
|
|
right.layout.ty
|
|
);
|
|
|
|
let l = left.to_scalar()?.to_bits(left.layout.size)?;
|
|
let r = right.to_scalar()?.to_bits(right.layout.size)?;
|
|
self.binary_int_op(bin_op, l, left.layout, r, right.layout)
|
|
}
|
|
_ if left.layout.ty.is_any_ptr() => {
|
|
// The RHS type must be a `pointer` *or an integer type* (for `Offset`).
|
|
// (Even when both sides are pointers, their type might differ, see issue #91636)
|
|
assert!(
|
|
right.layout.ty.is_any_ptr() || right.layout.ty.is_integral(),
|
|
"Unexpected types for BinOp: {:?} {:?} {:?}",
|
|
left.layout.ty,
|
|
bin_op,
|
|
right.layout.ty
|
|
);
|
|
|
|
M::binary_ptr_op(self, bin_op, left, right)
|
|
}
|
|
_ => span_bug!(
|
|
self.cur_span(),
|
|
"Invalid MIR: bad LHS type for binop: {:?}",
|
|
left.layout.ty
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Typed version of `overflowing_binary_op`, returning an `ImmTy`. Also ignores overflows.
|
|
#[inline]
|
|
pub fn binary_op(
|
|
&self,
|
|
bin_op: mir::BinOp,
|
|
left: &ImmTy<'tcx, M::Provenance>,
|
|
right: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
let (val, _overflow, ty) = self.overflowing_binary_op(bin_op, left, right)?;
|
|
Ok(ImmTy::from_scalar(val, self.layout_of(ty)?))
|
|
}
|
|
|
|
/// Returns the result of the specified operation, whether it overflowed, and
|
|
/// the result type.
|
|
pub fn overflowing_unary_op(
|
|
&self,
|
|
un_op: mir::UnOp,
|
|
val: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, (Scalar<M::Provenance>, bool, Ty<'tcx>)> {
|
|
use rustc_middle::mir::UnOp::*;
|
|
|
|
let layout = val.layout;
|
|
let val = val.to_scalar()?;
|
|
trace!("Running unary op {:?}: {:?} ({:?})", un_op, val, layout.ty);
|
|
|
|
match layout.ty.kind() {
|
|
ty::Bool => {
|
|
let val = val.to_bool()?;
|
|
let res = match un_op {
|
|
Not => !val,
|
|
_ => span_bug!(self.cur_span(), "Invalid bool op {:?}", un_op),
|
|
};
|
|
Ok((Scalar::from_bool(res), false, self.tcx.types.bool))
|
|
}
|
|
ty::Float(fty) => {
|
|
let res = match (un_op, fty) {
|
|
(Neg, FloatTy::F32) => Scalar::from_f32(-val.to_f32()?),
|
|
(Neg, FloatTy::F64) => Scalar::from_f64(-val.to_f64()?),
|
|
_ => span_bug!(self.cur_span(), "Invalid float op {:?}", un_op),
|
|
};
|
|
Ok((res, false, layout.ty))
|
|
}
|
|
_ => {
|
|
assert!(layout.ty.is_integral());
|
|
let val = val.to_bits(layout.size)?;
|
|
let (res, overflow) = match un_op {
|
|
Not => (self.truncate(!val, layout), false), // bitwise negation, then truncate
|
|
Neg => {
|
|
// arithmetic negation
|
|
assert!(layout.abi.is_signed());
|
|
let val = self.sign_extend(val, layout) as i128;
|
|
let (res, overflow) = val.overflowing_neg();
|
|
let res = res as u128;
|
|
// Truncate to target type.
|
|
// If that truncation loses any information, we have an overflow.
|
|
let truncated = self.truncate(res, layout);
|
|
(truncated, overflow || self.sign_extend(truncated, layout) != res)
|
|
}
|
|
};
|
|
Ok((Scalar::from_uint(res, layout.size), overflow, layout.ty))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn unary_op(
|
|
&self,
|
|
un_op: mir::UnOp,
|
|
val: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
|
|
let (val, _overflow, ty) = self.overflowing_unary_op(un_op, val)?;
|
|
Ok(ImmTy::from_scalar(val, self.layout_of(ty)?))
|
|
}
|
|
}
|