rust/src/librustdoc/clean/mod.rs
Alex Crichton f4a775639c rollup merge of #19298: nikomatsakis/unboxed-closure-parse-the-plus
Implements RFC 438.

Fixes #19092.

This is a [breaking-change]: change types like `&Foo+Send` or `&'a mut Foo+'a` to `&(Foo+Send)` and `&'a mut (Foo+'a)`, respectively.

r? @brson
2014-11-26 16:49:46 -08:00

2347 lines
74 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains the "cleaned" pieces of the AST, and the functions
//! that clean them.
pub use self::ImplMethod::*;
pub use self::Type::*;
pub use self::PrimitiveType::*;
pub use self::TypeKind::*;
pub use self::StructField::*;
pub use self::VariantKind::*;
pub use self::Mutability::*;
pub use self::ViewItemInner::*;
pub use self::ViewPath::*;
pub use self::ItemEnum::*;
pub use self::Attribute::*;
pub use self::TyParamBound::*;
pub use self::SelfTy::*;
pub use self::FunctionRetTy::*;
pub use self::TraitMethod::*;
use syntax;
use syntax::ast;
use syntax::ast_util;
use syntax::ast_util::PostExpansionMethod;
use syntax::attr;
use syntax::attr::{AttributeMethods, AttrMetaMethods};
use syntax::codemap::{DUMMY_SP, Pos, Spanned};
use syntax::parse::token::InternedString;
use syntax::parse::token;
use syntax::ptr::P;
use rustc_trans::back::link;
use rustc_trans::driver::driver;
use rustc::metadata::cstore;
use rustc::metadata::csearch;
use rustc::metadata::decoder;
use rustc::middle::def;
use rustc::middle::subst;
use rustc::middle::subst::VecPerParamSpace;
use rustc::middle::ty;
use rustc::middle::stability;
use std::rc::Rc;
use std::u32;
use std::str::Str as StrTrait; // Conflicts with Str variant
use std::char::Char as CharTrait; // Conflicts with Char variant
use core::DocContext;
use doctree;
use visit_ast;
/// A stable identifier to the particular version of JSON output.
/// Increment this when the `Crate` and related structures change.
pub static SCHEMA_VERSION: &'static str = "0.8.3";
mod inline;
// extract the stability index for a node from tcx, if possible
fn get_stability(cx: &DocContext, def_id: ast::DefId) -> Option<Stability> {
cx.tcx_opt().and_then(|tcx| stability::lookup(tcx, def_id)).clean(cx)
}
pub trait Clean<T> {
fn clean(&self, cx: &DocContext) -> T;
}
impl<T: Clean<U>, U> Clean<Vec<U>> for Vec<T> {
fn clean(&self, cx: &DocContext) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U> Clean<VecPerParamSpace<U>> for VecPerParamSpace<T> {
fn clean(&self, cx: &DocContext) -> VecPerParamSpace<U> {
self.map(|x| x.clean(cx))
}
}
impl<T: Clean<U>, U> Clean<U> for P<T> {
fn clean(&self, cx: &DocContext) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<U> for Rc<T> {
fn clean(&self, cx: &DocContext) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Option<U>> for Option<T> {
fn clean(&self, cx: &DocContext) -> Option<U> {
match self {
&None => None,
&Some(ref v) => Some(v.clean(cx))
}
}
}
impl<T: Clean<U>, U> Clean<Vec<U>> for syntax::owned_slice::OwnedSlice<T> {
fn clean(&self, cx: &DocContext) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Crate {
pub name: String,
pub module: Option<Item>,
pub externs: Vec<(ast::CrateNum, ExternalCrate)>,
pub primitives: Vec<PrimitiveType>,
}
impl<'a, 'tcx> Clean<Crate> for visit_ast::RustdocVisitor<'a, 'tcx> {
fn clean(&self, cx: &DocContext) -> Crate {
let mut externs = Vec::new();
cx.sess().cstore.iter_crate_data(|n, meta| {
externs.push((n, meta.clean(cx)));
});
externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// Figure out the name of this crate
let input = driver::FileInput(cx.src.clone());
let name = link::find_crate_name(None, self.attrs.as_slice(), &input);
// Clean the crate, translating the entire libsyntax AST to one that is
// understood by rustdoc.
let mut module = self.module.clean(cx);
// Collect all inner modules which are tagged as implementations of
// primitives.
//
// Note that this loop only searches the top-level items of the crate,
// and this is intentional. If we were to search the entire crate for an
// item tagged with `#[doc(primitive)]` then we we would also have to
// search the entirety of external modules for items tagged
// `#[doc(primitive)]`, which is a pretty inefficient process (decoding
// all that metadata unconditionally).
//
// In order to keep the metadata load under control, the
// `#[doc(primitive)]` feature is explicitly designed to only allow the
// primitive tags to show up as the top level items in a crate.
//
// Also note that this does not attempt to deal with modules tagged
// duplicately for the same primitive. This is handled later on when
// rendering by delegating everything to a hash map.
let mut primitives = Vec::new();
{
let m = match module.inner {
ModuleItem(ref mut m) => m,
_ => unreachable!(),
};
let mut tmp = Vec::new();
for child in m.items.iter_mut() {
let inner = match child.inner {
ModuleItem(ref mut m) => m,
_ => continue,
};
let prim = match PrimitiveType::find(child.attrs.as_slice()) {
Some(prim) => prim,
None => continue,
};
primitives.push(prim);
let mut i = Item {
source: Span::empty(),
name: Some(prim.to_url_str().to_string()),
attrs: Vec::new(),
visibility: None,
stability: None,
def_id: ast_util::local_def(prim.to_node_id()),
inner: PrimitiveItem(prim),
};
// Push one copy to get indexed for the whole crate, and push a
// another copy in the proper location which will actually get
// documented. The first copy will also serve as a redirect to
// the other copy.
tmp.push(i.clone());
i.visibility = Some(ast::Public);
i.attrs = child.attrs.clone();
inner.items.push(i);
}
m.items.extend(tmp.into_iter());
}
Crate {
name: name.to_string(),
module: Some(module),
externs: externs,
primitives: primitives,
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct ExternalCrate {
pub name: String,
pub attrs: Vec<Attribute>,
pub primitives: Vec<PrimitiveType>,
}
impl Clean<ExternalCrate> for cstore::crate_metadata {
fn clean(&self, cx: &DocContext) -> ExternalCrate {
let mut primitives = Vec::new();
cx.tcx_opt().map(|tcx| {
csearch::each_top_level_item_of_crate(&tcx.sess.cstore,
self.cnum,
|def, _, _| {
let did = match def {
decoder::DlDef(def::DefMod(did)) => did,
_ => return
};
let attrs = inline::load_attrs(cx, tcx, did);
PrimitiveType::find(attrs.as_slice()).map(|prim| primitives.push(prim));
})
});
ExternalCrate {
name: self.name.to_string(),
attrs: decoder::get_crate_attributes(self.data()).clean(cx),
primitives: primitives,
}
}
}
/// Anything with a source location and set of attributes and, optionally, a
/// name. That is, anything that can be documented. This doesn't correspond
/// directly to the AST's concept of an item; it's a strict superset.
#[deriving(Clone, Encodable, Decodable)]
pub struct Item {
/// Stringified span
pub source: Span,
/// Not everything has a name. E.g., impls
pub name: Option<String>,
pub attrs: Vec<Attribute> ,
pub inner: ItemEnum,
pub visibility: Option<Visibility>,
pub def_id: ast::DefId,
pub stability: Option<Stability>,
}
impl Item {
/// Finds the `doc` attribute as a List and returns the list of attributes
/// nested inside.
pub fn doc_list<'a>(&'a self) -> Option<&'a [Attribute]> {
for attr in self.attrs.iter() {
match *attr {
List(ref x, ref list) if "doc" == x.as_slice() => {
return Some(list.as_slice());
}
_ => {}
}
}
return None;
}
/// Finds the `doc` attribute as a NameValue and returns the corresponding
/// value found.
pub fn doc_value<'a>(&'a self) -> Option<&'a str> {
for attr in self.attrs.iter() {
match *attr {
NameValue(ref x, ref v) if "doc" == x.as_slice() => {
return Some(v.as_slice());
}
_ => {}
}
}
return None;
}
pub fn is_hidden_from_doc(&self) -> bool {
match self.doc_list() {
Some(ref l) => {
for innerattr in l.iter() {
match *innerattr {
Word(ref s) if "hidden" == s.as_slice() => {
return true
}
_ => (),
}
}
},
None => ()
}
return false;
}
pub fn is_mod(&self) -> bool {
match self.inner { ModuleItem(..) => true, _ => false }
}
pub fn is_trait(&self) -> bool {
match self.inner { TraitItem(..) => true, _ => false }
}
pub fn is_struct(&self) -> bool {
match self.inner { StructItem(..) => true, _ => false }
}
pub fn is_enum(&self) -> bool {
match self.inner { EnumItem(..) => true, _ => false }
}
pub fn is_fn(&self) -> bool {
match self.inner { FunctionItem(..) => true, _ => false }
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum ItemEnum {
StructItem(Struct),
EnumItem(Enum),
FunctionItem(Function),
ModuleItem(Module),
TypedefItem(Typedef),
StaticItem(Static),
ConstantItem(Constant),
TraitItem(Trait),
ImplItem(Impl),
/// `use` and `extern crate`
ViewItemItem(ViewItem),
/// A method signature only. Used for required methods in traits (ie,
/// non-default-methods).
TyMethodItem(TyMethod),
/// A method with a body.
MethodItem(Method),
StructFieldItem(StructField),
VariantItem(Variant),
/// `fn`s from an extern block
ForeignFunctionItem(Function),
/// `static`s from an extern block
ForeignStaticItem(Static),
MacroItem(Macro),
PrimitiveItem(PrimitiveType),
AssociatedTypeItem(TyParam),
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Module {
pub items: Vec<Item>,
pub is_crate: bool,
}
impl Clean<Item> for doctree::Module {
fn clean(&self, cx: &DocContext) -> Item {
let name = if self.name.is_some() {
self.name.unwrap().clean(cx)
} else {
"".to_string()
};
let mut foreigns = Vec::new();
for subforeigns in self.foreigns.clean(cx).into_iter() {
for foreign in subforeigns.into_iter() {
foreigns.push(foreign)
}
}
let items: Vec<Vec<Item> > = vec!(
self.structs.clean(cx),
self.enums.clean(cx),
self.fns.clean(cx),
foreigns,
self.mods.clean(cx),
self.typedefs.clean(cx),
self.statics.clean(cx),
self.constants.clean(cx),
self.traits.clean(cx),
self.impls.clean(cx),
self.view_items.clean(cx).into_iter()
.flat_map(|s| s.into_iter()).collect(),
self.macros.clean(cx),
);
// determine if we should display the inner contents or
// the outer `mod` item for the source code.
let whence = {
let cm = cx.sess().codemap();
let outer = cm.lookup_char_pos(self.where_outer.lo);
let inner = cm.lookup_char_pos(self.where_inner.lo);
if outer.file.start_pos == inner.file.start_pos {
// mod foo { ... }
self.where_outer
} else {
// mod foo; (and a separate FileMap for the contents)
self.where_inner
}
};
Item {
name: Some(name),
attrs: self.attrs.clean(cx),
source: whence.clean(cx),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
def_id: ast_util::local_def(self.id),
inner: ModuleItem(Module {
is_crate: self.is_crate,
items: items.iter()
.flat_map(|x| x.iter().map(|x| (*x).clone()))
.collect(),
})
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub enum Attribute {
Word(String),
List(String, Vec<Attribute> ),
NameValue(String, String)
}
impl Clean<Attribute> for ast::MetaItem {
fn clean(&self, cx: &DocContext) -> Attribute {
match self.node {
ast::MetaWord(ref s) => Word(s.get().to_string()),
ast::MetaList(ref s, ref l) => {
List(s.get().to_string(), l.clean(cx))
}
ast::MetaNameValue(ref s, ref v) => {
NameValue(s.get().to_string(), lit_to_string(v))
}
}
}
}
impl Clean<Attribute> for ast::Attribute {
fn clean(&self, cx: &DocContext) -> Attribute {
self.with_desugared_doc(|a| a.node.value.clean(cx))
}
}
// This is a rough approximation that gets us what we want.
impl attr::AttrMetaMethods for Attribute {
fn name(&self) -> InternedString {
match *self {
Word(ref n) | List(ref n, _) | NameValue(ref n, _) => {
token::intern_and_get_ident(n.as_slice())
}
}
}
fn value_str(&self) -> Option<InternedString> {
match *self {
NameValue(_, ref v) => {
Some(token::intern_and_get_ident(v.as_slice()))
}
_ => None,
}
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<ast::MetaItem>]> { None }
}
impl<'a> attr::AttrMetaMethods for &'a Attribute {
fn name(&self) -> InternedString { (**self).name() }
fn value_str(&self) -> Option<InternedString> { (**self).value_str() }
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<ast::MetaItem>]> { None }
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct TyParam {
pub name: String,
pub did: ast::DefId,
pub bounds: Vec<TyParamBound>,
pub default: Option<Type>,
/// An optional default bound on the parameter which is unbound, like `Sized?`
pub default_unbound: Option<Type>
}
impl Clean<TyParam> for ast::TyParam {
fn clean(&self, cx: &DocContext) -> TyParam {
TyParam {
name: self.ident.clean(cx),
did: ast::DefId { krate: ast::LOCAL_CRATE, node: self.id },
bounds: self.bounds.clean(cx),
default: self.default.clean(cx),
default_unbound: self.unbound.clean(cx)
}
}
}
impl<'tcx> Clean<TyParam> for ty::TypeParameterDef<'tcx> {
fn clean(&self, cx: &DocContext) -> TyParam {
cx.external_typarams.borrow_mut().as_mut().unwrap()
.insert(self.def_id, self.name.clean(cx));
let (bounds, default_unbound) = self.bounds.clean(cx);
TyParam {
name: self.name.clean(cx),
did: self.def_id,
bounds: bounds,
default: self.default.clean(cx),
default_unbound: default_unbound
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub enum TyParamBound {
RegionBound(Lifetime),
TraitBound(Type)
}
impl Clean<TyParamBound> for ast::TyParamBound {
fn clean(&self, cx: &DocContext) -> TyParamBound {
match *self {
ast::RegionTyParamBound(lt) => RegionBound(lt.clean(cx)),
ast::TraitTyParamBound(ref t) => TraitBound(t.clean(cx)),
}
}
}
impl Clean<Vec<TyParamBound>> for ty::ExistentialBounds {
fn clean(&self, cx: &DocContext) -> Vec<TyParamBound> {
let mut vec = vec![];
self.region_bound.clean(cx).map(|b| vec.push(RegionBound(b)));
for bb in self.builtin_bounds.iter() {
vec.push(bb.clean(cx));
}
vec
}
}
fn external_path(cx: &DocContext, name: &str, substs: &subst::Substs) -> Path {
let lifetimes = substs.regions().get_slice(subst::TypeSpace)
.iter()
.filter_map(|v| v.clean(cx))
.collect();
let types = substs.types.get_slice(subst::TypeSpace).to_vec();
let types = types.clean(cx);
Path {
global: false,
segments: vec![PathSegment {
name: name.to_string(),
lifetimes: lifetimes,
types: types,
}],
}
}
impl Clean<TyParamBound> for ty::BuiltinBound {
fn clean(&self, cx: &DocContext) -> TyParamBound {
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return RegionBound(Lifetime::statik())
};
let empty = subst::Substs::empty();
let (did, path) = match *self {
ty::BoundSend =>
(tcx.lang_items.send_trait().unwrap(),
external_path(cx, "Send", &empty)),
ty::BoundSized =>
(tcx.lang_items.sized_trait().unwrap(),
external_path(cx, "Sized", &empty)),
ty::BoundCopy =>
(tcx.lang_items.copy_trait().unwrap(),
external_path(cx, "Copy", &empty)),
ty::BoundSync =>
(tcx.lang_items.sync_trait().unwrap(),
external_path(cx, "Sync", &empty)),
};
let fqn = csearch::get_item_path(tcx, did);
let fqn = fqn.into_iter().map(|i| i.to_string()).collect();
cx.external_paths.borrow_mut().as_mut().unwrap().insert(did,
(fqn, TypeTrait));
TraitBound(ResolvedPath {
path: path,
typarams: None,
did: did,
})
}
}
impl<'tcx> Clean<TyParamBound> for ty::TraitRef<'tcx> {
fn clean(&self, cx: &DocContext) -> TyParamBound {
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return RegionBound(Lifetime::statik())
};
let fqn = csearch::get_item_path(tcx, self.def_id);
let fqn = fqn.into_iter().map(|i| i.to_string())
.collect::<Vec<String>>();
let path = external_path(cx, fqn.last().unwrap().as_slice(),
&self.substs);
cx.external_paths.borrow_mut().as_mut().unwrap().insert(self.def_id,
(fqn, TypeTrait));
TraitBound(ResolvedPath {
path: path,
typarams: None,
did: self.def_id,
})
}
}
// Returns (bounds, default_unbound)
impl<'tcx> Clean<(Vec<TyParamBound>, Option<Type>)> for ty::ParamBounds<'tcx> {
fn clean(&self, cx: &DocContext) -> (Vec<TyParamBound>, Option<Type>) {
let mut v = Vec::new();
let mut has_sized_bound = false;
for b in self.builtin_bounds.iter() {
if b != ty::BoundSized {
v.push(b.clean(cx));
} else {
has_sized_bound = true;
}
}
for t in self.trait_bounds.iter() {
v.push(t.clean(cx));
}
for r in self.region_bounds.iter().filter_map(|r| r.clean(cx)) {
v.push(RegionBound(r));
}
if has_sized_bound {
(v, None)
} else {
let ty = match ty::BoundSized.clean(cx) {
TraitBound(ty) => ty,
_ => unreachable!()
};
(v, Some(ty))
}
}
}
impl<'tcx> Clean<Option<Vec<TyParamBound>>> for subst::Substs<'tcx> {
fn clean(&self, cx: &DocContext) -> Option<Vec<TyParamBound>> {
let mut v = Vec::new();
v.extend(self.regions().iter().filter_map(|r| r.clean(cx)).map(RegionBound));
v.extend(self.types.iter().map(|t| TraitBound(t.clean(cx))));
if v.len() > 0 {Some(v)} else {None}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct Lifetime(String);
impl Lifetime {
pub fn get_ref<'a>(&'a self) -> &'a str {
let Lifetime(ref s) = *self;
let s: &'a str = s.as_slice();
return s;
}
pub fn statik() -> Lifetime {
Lifetime("'static".to_string())
}
}
impl Clean<Lifetime> for ast::Lifetime {
fn clean(&self, _: &DocContext) -> Lifetime {
Lifetime(token::get_name(self.name).get().to_string())
}
}
impl Clean<Lifetime> for ast::LifetimeDef {
fn clean(&self, _: &DocContext) -> Lifetime {
Lifetime(token::get_name(self.lifetime.name).get().to_string())
}
}
impl Clean<Lifetime> for ty::RegionParameterDef {
fn clean(&self, _: &DocContext) -> Lifetime {
Lifetime(token::get_name(self.name).get().to_string())
}
}
impl Clean<Option<Lifetime>> for ty::Region {
fn clean(&self, cx: &DocContext) -> Option<Lifetime> {
match *self {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReLateBound(_, ty::BrNamed(_, name)) =>
Some(Lifetime(token::get_name(name).get().to_string())),
ty::ReEarlyBound(_, _, _, name) => Some(Lifetime(name.clean(cx))),
ty::ReLateBound(..) |
ty::ReFree(..) |
ty::ReScope(..) |
ty::ReInfer(..) |
ty::ReEmpty(..) => None
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct WherePredicate {
pub name: String,
pub bounds: Vec<TyParamBound>
}
impl Clean<WherePredicate> for ast::WherePredicate {
fn clean(&self, cx: &DocContext) -> WherePredicate {
WherePredicate {
name: self.ident.clean(cx),
bounds: self.bounds.clean(cx)
}
}
}
// maybe use a Generic enum and use ~[Generic]?
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct Generics {
pub lifetimes: Vec<Lifetime>,
pub type_params: Vec<TyParam>,
pub where_predicates: Vec<WherePredicate>
}
impl Clean<Generics> for ast::Generics {
fn clean(&self, cx: &DocContext) -> Generics {
Generics {
lifetimes: self.lifetimes.clean(cx),
type_params: self.ty_params.clean(cx),
where_predicates: self.where_clause.predicates.clean(cx)
}
}
}
impl<'a, 'tcx> Clean<Generics> for (&'a ty::Generics<'tcx>, subst::ParamSpace) {
fn clean(&self, cx: &DocContext) -> Generics {
let (me, space) = *self;
Generics {
type_params: me.types.get_slice(space).to_vec().clean(cx),
lifetimes: me.regions.get_slice(space).to_vec().clean(cx),
where_predicates: vec![]
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Method {
pub generics: Generics,
pub self_: SelfTy,
pub fn_style: ast::FnStyle,
pub decl: FnDecl,
}
impl Clean<Item> for ast::Method {
fn clean(&self, cx: &DocContext) -> Item {
let all_inputs = &self.pe_fn_decl().inputs;
let inputs = match self.pe_explicit_self().node {
ast::SelfStatic => all_inputs.as_slice(),
_ => all_inputs[1..]
};
let decl = FnDecl {
inputs: Arguments {
values: inputs.iter().map(|x| x.clean(cx)).collect(),
},
output: self.pe_fn_decl().output.clean(cx),
attrs: Vec::new()
};
Item {
name: Some(self.pe_ident().clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.pe_vis().clean(cx),
stability: get_stability(cx, ast_util::local_def(self.id)),
inner: MethodItem(Method {
generics: self.pe_generics().clean(cx),
self_: self.pe_explicit_self().node.clean(cx),
fn_style: self.pe_fn_style().clone(),
decl: decl,
}),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct TyMethod {
pub fn_style: ast::FnStyle,
pub decl: FnDecl,
pub generics: Generics,
pub self_: SelfTy,
}
impl Clean<Item> for ast::TypeMethod {
fn clean(&self, cx: &DocContext) -> Item {
let inputs = match self.explicit_self.node {
ast::SelfStatic => self.decl.inputs.as_slice(),
_ => self.decl.inputs[1..]
};
let decl = FnDecl {
inputs: Arguments {
values: inputs.iter().map(|x| x.clean(cx)).collect(),
},
output: self.decl.output.clean(cx),
attrs: Vec::new()
};
Item {
name: Some(self.ident.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: None,
stability: get_stability(cx, ast_util::local_def(self.id)),
inner: TyMethodItem(TyMethod {
fn_style: self.fn_style.clone(),
decl: decl,
self_: self.explicit_self.node.clean(cx),
generics: self.generics.clean(cx),
}),
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub enum SelfTy {
SelfStatic,
SelfValue,
SelfBorrowed(Option<Lifetime>, Mutability),
SelfExplicit(Type),
}
impl Clean<SelfTy> for ast::ExplicitSelf_ {
fn clean(&self, cx: &DocContext) -> SelfTy {
match *self {
ast::SelfStatic => SelfStatic,
ast::SelfValue(_) => SelfValue,
ast::SelfRegion(ref lt, ref mt, _) => {
SelfBorrowed(lt.clean(cx), mt.clean(cx))
}
ast::SelfExplicit(ref typ, _) => SelfExplicit(typ.clean(cx)),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Function {
pub decl: FnDecl,
pub generics: Generics,
pub fn_style: ast::FnStyle,
}
impl Clean<Item> for doctree::Function {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
def_id: ast_util::local_def(self.id),
inner: FunctionItem(Function {
decl: self.decl.clean(cx),
generics: self.generics.clean(cx),
fn_style: self.fn_style,
}),
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct ClosureDecl {
pub lifetimes: Vec<Lifetime>,
pub decl: FnDecl,
pub onceness: ast::Onceness,
pub fn_style: ast::FnStyle,
pub bounds: Vec<TyParamBound>,
}
impl Clean<ClosureDecl> for ast::ClosureTy {
fn clean(&self, cx: &DocContext) -> ClosureDecl {
ClosureDecl {
lifetimes: self.lifetimes.clean(cx),
decl: self.decl.clean(cx),
onceness: self.onceness,
fn_style: self.fn_style,
bounds: self.bounds.clean(cx)
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct FnDecl {
pub inputs: Arguments,
pub output: FunctionRetTy,
pub attrs: Vec<Attribute>,
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct Arguments {
pub values: Vec<Argument>,
}
impl Clean<FnDecl> for ast::FnDecl {
fn clean(&self, cx: &DocContext) -> FnDecl {
FnDecl {
inputs: Arguments {
values: self.inputs.clean(cx),
},
output: self.output.clean(cx),
attrs: Vec::new()
}
}
}
impl<'tcx> Clean<Type> for ty::FnOutput<'tcx> {
fn clean(&self, cx: &DocContext) -> Type {
match *self {
ty::FnConverging(ty) => ty.clean(cx),
ty::FnDiverging => Bottom
}
}
}
impl<'a, 'tcx> Clean<FnDecl> for (ast::DefId, &'a ty::FnSig<'tcx>) {
fn clean(&self, cx: &DocContext) -> FnDecl {
let (did, sig) = *self;
let mut names = if did.node != 0 {
csearch::get_method_arg_names(&cx.tcx().sess.cstore, did).into_iter()
} else {
Vec::new().into_iter()
}.peekable();
if names.peek().map(|s| s.as_slice()) == Some("self") {
let _ = names.next();
}
FnDecl {
output: Return(sig.output.clean(cx)),
attrs: Vec::new(),
inputs: Arguments {
values: sig.inputs.iter().map(|t| {
Argument {
type_: t.clean(cx),
id: 0,
name: names.next().unwrap_or("".to_string()),
}
}).collect(),
},
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct Argument {
pub type_: Type,
pub name: String,
pub id: ast::NodeId,
}
impl Clean<Argument> for ast::Arg {
fn clean(&self, cx: &DocContext) -> Argument {
Argument {
name: name_from_pat(&*self.pat),
type_: (self.ty.clean(cx)),
id: self.id
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub enum FunctionRetTy {
Return(Type),
NoReturn
}
impl Clean<FunctionRetTy> for ast::FunctionRetTy {
fn clean(&self, cx: &DocContext) -> FunctionRetTy {
match *self {
ast::Return(ref typ) => Return(typ.clean(cx)),
ast::NoReturn(_) => NoReturn
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Trait {
pub items: Vec<TraitMethod>,
pub generics: Generics,
pub bounds: Vec<TyParamBound>,
/// An optional default bound not required for `Self`, like `Sized?`
pub default_unbound: Option<Type>
}
impl Clean<Item> for doctree::Trait {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: TraitItem(Trait {
items: self.items.clean(cx),
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
default_unbound: self.default_unbound.clean(cx)
}),
}
}
}
impl Clean<Type> for ast::TraitRef {
fn clean(&self, cx: &DocContext) -> Type {
resolve_type(cx, self.path.clean(cx), self.ref_id)
}
}
impl Clean<Type> for ast::PolyTraitRef {
fn clean(&self, cx: &DocContext) -> Type {
self.trait_ref.clean(cx)
}
}
/// An item belonging to a trait, whether a method or associated. Could be named
/// TraitItem except that's already taken by an exported enum variant.
#[deriving(Clone, Encodable, Decodable)]
pub enum TraitMethod {
RequiredMethod(Item),
ProvidedMethod(Item),
TypeTraitItem(Item),
}
impl TraitMethod {
pub fn is_req(&self) -> bool {
match self {
&RequiredMethod(..) => true,
_ => false,
}
}
pub fn is_def(&self) -> bool {
match self {
&ProvidedMethod(..) => true,
_ => false,
}
}
pub fn is_type(&self) -> bool {
match self {
&TypeTraitItem(..) => true,
_ => false,
}
}
pub fn item<'a>(&'a self) -> &'a Item {
match *self {
RequiredMethod(ref item) => item,
ProvidedMethod(ref item) => item,
TypeTraitItem(ref item) => item,
}
}
}
impl Clean<TraitMethod> for ast::TraitItem {
fn clean(&self, cx: &DocContext) -> TraitMethod {
match self {
&ast::RequiredMethod(ref t) => RequiredMethod(t.clean(cx)),
&ast::ProvidedMethod(ref t) => ProvidedMethod(t.clean(cx)),
&ast::TypeTraitItem(ref t) => TypeTraitItem(t.clean(cx)),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum ImplMethod {
MethodImplItem(Item),
TypeImplItem(Item),
}
impl Clean<ImplMethod> for ast::ImplItem {
fn clean(&self, cx: &DocContext) -> ImplMethod {
match self {
&ast::MethodImplItem(ref t) => MethodImplItem(t.clean(cx)),
&ast::TypeImplItem(ref t) => TypeImplItem(t.clean(cx)),
}
}
}
impl<'tcx> Clean<Item> for ty::Method<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
let (self_, sig) = match self.explicit_self {
ty::StaticExplicitSelfCategory => (ast::SelfStatic.clean(cx),
self.fty.sig.clone()),
s => {
let sig = ty::FnSig {
inputs: self.fty.sig.inputs[1..].to_vec(),
..self.fty.sig.clone()
};
let s = match s {
ty::ByValueExplicitSelfCategory => SelfValue,
ty::ByReferenceExplicitSelfCategory(..) => {
match self.fty.sig.inputs[0].sty {
ty::ty_rptr(r, mt) => {
SelfBorrowed(r.clean(cx), mt.mutbl.clean(cx))
}
_ => unreachable!(),
}
}
ty::ByBoxExplicitSelfCategory => {
SelfExplicit(self.fty.sig.inputs[0].clean(cx))
}
ty::StaticExplicitSelfCategory => unreachable!(),
};
(s, sig)
}
};
Item {
name: Some(self.name.clean(cx)),
visibility: Some(ast::Inherited),
stability: get_stability(cx, self.def_id),
def_id: self.def_id,
attrs: inline::load_attrs(cx, cx.tcx(), self.def_id),
source: Span::empty(),
inner: TyMethodItem(TyMethod {
fn_style: self.fty.fn_style,
generics: (&self.generics, subst::FnSpace).clean(cx),
self_: self_,
decl: (self.def_id, &sig).clean(cx),
})
}
}
}
impl<'tcx> Clean<Item> for ty::ImplOrTraitItem<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
match *self {
ty::MethodTraitItem(ref mti) => mti.clean(cx),
ty::TypeTraitItem(ref tti) => tti.clean(cx),
}
}
}
/// A representation of a Type suitable for hyperlinking purposes. Ideally one can get the original
/// type out of the AST/ty::ctxt given one of these, if more information is needed. Most importantly
/// it does not preserve mutability or boxes.
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub enum Type {
/// structs/enums/traits (anything that'd be an ast::TyPath)
ResolvedPath {
path: Path,
typarams: Option<Vec<TyParamBound>>,
did: ast::DefId,
},
// I have no idea how to usefully use this.
TyParamBinder(ast::NodeId),
/// For parameterized types, so the consumer of the JSON don't go looking
/// for types which don't exist anywhere.
Generic(ast::DefId),
/// For references to self
Self(ast::DefId),
/// Primitives are just the fixed-size numeric types (plus int/uint/float), and char.
Primitive(PrimitiveType),
Closure(Box<ClosureDecl>),
Proc(Box<ClosureDecl>),
/// extern "ABI" fn
BareFunction(Box<BareFunctionDecl>),
Tuple(Vec<Type>),
Vector(Box<Type>),
FixedVector(Box<Type>, String),
/// aka TyBot
Bottom,
Unique(Box<Type>),
RawPointer(Mutability, Box<Type>),
BorrowedRef {
lifetime: Option<Lifetime>,
mutability: Mutability,
type_: Box<Type>,
},
QPath {
name: String,
self_type: Box<Type>,
trait_: Box<Type>
},
// region, raw, other boxes, mutable
}
#[deriving(Clone, Encodable, Decodable, PartialEq, Eq, Hash)]
pub enum PrimitiveType {
Int, I8, I16, I32, I64,
Uint, U8, U16, U32, U64,
F32, F64,
Char,
Bool,
Str,
Slice,
PrimitiveTuple,
}
#[deriving(Clone, Encodable, Decodable)]
pub enum TypeKind {
TypeEnum,
TypeFunction,
TypeModule,
TypeStatic,
TypeStruct,
TypeTrait,
TypeVariant,
TypeTypedef,
}
impl PrimitiveType {
fn from_str(s: &str) -> Option<PrimitiveType> {
match s.as_slice() {
"int" => Some(Int),
"i8" => Some(I8),
"i16" => Some(I16),
"i32" => Some(I32),
"i64" => Some(I64),
"uint" => Some(Uint),
"u8" => Some(U8),
"u16" => Some(U16),
"u32" => Some(U32),
"u64" => Some(U64),
"bool" => Some(Bool),
"char" => Some(Char),
"str" => Some(Str),
"f32" => Some(F32),
"f64" => Some(F64),
"slice" => Some(Slice),
"tuple" => Some(PrimitiveTuple),
_ => None,
}
}
fn find(attrs: &[Attribute]) -> Option<PrimitiveType> {
for attr in attrs.iter() {
let list = match *attr {
List(ref k, ref l) if k.as_slice() == "doc" => l,
_ => continue,
};
for sub_attr in list.iter() {
let value = match *sub_attr {
NameValue(ref k, ref v)
if k.as_slice() == "primitive" => v.as_slice(),
_ => continue,
};
match PrimitiveType::from_str(value) {
Some(p) => return Some(p),
None => {}
}
}
}
return None
}
pub fn to_string(&self) -> &'static str {
match *self {
Int => "int",
I8 => "i8",
I16 => "i16",
I32 => "i32",
I64 => "i64",
Uint => "uint",
U8 => "u8",
U16 => "u16",
U32 => "u32",
U64 => "u64",
F32 => "f32",
F64 => "f64",
Str => "str",
Bool => "bool",
Char => "char",
Slice => "slice",
PrimitiveTuple => "tuple",
}
}
pub fn to_url_str(&self) -> &'static str {
self.to_string()
}
/// Creates a rustdoc-specific node id for primitive types.
///
/// These node ids are generally never used by the AST itself.
pub fn to_node_id(&self) -> ast::NodeId {
u32::MAX - 1 - (*self as u32)
}
}
impl Clean<Type> for ast::Ty {
fn clean(&self, cx: &DocContext) -> Type {
use syntax::ast::*;
match self.node {
TyPtr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)),
TyRptr(ref l, ref m) =>
BorrowedRef {lifetime: l.clean(cx), mutability: m.mutbl.clean(cx),
type_: box m.ty.clean(cx)},
TyVec(ref ty) => Vector(box ty.clean(cx)),
TyFixedLengthVec(ref ty, ref e) => FixedVector(box ty.clean(cx),
e.span.to_src(cx)),
TyTup(ref tys) => Tuple(tys.clean(cx)),
TyPath(ref p, id) => {
resolve_type(cx, p.clean(cx), id)
}
TyObjectSum(ref lhs, ref bounds) => {
let lhs_ty = lhs.clean(cx);
match lhs_ty {
ResolvedPath { path, typarams: None, did } => {
ResolvedPath { path: path, typarams: Some(bounds.clean(cx)), did: did}
}
_ => {
lhs_ty // shouldn't happen
}
}
}
TyClosure(ref c) => Closure(box c.clean(cx)),
TyProc(ref c) => Proc(box c.clean(cx)),
TyBareFn(ref barefn) => BareFunction(box barefn.clean(cx)),
TyParen(ref ty) => ty.clean(cx),
TyQPath(ref qp) => qp.clean(cx),
ref x => panic!("Unimplemented type {}", x),
}
}
}
impl<'tcx> Clean<Type> for ty::Ty<'tcx> {
fn clean(&self, cx: &DocContext) -> Type {
match self.sty {
ty::ty_bool => Primitive(Bool),
ty::ty_char => Primitive(Char),
ty::ty_int(ast::TyI) => Primitive(Int),
ty::ty_int(ast::TyI8) => Primitive(I8),
ty::ty_int(ast::TyI16) => Primitive(I16),
ty::ty_int(ast::TyI32) => Primitive(I32),
ty::ty_int(ast::TyI64) => Primitive(I64),
ty::ty_uint(ast::TyU) => Primitive(Uint),
ty::ty_uint(ast::TyU8) => Primitive(U8),
ty::ty_uint(ast::TyU16) => Primitive(U16),
ty::ty_uint(ast::TyU32) => Primitive(U32),
ty::ty_uint(ast::TyU64) => Primitive(U64),
ty::ty_float(ast::TyF32) => Primitive(F32),
ty::ty_float(ast::TyF64) => Primitive(F64),
ty::ty_str => Primitive(Str),
ty::ty_uniq(t) => {
let box_did = cx.tcx_opt().and_then(|tcx| {
tcx.lang_items.owned_box()
});
lang_struct(cx, box_did, t, "Box", Unique)
}
ty::ty_vec(ty, None) => Vector(box ty.clean(cx)),
ty::ty_vec(ty, Some(i)) => FixedVector(box ty.clean(cx),
format!("{}", i)),
ty::ty_ptr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)),
ty::ty_rptr(r, mt) => BorrowedRef {
lifetime: r.clean(cx),
mutability: mt.mutbl.clean(cx),
type_: box mt.ty.clean(cx),
},
ty::ty_bare_fn(ref fty) => BareFunction(box BareFunctionDecl {
fn_style: fty.fn_style,
generics: Generics {
lifetimes: Vec::new(),
type_params: Vec::new(),
where_predicates: Vec::new()
},
decl: (ast_util::local_def(0), &fty.sig).clean(cx),
abi: fty.abi.to_string(),
}),
ty::ty_closure(ref fty) => {
let decl = box ClosureDecl {
lifetimes: Vec::new(), // FIXME: this looks wrong...
decl: (ast_util::local_def(0), &fty.sig).clean(cx),
onceness: fty.onceness,
fn_style: fty.fn_style,
bounds: fty.bounds.clean(cx),
};
match fty.store {
ty::UniqTraitStore => Proc(decl),
ty::RegionTraitStore(..) => Closure(decl),
}
}
ty::ty_struct(did, ref substs) |
ty::ty_enum(did, ref substs) |
ty::ty_trait(box ty::TyTrait { principal: ty::TraitRef { def_id: did, ref substs },
.. }) => {
let fqn = csearch::get_item_path(cx.tcx(), did);
let fqn: Vec<String> = fqn.into_iter().map(|i| {
i.to_string()
}).collect();
let kind = match self.sty {
ty::ty_struct(..) => TypeStruct,
ty::ty_trait(..) => TypeTrait,
_ => TypeEnum,
};
let path = external_path(cx, fqn.last().unwrap().to_string().as_slice(),
substs);
cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, kind));
ResolvedPath {
path: path,
typarams: None,
did: did,
}
}
ty::ty_tup(ref t) => Tuple(t.clean(cx)),
ty::ty_param(ref p) => {
if p.space == subst::SelfSpace {
Self(p.def_id)
} else {
Generic(p.def_id)
}
}
ty::ty_unboxed_closure(..) => Tuple(vec![]), // FIXME(pcwalton)
ty::ty_infer(..) => panic!("ty_infer"),
ty::ty_open(..) => panic!("ty_open"),
ty::ty_err => panic!("ty_err"),
}
}
}
impl Clean<Type> for ast::QPath {
fn clean(&self, cx: &DocContext) -> Type {
Type::QPath {
name: self.item_name.clean(cx),
self_type: box self.self_type.clean(cx),
trait_: box self.trait_ref.clean(cx)
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum StructField {
HiddenStructField, // inserted later by strip passes
TypedStructField(Type),
}
impl Clean<Item> for ast::StructField {
fn clean(&self, cx: &DocContext) -> Item {
let (name, vis) = match self.node.kind {
ast::NamedField(id, vis) => (Some(id), vis),
ast::UnnamedField(vis) => (None, vis)
};
Item {
name: name.clean(cx),
attrs: self.node.attrs.clean(cx),
source: self.span.clean(cx),
visibility: Some(vis),
stability: get_stability(cx, ast_util::local_def(self.node.id)),
def_id: ast_util::local_def(self.node.id),
inner: StructFieldItem(TypedStructField(self.node.ty.clean(cx))),
}
}
}
impl Clean<Item> for ty::field_ty {
fn clean(&self, cx: &DocContext) -> Item {
use syntax::parse::token::special_idents::unnamed_field;
use rustc::metadata::csearch;
let attr_map = csearch::get_struct_field_attrs(&cx.tcx().sess.cstore, self.id);
let (name, attrs) = if self.name == unnamed_field.name {
(None, None)
} else {
(Some(self.name), Some(attr_map.get(&self.id.node).unwrap()))
};
let ty = ty::lookup_item_type(cx.tcx(), self.id);
Item {
name: name.clean(cx),
attrs: attrs.unwrap_or(&Vec::new()).clean(cx),
source: Span::empty(),
visibility: Some(self.vis),
stability: get_stability(cx, self.id),
def_id: self.id,
inner: StructFieldItem(TypedStructField(ty.ty.clean(cx))),
}
}
}
pub type Visibility = ast::Visibility;
impl Clean<Option<Visibility>> for ast::Visibility {
fn clean(&self, _: &DocContext) -> Option<Visibility> {
Some(*self)
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Struct {
pub struct_type: doctree::StructType,
pub generics: Generics,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<Item> for doctree::Struct {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: StructItem(Struct {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
/// This is a more limited form of the standard Struct, different in that
/// it lacks the things most items have (name, id, parameterization). Found
/// only as a variant in an enum.
#[deriving(Clone, Encodable, Decodable)]
pub struct VariantStruct {
pub struct_type: doctree::StructType,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<VariantStruct> for syntax::ast::StructDef {
fn clean(&self, cx: &DocContext) -> VariantStruct {
VariantStruct {
struct_type: doctree::struct_type_from_def(self),
fields: self.fields.clean(cx),
fields_stripped: false,
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Enum {
pub variants: Vec<Item>,
pub generics: Generics,
pub variants_stripped: bool,
}
impl Clean<Item> for doctree::Enum {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: EnumItem(Enum {
variants: self.variants.clean(cx),
generics: self.generics.clean(cx),
variants_stripped: false,
}),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Variant {
pub kind: VariantKind,
}
impl Clean<Item> for doctree::Variant {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
def_id: ast_util::local_def(self.id),
inner: VariantItem(Variant {
kind: self.kind.clean(cx),
}),
}
}
}
impl<'tcx> Clean<Item> for ty::VariantInfo<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
// use syntax::parse::token::special_idents::unnamed_field;
let kind = match self.arg_names.as_ref().map(|s| s.as_slice()) {
None | Some([]) if self.args.len() == 0 => CLikeVariant,
None | Some([]) => {
TupleVariant(self.args.clean(cx))
}
Some(s) => {
StructVariant(VariantStruct {
struct_type: doctree::Plain,
fields_stripped: false,
fields: s.iter().zip(self.args.iter()).map(|(name, ty)| {
Item {
source: Span::empty(),
name: Some(name.clean(cx)),
attrs: Vec::new(),
visibility: Some(ast::Public),
// FIXME: this is not accurate, we need an id for
// the specific field but we're using the id
// for the whole variant. Thus we read the
// stability from the whole variant as well.
// Struct variants are experimental and need
// more infrastructure work before we can get
// at the needed information here.
def_id: self.id,
stability: get_stability(cx, self.id),
inner: StructFieldItem(
TypedStructField(ty.clean(cx))
)
}
}).collect()
})
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: inline::load_attrs(cx, cx.tcx(), self.id),
source: Span::empty(),
visibility: Some(ast::Public),
def_id: self.id,
inner: VariantItem(Variant { kind: kind }),
stability: get_stability(cx, self.id),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum VariantKind {
CLikeVariant,
TupleVariant(Vec<Type>),
StructVariant(VariantStruct),
}
impl Clean<VariantKind> for ast::VariantKind {
fn clean(&self, cx: &DocContext) -> VariantKind {
match self {
&ast::TupleVariantKind(ref args) => {
if args.len() == 0 {
CLikeVariant
} else {
TupleVariant(args.iter().map(|x| x.ty.clean(cx)).collect())
}
},
&ast::StructVariantKind(ref sd) => StructVariant(sd.clean(cx)),
}
}
}
#[deriving(Clone, Encodable, Decodable, Show)]
pub struct Span {
pub filename: String,
pub loline: uint,
pub locol: uint,
pub hiline: uint,
pub hicol: uint,
}
impl Span {
fn empty() -> Span {
Span {
filename: "".to_string(),
loline: 0, locol: 0,
hiline: 0, hicol: 0,
}
}
}
impl Clean<Span> for syntax::codemap::Span {
fn clean(&self, cx: &DocContext) -> Span {
let cm = cx.sess().codemap();
let filename = cm.span_to_filename(*self);
let lo = cm.lookup_char_pos(self.lo);
let hi = cm.lookup_char_pos(self.hi);
Span {
filename: filename.to_string(),
loline: lo.line,
locol: lo.col.to_uint(),
hiline: hi.line,
hicol: hi.col.to_uint(),
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct Path {
pub global: bool,
pub segments: Vec<PathSegment>,
}
impl Clean<Path> for ast::Path {
fn clean(&self, cx: &DocContext) -> Path {
Path {
global: self.global,
segments: self.segments.clean(cx),
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct PathSegment {
pub name: String,
pub lifetimes: Vec<Lifetime>,
pub types: Vec<Type>,
}
impl Clean<PathSegment> for ast::PathSegment {
fn clean(&self, cx: &DocContext) -> PathSegment {
let (lifetimes, types) = match self.parameters {
ast::AngleBracketedParameters(ref data) => {
(data.lifetimes.clean(cx), data.types.clean(cx))
}
ast::ParenthesizedParameters(ref data) => {
// FIXME -- rustdoc should be taught about Foo() notation
let inputs = Tuple(data.inputs.clean(cx));
let output = data.output.as_ref().map(|t| t.clean(cx)).unwrap_or(Tuple(Vec::new()));
(Vec::new(), vec![inputs, output])
}
};
PathSegment {
name: self.identifier.clean(cx),
lifetimes: lifetimes,
types: types,
}
}
}
fn path_to_string(p: &ast::Path) -> String {
let mut s = String::new();
let mut first = true;
for i in p.segments.iter().map(|x| token::get_ident(x.identifier)) {
if !first || p.global {
s.push_str("::");
} else {
first = false;
}
s.push_str(i.get());
}
s
}
impl Clean<String> for ast::Ident {
fn clean(&self, _: &DocContext) -> String {
token::get_ident(*self).get().to_string()
}
}
impl Clean<String> for ast::Name {
fn clean(&self, _: &DocContext) -> String {
token::get_name(*self).get().to_string()
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Typedef {
pub type_: Type,
pub generics: Generics,
}
impl Clean<Item> for doctree::Typedef {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id.clone()),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: TypedefItem(Typedef {
type_: self.ty.clean(cx),
generics: self.gen.clean(cx),
}),
}
}
}
#[deriving(Clone, Encodable, Decodable, PartialEq)]
pub struct BareFunctionDecl {
pub fn_style: ast::FnStyle,
pub generics: Generics,
pub decl: FnDecl,
pub abi: String,
}
impl Clean<BareFunctionDecl> for ast::BareFnTy {
fn clean(&self, cx: &DocContext) -> BareFunctionDecl {
BareFunctionDecl {
fn_style: self.fn_style,
generics: Generics {
lifetimes: self.lifetimes.clean(cx),
type_params: Vec::new(),
where_predicates: Vec::new()
},
decl: self.decl.clean(cx),
abi: self.abi.to_string(),
}
}
}
#[deriving(Clone, Encodable, Decodable, Show)]
pub struct Static {
pub type_: Type,
pub mutability: Mutability,
/// It's useful to have the value of a static documented, but I have no
/// desire to represent expressions (that'd basically be all of the AST,
/// which is huge!). So, have a string.
pub expr: String,
}
impl Clean<Item> for doctree::Static {
fn clean(&self, cx: &DocContext) -> Item {
debug!("claning static {}: {}", self.name.clean(cx), self);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: StaticItem(Static {
type_: self.type_.clean(cx),
mutability: self.mutability.clean(cx),
expr: self.expr.span.to_src(cx),
}),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Constant {
pub type_: Type,
pub expr: String,
}
impl Clean<Item> for doctree::Constant {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: ConstantItem(Constant {
type_: self.type_.clean(cx),
expr: self.expr.span.to_src(cx),
}),
}
}
}
#[deriving(Show, Clone, Encodable, Decodable, PartialEq)]
pub enum Mutability {
Mutable,
Immutable,
}
impl Clean<Mutability> for ast::Mutability {
fn clean(&self, _: &DocContext) -> Mutability {
match self {
&ast::MutMutable => Mutable,
&ast::MutImmutable => Immutable,
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Impl {
pub generics: Generics,
pub trait_: Option<Type>,
pub for_: Type,
pub items: Vec<Item>,
pub derived: bool,
}
fn detect_derived<M: AttrMetaMethods>(attrs: &[M]) -> bool {
attr::contains_name(attrs, "automatically_derived")
}
impl Clean<Item> for doctree::Impl {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
inner: ImplItem(Impl {
generics: self.generics.clean(cx),
trait_: self.trait_.clean(cx),
for_: self.for_.clean(cx),
items: self.items.clean(cx).into_iter().map(|ti| {
match ti {
MethodImplItem(i) => i,
TypeImplItem(i) => i,
}
}).collect(),
derived: detect_derived(self.attrs.as_slice()),
}),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct ViewItem {
pub inner: ViewItemInner,
}
impl Clean<Vec<Item>> for ast::ViewItem {
fn clean(&self, cx: &DocContext) -> Vec<Item> {
// We consider inlining the documentation of `pub use` statements, but we
// forcefully don't inline if this is not public or if the
// #[doc(no_inline)] attribute is present.
let denied = self.vis != ast::Public || self.attrs.iter().any(|a| {
a.name().get() == "doc" && match a.meta_item_list() {
Some(l) => attr::contains_name(l, "no_inline"),
None => false,
}
});
let convert = |node: &ast::ViewItem_| {
Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: ast_util::local_def(0),
visibility: self.vis.clean(cx),
stability: None,
inner: ViewItemItem(ViewItem { inner: node.clean(cx) }),
}
};
let mut ret = Vec::new();
match self.node {
ast::ViewItemUse(ref path) if !denied => {
match path.node {
ast::ViewPathGlob(..) => ret.push(convert(&self.node)),
ast::ViewPathList(ref a, ref list, ref b) => {
// Attempt to inline all reexported items, but be sure
// to keep any non-inlineable reexports so they can be
// listed in the documentation.
let remaining = list.iter().filter(|path| {
match inline::try_inline(cx, path.node.id(), None) {
Some(items) => {
ret.extend(items.into_iter()); false
}
None => true,
}
}).map(|a| a.clone()).collect::<Vec<ast::PathListItem>>();
if remaining.len() > 0 {
let path = ast::ViewPathList(a.clone(),
remaining,
b.clone());
let path = syntax::codemap::dummy_spanned(path);
ret.push(convert(&ast::ViewItemUse(P(path))));
}
}
ast::ViewPathSimple(ident, _, id) => {
match inline::try_inline(cx, id, Some(ident)) {
Some(items) => ret.extend(items.into_iter()),
None => ret.push(convert(&self.node)),
}
}
}
}
ref n => ret.push(convert(n)),
}
return ret;
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum ViewItemInner {
ExternCrate(String, Option<String>, ast::NodeId),
Import(ViewPath)
}
impl Clean<ViewItemInner> for ast::ViewItem_ {
fn clean(&self, cx: &DocContext) -> ViewItemInner {
match self {
&ast::ViewItemExternCrate(ref i, ref p, ref id) => {
let string = match *p {
None => None,
Some((ref x, _)) => Some(x.get().to_string()),
};
ExternCrate(i.clean(cx), string, *id)
}
&ast::ViewItemUse(ref vp) => {
Import(vp.clean(cx))
}
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub enum ViewPath {
// use source as str;
SimpleImport(String, ImportSource),
// use source::*;
GlobImport(ImportSource),
// use source::{a, b, c};
ImportList(ImportSource, Vec<ViewListIdent>),
}
#[deriving(Clone, Encodable, Decodable)]
pub struct ImportSource {
pub path: Path,
pub did: Option<ast::DefId>,
}
impl Clean<ViewPath> for ast::ViewPath {
fn clean(&self, cx: &DocContext) -> ViewPath {
match self.node {
ast::ViewPathSimple(ref i, ref p, id) =>
SimpleImport(i.clean(cx), resolve_use_source(cx, p.clean(cx), id)),
ast::ViewPathGlob(ref p, id) =>
GlobImport(resolve_use_source(cx, p.clean(cx), id)),
ast::ViewPathList(ref p, ref pl, id) => {
ImportList(resolve_use_source(cx, p.clean(cx), id),
pl.clean(cx))
}
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct ViewListIdent {
pub name: String,
pub source: Option<ast::DefId>,
}
impl Clean<ViewListIdent> for ast::PathListItem {
fn clean(&self, cx: &DocContext) -> ViewListIdent {
match self.node {
ast::PathListIdent { id, name } => ViewListIdent {
name: name.clean(cx),
source: resolve_def(cx, id)
},
ast::PathListMod { id } => ViewListIdent {
name: "mod".to_string(),
source: resolve_def(cx, id)
}
}
}
}
impl Clean<Vec<Item>> for ast::ForeignMod {
fn clean(&self, cx: &DocContext) -> Vec<Item> {
self.items.clean(cx)
}
}
impl Clean<Item> for ast::ForeignItem {
fn clean(&self, cx: &DocContext) -> Item {
let inner = match self.node {
ast::ForeignItemFn(ref decl, ref generics) => {
ForeignFunctionItem(Function {
decl: decl.clean(cx),
generics: generics.clean(cx),
fn_style: ast::UnsafeFn,
})
}
ast::ForeignItemStatic(ref ty, mutbl) => {
ForeignStaticItem(Static {
type_: ty.clean(cx),
mutability: if mutbl {Mutable} else {Immutable},
expr: "".to_string(),
})
}
};
Item {
name: Some(self.ident.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: ast_util::local_def(self.id),
visibility: self.vis.clean(cx),
stability: get_stability(cx, ast_util::local_def(self.id)),
inner: inner,
}
}
}
// Utilities
trait ToSource {
fn to_src(&self, cx: &DocContext) -> String;
}
impl ToSource for syntax::codemap::Span {
fn to_src(&self, cx: &DocContext) -> String {
debug!("converting span {} to snippet", self.clean(cx));
let sn = match cx.sess().codemap().span_to_snippet(*self) {
Some(x) => x.to_string(),
None => "".to_string()
};
debug!("got snippet {}", sn);
sn
}
}
fn lit_to_string(lit: &ast::Lit) -> String {
match lit.node {
ast::LitStr(ref st, _) => st.get().to_string(),
ast::LitBinary(ref data) => format!("{}", data),
ast::LitByte(b) => {
let mut res = String::from_str("b'");
for c in (b as char).escape_default() {
res.push(c);
}
res.push('\'');
res
},
ast::LitChar(c) => format!("'{}'", c),
ast::LitInt(i, _t) => i.to_string(),
ast::LitFloat(ref f, _t) => f.get().to_string(),
ast::LitFloatUnsuffixed(ref f) => f.get().to_string(),
ast::LitBool(b) => b.to_string(),
}
}
fn name_from_pat(p: &ast::Pat) -> String {
use syntax::ast::*;
debug!("Trying to get a name from pattern: {}", p);
match p.node {
PatWild(PatWildSingle) => "_".to_string(),
PatWild(PatWildMulti) => "..".to_string(),
PatIdent(_, ref p, _) => token::get_ident(p.node).get().to_string(),
PatEnum(ref p, _) => path_to_string(p),
PatStruct(ref name, ref fields, etc) => {
format!("{} {{ {}{} }}", path_to_string(name),
fields.iter().map(|&Spanned { node: ref fp, .. }|
format!("{}: {}", fp.ident.as_str(), name_from_pat(&*fp.pat)))
.collect::<Vec<String>>().connect(", "),
if etc { ", ..." } else { "" }
)
},
PatTup(ref elts) => format!("({})", elts.iter().map(|p| name_from_pat(&**p))
.collect::<Vec<String>>().connect(", ")),
PatBox(ref p) => name_from_pat(&**p),
PatRegion(ref p) => name_from_pat(&**p),
PatLit(..) => {
warn!("tried to get argument name from PatLit, \
which is silly in function arguments");
"()".to_string()
},
PatRange(..) => panic!("tried to get argument name from PatRange, \
which is not allowed in function arguments"),
PatVec(..) => panic!("tried to get argument name from pat_vec, \
which is not allowed in function arguments"),
PatMac(..) => {
warn!("can't document the name of a function argument \
produced by a pattern macro");
"(argument produced by macro)".to_string()
}
}
}
/// Given a Type, resolve it using the def_map
fn resolve_type(cx: &DocContext,
path: Path,
id: ast::NodeId) -> Type {
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
// If we're extracting tests, this return value doesn't matter.
None => return Primitive(Bool),
};
debug!("searching for {} in defmap", id);
let def = match tcx.def_map.borrow().get(&id) {
Some(&k) => k,
None => panic!("unresolved id not in defmap")
};
match def {
def::DefSelfTy(i) => return Self(ast_util::local_def(i)),
def::DefPrimTy(p) => match p {
ast::TyStr => return Primitive(Str),
ast::TyBool => return Primitive(Bool),
ast::TyChar => return Primitive(Char),
ast::TyInt(ast::TyI) => return Primitive(Int),
ast::TyInt(ast::TyI8) => return Primitive(I8),
ast::TyInt(ast::TyI16) => return Primitive(I16),
ast::TyInt(ast::TyI32) => return Primitive(I32),
ast::TyInt(ast::TyI64) => return Primitive(I64),
ast::TyUint(ast::TyU) => return Primitive(Uint),
ast::TyUint(ast::TyU8) => return Primitive(U8),
ast::TyUint(ast::TyU16) => return Primitive(U16),
ast::TyUint(ast::TyU32) => return Primitive(U32),
ast::TyUint(ast::TyU64) => return Primitive(U64),
ast::TyFloat(ast::TyF32) => return Primitive(F32),
ast::TyFloat(ast::TyF64) => return Primitive(F64),
},
def::DefTyParam(_, i, _) => return Generic(i),
def::DefTyParamBinder(i) => return TyParamBinder(i),
_ => {}
};
let did = register_def(&*cx, def);
ResolvedPath { path: path, typarams: None, did: did }
}
fn register_def(cx: &DocContext, def: def::Def) -> ast::DefId {
let (did, kind) = match def {
def::DefFn(i, _) => (i, TypeFunction),
def::DefTy(i, false) => (i, TypeTypedef),
def::DefTy(i, true) => (i, TypeEnum),
def::DefTrait(i) => (i, TypeTrait),
def::DefStruct(i) => (i, TypeStruct),
def::DefMod(i) => (i, TypeModule),
def::DefStatic(i, _) => (i, TypeStatic),
def::DefVariant(i, _, _) => (i, TypeEnum),
_ => return def.def_id()
};
if ast_util::is_local(did) { return did }
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return did
};
inline::record_extern_fqn(cx, did, kind);
match kind {
TypeTrait => {
let t = inline::build_external_trait(cx, tcx, did);
cx.external_traits.borrow_mut().as_mut().unwrap().insert(did, t);
}
_ => {}
}
return did;
}
fn resolve_use_source(cx: &DocContext, path: Path, id: ast::NodeId) -> ImportSource {
ImportSource {
path: path,
did: resolve_def(cx, id),
}
}
fn resolve_def(cx: &DocContext, id: ast::NodeId) -> Option<ast::DefId> {
cx.tcx_opt().and_then(|tcx| {
tcx.def_map.borrow().get(&id).map(|&def| register_def(cx, def))
})
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Macro {
pub source: String,
}
impl Clean<Item> for doctree::Macro {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(format!("{}!", self.name.clean(cx))),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: ast::Public.clean(cx),
stability: self.stab.clean(cx),
def_id: ast_util::local_def(self.id),
inner: MacroItem(Macro {
source: self.whence.to_src(cx),
}),
}
}
}
#[deriving(Clone, Encodable, Decodable)]
pub struct Stability {
pub level: attr::StabilityLevel,
pub text: String
}
impl Clean<Stability> for attr::Stability {
fn clean(&self, _: &DocContext) -> Stability {
Stability {
level: self.level,
text: self.text.as_ref().map_or("".to_string(),
|interned| interned.get().to_string()),
}
}
}
impl Clean<Item> for ast::AssociatedType {
fn clean(&self, cx: &DocContext) -> Item {
Item {
source: self.ty_param.span.clean(cx),
name: Some(self.ty_param.ident.clean(cx)),
attrs: self.attrs.clean(cx),
inner: AssociatedTypeItem(self.ty_param.clean(cx)),
visibility: None,
def_id: ast_util::local_def(self.ty_param.id),
stability: None,
}
}
}
impl Clean<Item> for ty::AssociatedType {
fn clean(&self, cx: &DocContext) -> Item {
Item {
source: DUMMY_SP.clean(cx),
name: Some(self.name.clean(cx)),
attrs: Vec::new(),
// FIXME(#18048): this is wrong, but cross-crate associated types are broken
// anyway, for the time being.
inner: AssociatedTypeItem(TyParam {
name: self.name.clean(cx),
did: ast::DefId {
krate: 0,
node: ast::DUMMY_NODE_ID
},
bounds: vec![],
default: None,
default_unbound: None
}),
visibility: None,
def_id: self.def_id,
stability: None,
}
}
}
impl Clean<Item> for ast::Typedef {
fn clean(&self, cx: &DocContext) -> Item {
Item {
source: self.span.clean(cx),
name: Some(self.ident.clean(cx)),
attrs: self.attrs.clean(cx),
inner: TypedefItem(Typedef {
type_: self.typ.clean(cx),
generics: Generics {
lifetimes: Vec::new(),
type_params: Vec::new(),
where_predicates: Vec::new()
},
}),
visibility: None,
def_id: ast_util::local_def(self.id),
stability: None,
}
}
}
fn lang_struct(cx: &DocContext, did: Option<ast::DefId>,
t: ty::Ty, name: &str,
fallback: fn(Box<Type>) -> Type) -> Type {
let did = match did {
Some(did) => did,
None => return fallback(box t.clean(cx)),
};
let fqn = csearch::get_item_path(cx.tcx(), did);
let fqn: Vec<String> = fqn.into_iter().map(|i| {
i.to_string()
}).collect();
cx.external_paths.borrow_mut().as_mut().unwrap().insert(did, (fqn, TypeStruct));
ResolvedPath {
typarams: None,
did: did,
path: Path {
global: false,
segments: vec![PathSegment {
name: name.to_string(),
lifetimes: vec![],
types: vec![t.clean(cx)],
}],
},
}
}