2120 lines
79 KiB
Rust
2120 lines
79 KiB
Rust
pub use self::at::DefineOpaqueTypes;
|
|
pub use self::freshen::TypeFreshener;
|
|
pub use self::lexical_region_resolve::RegionResolutionError;
|
|
pub use self::BoundRegionConversionTime::*;
|
|
pub use self::RegionVariableOrigin::*;
|
|
pub use self::SubregionOrigin::*;
|
|
pub use self::ValuePairs::*;
|
|
pub use relate::combine::ObligationEmittingRelation;
|
|
use rustc_data_structures::captures::Captures;
|
|
use rustc_data_structures::undo_log::UndoLogs;
|
|
use rustc_middle::infer::unify_key::{ConstVidKey, EffectVidKey};
|
|
|
|
use self::opaque_types::OpaqueTypeStorage;
|
|
pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
|
|
|
|
use crate::traits::{
|
|
self, ObligationCause, ObligationInspector, PredicateObligations, TraitEngine, TraitEngineExt,
|
|
};
|
|
|
|
use rustc_data_structures::fx::FxIndexMap;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::sync::Lrc;
|
|
use rustc_data_structures::undo_log::Rollback;
|
|
use rustc_data_structures::unify as ut;
|
|
use rustc_errors::{DiagCtxt, DiagnosticBuilder, ErrorGuaranteed};
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
|
|
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
|
|
use rustc_middle::infer::unify_key::{ConstVariableValue, EffectVarValue};
|
|
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
|
|
use rustc_middle::mir::ConstraintCategory;
|
|
use rustc_middle::traits::{select, DefiningAnchor};
|
|
use rustc_middle::ty::error::{ExpectedFound, TypeError};
|
|
use rustc_middle::ty::fold::BoundVarReplacerDelegate;
|
|
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
|
|
use rustc_middle::ty::relate::RelateResult;
|
|
use rustc_middle::ty::visit::TypeVisitableExt;
|
|
pub use rustc_middle::ty::IntVarValue;
|
|
use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt};
|
|
use rustc_middle::ty::{ConstVid, EffectVid, FloatVid, IntVid, TyVid};
|
|
use rustc_middle::ty::{GenericArg, GenericArgKind, GenericArgs, GenericArgsRef};
|
|
use rustc_span::symbol::Symbol;
|
|
use rustc_span::Span;
|
|
|
|
use std::cell::{Cell, RefCell};
|
|
use std::fmt;
|
|
|
|
use self::error_reporting::TypeErrCtxt;
|
|
use self::free_regions::RegionRelations;
|
|
use self::lexical_region_resolve::LexicalRegionResolutions;
|
|
use self::region_constraints::{GenericKind, VarInfos, VerifyBound};
|
|
use self::region_constraints::{
|
|
RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
|
|
};
|
|
pub use self::relate::combine::CombineFields;
|
|
pub use self::relate::nll as nll_relate;
|
|
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
|
|
|
|
pub mod at;
|
|
pub mod canonical;
|
|
pub mod error_reporting;
|
|
pub mod free_regions;
|
|
mod freshen;
|
|
mod fudge;
|
|
mod lexical_region_resolve;
|
|
pub mod opaque_types;
|
|
pub mod outlives;
|
|
mod projection;
|
|
pub mod region_constraints;
|
|
mod relate;
|
|
pub mod resolve;
|
|
pub mod type_variable;
|
|
mod undo_log;
|
|
|
|
#[must_use]
|
|
#[derive(Debug)]
|
|
pub struct InferOk<'tcx, T> {
|
|
pub value: T,
|
|
pub obligations: PredicateObligations<'tcx>,
|
|
}
|
|
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
|
|
|
|
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
|
|
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"
|
|
|
|
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
|
|
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
|
|
>;
|
|
|
|
/// This type contains all the things within `InferCtxt` that sit within a
|
|
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
|
|
/// operations are hot enough that we want only one call to `borrow_mut` per
|
|
/// call to `start_snapshot` and `rollback_to`.
|
|
#[derive(Clone)]
|
|
pub struct InferCtxtInner<'tcx> {
|
|
undo_log: InferCtxtUndoLogs<'tcx>,
|
|
|
|
/// Cache for projections.
|
|
///
|
|
/// This cache is snapshotted along with the infcx.
|
|
projection_cache: traits::ProjectionCacheStorage<'tcx>,
|
|
|
|
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
|
|
/// that might instantiate a general type variable have an order,
|
|
/// represented by its upper and lower bounds.
|
|
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
|
|
|
|
/// Map from const parameter variable to the kind of const it represents.
|
|
const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,
|
|
|
|
/// Map from integral variable to the kind of integer it represents.
|
|
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
|
|
|
|
/// Map from floating variable to the kind of float it represents.
|
|
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
|
|
|
|
/// Map from effect variable to the effect param it represents.
|
|
effect_unification_storage: ut::UnificationTableStorage<EffectVidKey<'tcx>>,
|
|
|
|
/// Tracks the set of region variables and the constraints between them.
|
|
///
|
|
/// This is initially `Some(_)` but when
|
|
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
|
|
/// -- further attempts to perform unification, etc., may fail if new
|
|
/// region constraints would've been added.
|
|
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
|
|
|
|
/// A set of constraints that regionck must validate.
|
|
///
|
|
/// Each constraint has the form `T:'a`, meaning "some type `T` must
|
|
/// outlive the lifetime 'a". These constraints derive from
|
|
/// instantiated type parameters. So if you had a struct defined
|
|
/// like the following:
|
|
/// ```ignore (illustrative)
|
|
/// struct Foo<T: 'static> { ... }
|
|
/// ```
|
|
/// In some expression `let x = Foo { ... }`, it will
|
|
/// instantiate the type parameter `T` with a fresh type `$0`. At
|
|
/// the same time, it will record a region obligation of
|
|
/// `$0: 'static`. This will get checked later by regionck. (We
|
|
/// can't generally check these things right away because we have
|
|
/// to wait until types are resolved.)
|
|
///
|
|
/// These are stored in a map keyed to the id of the innermost
|
|
/// enclosing fn body / static initializer expression. This is
|
|
/// because the location where the obligation was incurred can be
|
|
/// relevant with respect to which sublifetime assumptions are in
|
|
/// place. The reason that we store under the fn-id, and not
|
|
/// something more fine-grained, is so that it is easier for
|
|
/// regionck to be sure that it has found *all* the region
|
|
/// obligations (otherwise, it's easy to fail to walk to a
|
|
/// particular node-id).
|
|
///
|
|
/// Before running `resolve_regions_and_report_errors`, the creator
|
|
/// of the inference context is expected to invoke
|
|
/// [`InferCtxt::process_registered_region_obligations`]
|
|
/// for each body-id in this map, which will process the
|
|
/// obligations within. This is expected to be done 'late enough'
|
|
/// that all type inference variables have been bound and so forth.
|
|
region_obligations: Vec<RegionObligation<'tcx>>,
|
|
|
|
/// Caches for opaque type inference.
|
|
opaque_type_storage: OpaqueTypeStorage<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> InferCtxtInner<'tcx> {
|
|
fn new() -> InferCtxtInner<'tcx> {
|
|
InferCtxtInner {
|
|
undo_log: InferCtxtUndoLogs::default(),
|
|
|
|
projection_cache: Default::default(),
|
|
type_variable_storage: type_variable::TypeVariableStorage::new(),
|
|
const_unification_storage: ut::UnificationTableStorage::new(),
|
|
int_unification_storage: ut::UnificationTableStorage::new(),
|
|
float_unification_storage: ut::UnificationTableStorage::new(),
|
|
effect_unification_storage: ut::UnificationTableStorage::new(),
|
|
region_constraint_storage: Some(RegionConstraintStorage::new()),
|
|
region_obligations: vec![],
|
|
opaque_type_storage: Default::default(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
|
|
&self.region_obligations
|
|
}
|
|
|
|
#[inline]
|
|
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
|
|
self.projection_cache.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn try_type_variables_probe_ref(
|
|
&self,
|
|
vid: ty::TyVid,
|
|
) -> Option<&type_variable::TypeVariableValue<'tcx>> {
|
|
// Uses a read-only view of the unification table, this way we don't
|
|
// need an undo log.
|
|
self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
|
|
}
|
|
|
|
#[inline]
|
|
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
|
|
self.type_variable_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
|
|
self.opaque_type_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
|
|
self.int_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
|
|
self.float_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
|
|
self.const_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
fn effect_unification_table(&mut self) -> UnificationTable<'_, 'tcx, EffectVidKey<'tcx>> {
|
|
self.effect_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
|
|
self.region_constraint_storage
|
|
.as_mut()
|
|
.expect("region constraints already solved")
|
|
.with_log(&mut self.undo_log)
|
|
}
|
|
}
|
|
|
|
pub struct InferCtxt<'tcx> {
|
|
pub tcx: TyCtxt<'tcx>,
|
|
|
|
/// The `DefId` of the item in whose context we are performing inference or typeck.
|
|
/// It is used to check whether an opaque type use is a defining use.
|
|
///
|
|
/// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
|
|
/// the obligation. This frequently happens for
|
|
/// short lived InferCtxt within queries. The opaque type obligations are forwarded
|
|
/// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
|
|
///
|
|
/// Its default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
|
|
/// might come up during inference or typeck.
|
|
pub defining_use_anchor: DefiningAnchor,
|
|
|
|
/// Whether this inference context should care about region obligations in
|
|
/// the root universe. Most notably, this is used during hir typeck as region
|
|
/// solving is left to borrowck instead.
|
|
pub considering_regions: bool,
|
|
|
|
/// If set, this flag causes us to skip the 'leak check' during
|
|
/// higher-ranked subtyping operations. This flag is a temporary one used
|
|
/// to manage the removal of the leak-check: for the time being, we still run the
|
|
/// leak-check, but we issue warnings.
|
|
skip_leak_check: bool,
|
|
|
|
pub inner: RefCell<InferCtxtInner<'tcx>>,
|
|
|
|
/// Once region inference is done, the values for each variable.
|
|
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
|
|
|
|
/// Caches the results of trait selection. This cache is used
|
|
/// for things that have to do with the parameters in scope.
|
|
pub selection_cache: select::SelectionCache<'tcx>,
|
|
|
|
/// Caches the results of trait evaluation.
|
|
pub evaluation_cache: select::EvaluationCache<'tcx>,
|
|
|
|
/// The set of predicates on which errors have been reported, to
|
|
/// avoid reporting the same error twice.
|
|
pub reported_trait_errors:
|
|
RefCell<FxIndexMap<Span, (Vec<ty::Predicate<'tcx>>, ErrorGuaranteed)>>,
|
|
|
|
pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
|
|
|
|
/// When an error occurs, we want to avoid reporting "derived"
|
|
/// errors that are due to this original failure. Normally, we
|
|
/// handle this with the `err_count_on_creation` count, which
|
|
/// basically just tracks how many errors were reported when we
|
|
/// started type-checking a fn and checks to see if any new errors
|
|
/// have been reported since then. Not great, but it works.
|
|
///
|
|
/// However, when errors originated in other passes -- notably
|
|
/// resolve -- this heuristic breaks down. Therefore, we have this
|
|
/// auxiliary flag that one can set whenever one creates a
|
|
/// type-error that is due to an error in a prior pass.
|
|
///
|
|
/// Don't read this flag directly, call `is_tainted_by_errors()`
|
|
/// and `set_tainted_by_errors()`.
|
|
tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
|
|
|
|
/// Track how many errors were reported when this infcx is created.
|
|
/// If the number of errors increases, that's also a sign (like
|
|
/// `tainted_by_errors`) to avoid reporting certain kinds of errors.
|
|
// FIXME(matthewjasper) Merge into `tainted_by_errors`
|
|
err_count_on_creation: usize,
|
|
|
|
/// What is the innermost universe we have created? Starts out as
|
|
/// `UniverseIndex::root()` but grows from there as we enter
|
|
/// universal quantifiers.
|
|
///
|
|
/// N.B., at present, we exclude the universal quantifiers on the
|
|
/// item we are type-checking, and just consider those names as
|
|
/// part of the root universe. So this would only get incremented
|
|
/// when we enter into a higher-ranked (`for<..>`) type or trait
|
|
/// bound.
|
|
universe: Cell<ty::UniverseIndex>,
|
|
|
|
/// During coherence we have to assume that other crates may add
|
|
/// additional impls which we currently don't know about.
|
|
///
|
|
/// To deal with this evaluation, we should be conservative
|
|
/// and consider the possibility of impls from outside this crate.
|
|
/// This comes up primarily when resolving ambiguity. Imagine
|
|
/// there is some trait reference `$0: Bar` where `$0` is an
|
|
/// inference variable. If `intercrate` is true, then we can never
|
|
/// say for sure that this reference is not implemented, even if
|
|
/// there are *no impls at all for `Bar`*, because `$0` could be
|
|
/// bound to some type that in a downstream crate that implements
|
|
/// `Bar`.
|
|
///
|
|
/// Outside of coherence, we set this to false because we are only
|
|
/// interested in types that the user could actually have written.
|
|
/// In other words, we consider `$0: Bar` to be unimplemented if
|
|
/// there is no type that the user could *actually name* that
|
|
/// would satisfy it. This avoids crippling inference, basically.
|
|
pub intercrate: bool,
|
|
|
|
next_trait_solver: bool,
|
|
|
|
pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
|
|
}
|
|
|
|
impl<'tcx> ty::InferCtxtLike for InferCtxt<'tcx> {
|
|
type Interner = TyCtxt<'tcx>;
|
|
|
|
fn interner(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn universe_of_ty(&self, vid: TyVid) -> Option<ty::UniverseIndex> {
|
|
// FIXME(BoxyUwU): this is kind of jank and means that printing unresolved
|
|
// ty infers will give you the universe of the var it resolved to not the universe
|
|
// it actually had. It also means that if you have a `?0.1` and infer it to `u8` then
|
|
// try to print out `?0.1` it will just print `?0`.
|
|
match self.probe_ty_var(vid) {
|
|
Err(universe) => Some(universe),
|
|
Ok(_) => None,
|
|
}
|
|
}
|
|
|
|
fn universe_of_ct(&self, ct: ConstVid) -> Option<ty::UniverseIndex> {
|
|
// Same issue as with `universe_of_ty`
|
|
match self.probe_const_var(ct) {
|
|
Err(universe) => Some(universe),
|
|
Ok(_) => None,
|
|
}
|
|
}
|
|
|
|
fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> {
|
|
Some(self.universe_of_region_vid(lt))
|
|
}
|
|
|
|
fn root_ty_var(&self, vid: TyVid) -> TyVid {
|
|
self.root_var(vid)
|
|
}
|
|
|
|
fn probe_ty_var(&self, vid: TyVid) -> Option<Ty<'tcx>> {
|
|
self.probe_ty_var(vid).ok()
|
|
}
|
|
|
|
fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> Option<ty::Region<'tcx>> {
|
|
let re = self
|
|
.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.opportunistic_resolve_var(self.tcx, vid);
|
|
if *re == ty::ReVar(vid) { None } else { Some(re) }
|
|
}
|
|
|
|
fn root_ct_var(&self, vid: ConstVid) -> ConstVid {
|
|
self.root_const_var(vid)
|
|
}
|
|
|
|
fn probe_ct_var(&self, vid: ConstVid) -> Option<ty::Const<'tcx>> {
|
|
self.probe_const_var(vid).ok()
|
|
}
|
|
}
|
|
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
|
|
pub enum ValuePairs<'tcx> {
|
|
Regions(ExpectedFound<ty::Region<'tcx>>),
|
|
Terms(ExpectedFound<ty::Term<'tcx>>),
|
|
Aliases(ExpectedFound<ty::AliasTy<'tcx>>),
|
|
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
|
|
PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
|
|
ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
|
|
ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
|
|
}
|
|
|
|
impl<'tcx> ValuePairs<'tcx> {
|
|
pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
|
|
if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
|
|
&& let Some(expected) = expected.ty()
|
|
&& let Some(found) = found.ty()
|
|
{
|
|
Some((expected, found))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The trace designates the path through inference that we took to
|
|
/// encounter an error or subtyping constraint.
|
|
///
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Debug)]
|
|
pub struct TypeTrace<'tcx> {
|
|
pub cause: ObligationCause<'tcx>,
|
|
pub values: ValuePairs<'tcx>,
|
|
}
|
|
|
|
/// The origin of a `r1 <= r2` constraint.
|
|
///
|
|
/// See `error_reporting` module for more details
|
|
#[derive(Clone, Debug)]
|
|
pub enum SubregionOrigin<'tcx> {
|
|
/// Arose from a subtyping relation
|
|
Subtype(Box<TypeTrace<'tcx>>),
|
|
|
|
/// When casting `&'a T` to an `&'b Trait` object,
|
|
/// relating `'a` to `'b`.
|
|
RelateObjectBound(Span),
|
|
|
|
/// Some type parameter was instantiated with the given type,
|
|
/// and that type must outlive some region.
|
|
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
|
|
|
|
/// The given region parameter was instantiated with a region
|
|
/// that must outlive some other region.
|
|
RelateRegionParamBound(Span),
|
|
|
|
/// Creating a pointer `b` to contents of another reference.
|
|
Reborrow(Span),
|
|
|
|
/// (&'a &'b T) where a >= b
|
|
ReferenceOutlivesReferent(Ty<'tcx>, Span),
|
|
|
|
/// Comparing the signature and requirements of an impl method against
|
|
/// the containing trait.
|
|
CompareImplItemObligation {
|
|
span: Span,
|
|
impl_item_def_id: LocalDefId,
|
|
trait_item_def_id: DefId,
|
|
},
|
|
|
|
/// Checking that the bounds of a trait's associated type hold for a given impl.
|
|
CheckAssociatedTypeBounds {
|
|
parent: Box<SubregionOrigin<'tcx>>,
|
|
impl_item_def_id: LocalDefId,
|
|
trait_item_def_id: DefId,
|
|
},
|
|
|
|
AscribeUserTypeProvePredicate(Span),
|
|
}
|
|
|
|
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
|
|
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
|
|
static_assert_size!(SubregionOrigin<'_>, 32);
|
|
|
|
impl<'tcx> SubregionOrigin<'tcx> {
|
|
pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
|
|
match self {
|
|
Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
|
|
Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
|
|
_ => ConstraintCategory::BoringNoLocation,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Times when we replace bound regions with existentials:
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum BoundRegionConversionTime {
|
|
/// when a fn is called
|
|
FnCall,
|
|
|
|
/// when two higher-ranked types are compared
|
|
HigherRankedType,
|
|
|
|
/// when projecting an associated type
|
|
AssocTypeProjection(DefId),
|
|
}
|
|
|
|
/// Reasons to create a region inference variable.
|
|
///
|
|
/// See `error_reporting` module for more details.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum RegionVariableOrigin {
|
|
/// Region variables created for ill-categorized reasons.
|
|
///
|
|
/// They mostly indicate places in need of refactoring.
|
|
MiscVariable(Span),
|
|
|
|
/// Regions created by a `&P` or `[...]` pattern.
|
|
PatternRegion(Span),
|
|
|
|
/// Regions created by `&` operator.
|
|
///
|
|
AddrOfRegion(Span),
|
|
/// Regions created as part of an autoref of a method receiver.
|
|
Autoref(Span),
|
|
|
|
/// Regions created as part of an automatic coercion.
|
|
Coercion(Span),
|
|
|
|
/// Region variables created as the values for early-bound regions.
|
|
///
|
|
/// FIXME(@lcnr): This can also store a `DefId`, similar to
|
|
/// `TypeVariableOriginKind::TypeParameterDefinition`.
|
|
RegionParameterDefinition(Span, Symbol),
|
|
|
|
/// Region variables created when instantiating a binder with
|
|
/// existential variables, e.g. when calling a function or method.
|
|
BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),
|
|
|
|
UpvarRegion(ty::UpvarId, Span),
|
|
|
|
/// This origin is used for the inference variables that we create
|
|
/// during NLL region processing.
|
|
Nll(NllRegionVariableOrigin),
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum NllRegionVariableOrigin {
|
|
/// During NLL region processing, we create variables for free
|
|
/// regions that we encounter in the function signature and
|
|
/// elsewhere. This origin indices we've got one of those.
|
|
FreeRegion,
|
|
|
|
/// "Universal" instantiation of a higher-ranked region (e.g.,
|
|
/// from a `for<'a> T` binder). Meant to represent "any region".
|
|
Placeholder(ty::PlaceholderRegion),
|
|
|
|
Existential {
|
|
/// If this is true, then this variable was created to represent a lifetime
|
|
/// bound in a `for` binder. For example, it might have been created to
|
|
/// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
|
|
/// Such variables are created when we are trying to figure out if there
|
|
/// is any valid instantiation of `'a` that could fit into some scenario.
|
|
///
|
|
/// This is used to inform error reporting: in the case that we are trying to
|
|
/// determine whether there is any valid instantiation of a `'a` variable that meets
|
|
/// some constraint C, we want to blame the "source" of that `for` type,
|
|
/// rather than blaming the source of the constraint C.
|
|
from_forall: bool,
|
|
},
|
|
}
|
|
|
|
// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum FixupError {
|
|
UnresolvedIntTy(IntVid),
|
|
UnresolvedFloatTy(FloatVid),
|
|
UnresolvedTy(TyVid),
|
|
UnresolvedConst(ConstVid),
|
|
}
|
|
|
|
/// See the `region_obligations` field for more information.
|
|
#[derive(Clone, Debug)]
|
|
pub struct RegionObligation<'tcx> {
|
|
pub sub_region: ty::Region<'tcx>,
|
|
pub sup_type: Ty<'tcx>,
|
|
pub origin: SubregionOrigin<'tcx>,
|
|
}
|
|
|
|
impl fmt::Display for FixupError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use self::FixupError::*;
|
|
|
|
match *self {
|
|
UnresolvedIntTy(_) => write!(
|
|
f,
|
|
"cannot determine the type of this integer; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
UnresolvedFloatTy(_) => write!(
|
|
f,
|
|
"cannot determine the type of this number; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
UnresolvedTy(_) => write!(f, "unconstrained type"),
|
|
UnresolvedConst(_) => write!(f, "unconstrained const value"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Used to configure inference contexts before their creation.
|
|
pub struct InferCtxtBuilder<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
defining_use_anchor: DefiningAnchor,
|
|
considering_regions: bool,
|
|
skip_leak_check: bool,
|
|
/// Whether we are in coherence mode.
|
|
intercrate: bool,
|
|
/// Whether we should use the new trait solver in the local inference context,
|
|
/// which affects things like which solver is used in `predicate_may_hold`.
|
|
next_trait_solver: bool,
|
|
}
|
|
|
|
pub trait TyCtxtInferExt<'tcx> {
|
|
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
|
|
}
|
|
|
|
impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
|
|
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
|
|
InferCtxtBuilder {
|
|
tcx: self,
|
|
defining_use_anchor: DefiningAnchor::Error,
|
|
considering_regions: true,
|
|
skip_leak_check: false,
|
|
intercrate: false,
|
|
next_trait_solver: self.next_trait_solver_globally(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferCtxtBuilder<'tcx> {
|
|
/// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
|
|
/// you need to call this function. Otherwise the opaque type will be treated opaquely.
|
|
///
|
|
/// It is only meant to be called in two places, for typeck
|
|
/// (via `Inherited::build`) and for the inference context used
|
|
/// in mir borrowck.
|
|
pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
|
|
self.defining_use_anchor = defining_use_anchor;
|
|
self
|
|
}
|
|
|
|
pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
|
|
self.next_trait_solver = next_trait_solver;
|
|
self
|
|
}
|
|
|
|
pub fn intercrate(mut self, intercrate: bool) -> Self {
|
|
self.intercrate = intercrate;
|
|
self
|
|
}
|
|
|
|
pub fn ignoring_regions(mut self) -> Self {
|
|
self.considering_regions = false;
|
|
self
|
|
}
|
|
|
|
pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
|
|
self.skip_leak_check = skip_leak_check;
|
|
self
|
|
}
|
|
|
|
/// Given a canonical value `C` as a starting point, create an
|
|
/// inference context that contains each of the bound values
|
|
/// within instantiated as a fresh variable. The `f` closure is
|
|
/// invoked with the new infcx, along with the instantiated value
|
|
/// `V` and a substitution `S`. This substitution `S` maps from
|
|
/// the bound values in `C` to their instantiated values in `V`
|
|
/// (in other words, `S(C) = V`).
|
|
pub fn build_with_canonical<T>(
|
|
&mut self,
|
|
span: Span,
|
|
canonical: &Canonical<'tcx, T>,
|
|
) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
let infcx = self.build();
|
|
let (value, subst) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
|
|
(infcx, value, subst)
|
|
}
|
|
|
|
pub fn build(&mut self) -> InferCtxt<'tcx> {
|
|
let InferCtxtBuilder {
|
|
tcx,
|
|
defining_use_anchor,
|
|
considering_regions,
|
|
skip_leak_check,
|
|
intercrate,
|
|
next_trait_solver,
|
|
} = *self;
|
|
InferCtxt {
|
|
tcx,
|
|
defining_use_anchor,
|
|
considering_regions,
|
|
skip_leak_check,
|
|
inner: RefCell::new(InferCtxtInner::new()),
|
|
lexical_region_resolutions: RefCell::new(None),
|
|
selection_cache: Default::default(),
|
|
evaluation_cache: Default::default(),
|
|
reported_trait_errors: Default::default(),
|
|
reported_signature_mismatch: Default::default(),
|
|
tainted_by_errors: Cell::new(None),
|
|
err_count_on_creation: tcx.dcx().err_count(),
|
|
universe: Cell::new(ty::UniverseIndex::ROOT),
|
|
intercrate,
|
|
next_trait_solver,
|
|
obligation_inspector: Cell::new(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, T> InferOk<'tcx, T> {
|
|
/// Extracts `value`, registering any obligations into `fulfill_cx`.
|
|
pub fn into_value_registering_obligations(
|
|
self,
|
|
infcx: &InferCtxt<'tcx>,
|
|
fulfill_cx: &mut dyn TraitEngine<'tcx>,
|
|
) -> T {
|
|
let InferOk { value, obligations } = self;
|
|
fulfill_cx.register_predicate_obligations(infcx, obligations);
|
|
value
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferOk<'tcx, ()> {
|
|
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
|
|
self.obligations
|
|
}
|
|
}
|
|
|
|
#[must_use = "once you start a snapshot, you should always consume it"]
|
|
pub struct CombinedSnapshot<'tcx> {
|
|
undo_snapshot: Snapshot<'tcx>,
|
|
region_constraints_snapshot: RegionSnapshot,
|
|
universe: ty::UniverseIndex,
|
|
}
|
|
|
|
impl<'tcx> InferCtxt<'tcx> {
|
|
pub fn dcx(&self) -> &'tcx DiagCtxt {
|
|
self.tcx.dcx()
|
|
}
|
|
|
|
pub fn next_trait_solver(&self) -> bool {
|
|
self.next_trait_solver
|
|
}
|
|
|
|
/// Creates a `TypeErrCtxt` for emitting various inference errors.
|
|
/// During typeck, use `FnCtxt::err_ctxt` instead.
|
|
pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
|
|
TypeErrCtxt {
|
|
infcx: self,
|
|
typeck_results: None,
|
|
fallback_has_occurred: false,
|
|
normalize_fn_sig: Box::new(|fn_sig| fn_sig),
|
|
autoderef_steps: Box::new(|ty| {
|
|
debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck");
|
|
vec![(ty, vec![])]
|
|
}),
|
|
}
|
|
}
|
|
|
|
pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
|
|
t.fold_with(&mut self.freshener())
|
|
}
|
|
|
|
/// Returns the origin of the type variable identified by `vid`, or `None`
|
|
/// if this is not a type variable.
|
|
///
|
|
/// No attempt is made to resolve `ty`.
|
|
pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
|
|
match *ty.kind() {
|
|
ty::Infer(ty::TyVar(vid)) => {
|
|
Some(self.inner.borrow_mut().type_variables().var_origin(vid))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
|
|
freshen::TypeFreshener::new(self)
|
|
}
|
|
|
|
pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let mut vars: Vec<Ty<'_>> = inner
|
|
.type_variables()
|
|
.unresolved_variables()
|
|
.into_iter()
|
|
.map(|t| Ty::new_var(self.tcx, t))
|
|
.collect();
|
|
vars.extend(
|
|
(0..inner.int_unification_table().len())
|
|
.map(|i| ty::IntVid::from_u32(i as u32))
|
|
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
|
|
.map(|v| Ty::new_int_var(self.tcx, v)),
|
|
);
|
|
vars.extend(
|
|
(0..inner.float_unification_table().len())
|
|
.map(|i| ty::FloatVid::from_u32(i as u32))
|
|
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
|
|
.map(|v| Ty::new_float_var(self.tcx, v)),
|
|
);
|
|
vars
|
|
}
|
|
|
|
pub fn unsolved_effects(&self) -> Vec<ty::Const<'tcx>> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let mut table = inner.effect_unification_table();
|
|
|
|
(0..table.len())
|
|
.map(|i| ty::EffectVid::from_usize(i))
|
|
.filter(|&vid| table.probe_value(vid).is_none())
|
|
.map(|v| {
|
|
ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(v), self.tcx.types.bool)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn combine_fields<'a>(
|
|
&'a self,
|
|
trace: TypeTrace<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
define_opaque_types: DefineOpaqueTypes,
|
|
) -> CombineFields<'a, 'tcx> {
|
|
CombineFields {
|
|
infcx: self,
|
|
trace,
|
|
cause: None,
|
|
param_env,
|
|
obligations: PredicateObligations::new(),
|
|
define_opaque_types,
|
|
}
|
|
}
|
|
|
|
pub fn in_snapshot(&self) -> bool {
|
|
UndoLogs::<UndoLog<'tcx>>::in_snapshot(&self.inner.borrow_mut().undo_log)
|
|
}
|
|
|
|
pub fn num_open_snapshots(&self) -> usize {
|
|
UndoLogs::<UndoLog<'tcx>>::num_open_snapshots(&self.inner.borrow_mut().undo_log)
|
|
}
|
|
|
|
fn start_snapshot(&self) -> CombinedSnapshot<'tcx> {
|
|
debug!("start_snapshot()");
|
|
|
|
let mut inner = self.inner.borrow_mut();
|
|
|
|
CombinedSnapshot {
|
|
undo_snapshot: inner.undo_log.start_snapshot(),
|
|
region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
|
|
universe: self.universe(),
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(self, snapshot), level = "debug")]
|
|
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>) {
|
|
let CombinedSnapshot { undo_snapshot, region_constraints_snapshot, universe } = snapshot;
|
|
|
|
self.universe.set(universe);
|
|
|
|
let mut inner = self.inner.borrow_mut();
|
|
inner.rollback_to(undo_snapshot);
|
|
inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
|
|
}
|
|
|
|
#[instrument(skip(self, snapshot), level = "debug")]
|
|
fn commit_from(&self, snapshot: CombinedSnapshot<'tcx>) {
|
|
let CombinedSnapshot { undo_snapshot, region_constraints_snapshot: _, universe: _ } =
|
|
snapshot;
|
|
|
|
self.inner.borrow_mut().commit(undo_snapshot);
|
|
}
|
|
|
|
/// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let r = f(&snapshot);
|
|
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
|
|
match r {
|
|
Ok(_) => {
|
|
self.commit_from(snapshot);
|
|
}
|
|
Err(_) => {
|
|
self.rollback_to("commit_if_ok -- error", snapshot);
|
|
}
|
|
}
|
|
r
|
|
}
|
|
|
|
/// Execute `f` then unroll any bindings it creates.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn probe<R, F>(&self, f: F) -> R
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let r = f(&snapshot);
|
|
self.rollback_to("probe", snapshot);
|
|
r
|
|
}
|
|
|
|
/// Scan the constraints produced since `snapshot` and check whether
|
|
/// we added any region constraints.
|
|
pub fn region_constraints_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
|
|
self.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
|
|
}
|
|
|
|
pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
|
|
self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
|
|
}
|
|
|
|
pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, expected: T, actual: T) -> bool
|
|
where
|
|
T: at::ToTrace<'tcx>,
|
|
{
|
|
let origin = &ObligationCause::dummy();
|
|
self.probe(|_| {
|
|
self.at(origin, param_env).sub(DefineOpaqueTypes::No, expected, actual).is_ok()
|
|
})
|
|
}
|
|
|
|
pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
|
|
where
|
|
T: at::ToTrace<'tcx>,
|
|
{
|
|
let origin = &ObligationCause::dummy();
|
|
self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok())
|
|
}
|
|
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn sub_regions(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
b: ty::Region<'tcx>,
|
|
) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
|
|
}
|
|
|
|
/// Require that the region `r` be equal to one of the regions in
|
|
/// the set `regions`.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn member_constraint(
|
|
&self,
|
|
key: ty::OpaqueTypeKey<'tcx>,
|
|
definition_span: Span,
|
|
hidden_ty: Ty<'tcx>,
|
|
region: ty::Region<'tcx>,
|
|
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
|
|
) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
|
|
key,
|
|
definition_span,
|
|
hidden_ty,
|
|
region,
|
|
in_regions,
|
|
);
|
|
}
|
|
|
|
/// Processes a `Coerce` predicate from the fulfillment context.
|
|
/// This is NOT the preferred way to handle coercion, which is to
|
|
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
|
|
///
|
|
/// This method here is actually a fallback that winds up being
|
|
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
|
|
/// and records a coercion predicate. Presently, this method is equivalent
|
|
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
|
|
/// actually requiring `a <: b`. This is of course a valid coercion,
|
|
/// but it's not as flexible as `FnCtxt::coerce` would be.
|
|
///
|
|
/// (We may refactor this in the future, but there are a number of
|
|
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
|
|
/// records adjustments that are required on the HIR in order to perform
|
|
/// the coercion, and we don't currently have a way to manage that.)
|
|
pub fn coerce_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolyCoercePredicate<'tcx>,
|
|
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
|
|
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
|
|
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
|
|
a: p.a,
|
|
b: p.b,
|
|
});
|
|
self.subtype_predicate(cause, param_env, subtype_predicate)
|
|
}
|
|
|
|
pub fn subtype_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolySubtypePredicate<'tcx>,
|
|
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
|
|
// Check for two unresolved inference variables, in which case we can
|
|
// make no progress. This is partly a micro-optimization, but it's
|
|
// also an opportunity to "sub-unify" the variables. This isn't
|
|
// *necessary* to prevent cycles, because they would eventually be sub-unified
|
|
// anyhow during generalization, but it helps with diagnostics (we can detect
|
|
// earlier that they are sub-unified).
|
|
//
|
|
// Note that we can just skip the binders here because
|
|
// type variables can't (at present, at
|
|
// least) capture any of the things bound by this binder.
|
|
//
|
|
// Note that this sub here is not just for diagnostics - it has semantic
|
|
// effects as well.
|
|
let r_a = self.shallow_resolve(predicate.skip_binder().a);
|
|
let r_b = self.shallow_resolve(predicate.skip_binder().b);
|
|
match (r_a.kind(), r_b.kind()) {
|
|
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
|
|
self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
|
|
return Err((a_vid, b_vid));
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
let ty::SubtypePredicate { a_is_expected, a, b } =
|
|
self.instantiate_binder_with_placeholders(predicate);
|
|
|
|
Ok(self.at(cause, param_env).sub_exp(DefineOpaqueTypes::No, a_is_expected, a, b))
|
|
}
|
|
|
|
pub fn region_outlives_predicate(
|
|
&self,
|
|
cause: &traits::ObligationCause<'tcx>,
|
|
predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
|
|
) {
|
|
let ty::OutlivesPredicate(r_a, r_b) = self.instantiate_binder_with_placeholders(predicate);
|
|
let origin =
|
|
SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
|
|
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
|
|
}
|
|
|
|
/// Number of type variables created so far.
|
|
pub fn num_ty_vars(&self) -> usize {
|
|
self.inner.borrow_mut().type_variables().num_vars()
|
|
}
|
|
|
|
pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
|
|
self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
|
|
}
|
|
|
|
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
|
|
Ty::new_var(self.tcx, self.next_ty_var_id(origin))
|
|
}
|
|
|
|
pub fn next_ty_var_id_in_universe(
|
|
&self,
|
|
origin: TypeVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> TyVid {
|
|
self.inner.borrow_mut().type_variables().new_var(universe, origin)
|
|
}
|
|
|
|
pub fn next_ty_var_in_universe(
|
|
&self,
|
|
origin: TypeVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> Ty<'tcx> {
|
|
let vid = self.next_ty_var_id_in_universe(origin, universe);
|
|
Ty::new_var(self.tcx, vid)
|
|
}
|
|
|
|
pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
|
|
ty::Const::new_var(self.tcx, self.next_const_var_id(origin), ty)
|
|
}
|
|
|
|
pub fn next_const_var_in_universe(
|
|
&self,
|
|
ty: Ty<'tcx>,
|
|
origin: ConstVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Const<'tcx> {
|
|
let vid = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe })
|
|
.vid;
|
|
ty::Const::new_var(self.tcx, vid, ty)
|
|
}
|
|
|
|
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid {
|
|
self.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
|
|
.vid
|
|
}
|
|
|
|
fn next_int_var_id(&self) -> IntVid {
|
|
self.inner.borrow_mut().int_unification_table().new_key(None)
|
|
}
|
|
|
|
pub fn next_int_var(&self) -> Ty<'tcx> {
|
|
Ty::new_int_var(self.tcx, self.next_int_var_id())
|
|
}
|
|
|
|
fn next_float_var_id(&self) -> FloatVid {
|
|
self.inner.borrow_mut().float_unification_table().new_key(None)
|
|
}
|
|
|
|
pub fn next_float_var(&self) -> Ty<'tcx> {
|
|
Ty::new_float_var(self.tcx, self.next_float_var_id())
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index.
|
|
/// The variable will be created in the maximum universe created
|
|
/// thus far, allowing it to name any region created thus far.
|
|
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(origin, self.universe())
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index
|
|
/// in the given universe; typically, you can use
|
|
/// `next_region_var` and just use the maximal universe.
|
|
pub fn next_region_var_in_universe(
|
|
&self,
|
|
origin: RegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
let region_var =
|
|
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
|
|
ty::Region::new_var(self.tcx, region_var)
|
|
}
|
|
|
|
/// Return the universe that the region `r` was created in. For
|
|
/// most regions (e.g., `'static`, named regions from the user,
|
|
/// etc) this is the root universe U0. For inference variables or
|
|
/// placeholders, however, it will return the universe which they
|
|
/// are associated.
|
|
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
|
|
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
|
|
}
|
|
|
|
/// Return the universe that the region variable `r` was created in.
|
|
pub fn universe_of_region_vid(&self, vid: ty::RegionVid) -> ty::UniverseIndex {
|
|
self.inner.borrow_mut().unwrap_region_constraints().var_universe(vid)
|
|
}
|
|
|
|
/// Number of region variables created so far.
|
|
pub fn num_region_vars(&self) -> usize {
|
|
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var(RegionVariableOrigin::Nll(origin))
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn next_nll_region_var_in_universe(
|
|
&self,
|
|
origin: NllRegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
|
|
}
|
|
|
|
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
|
|
match param.kind {
|
|
GenericParamDefKind::Lifetime => {
|
|
// Create a region inference variable for the given
|
|
// region parameter definition.
|
|
self.next_region_var(RegionParameterDefinition(span, param.name)).into()
|
|
}
|
|
GenericParamDefKind::Type { .. } => {
|
|
// Create a type inference variable for the given
|
|
// type parameter definition. The substitutions are
|
|
// for actual parameters that may be referred to by
|
|
// the default of this type parameter, if it exists.
|
|
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
|
|
// used in a path such as `Foo::<T, U>::new()` will
|
|
// use an inference variable for `C` with `[T, U]`
|
|
// as the substitutions for the default, `(T, U)`.
|
|
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
|
|
self.universe(),
|
|
TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::TypeParameterDefinition(
|
|
param.name,
|
|
param.def_id,
|
|
),
|
|
span,
|
|
},
|
|
);
|
|
|
|
Ty::new_var(self.tcx, ty_var_id).into()
|
|
}
|
|
GenericParamDefKind::Const { is_host_effect, .. } => {
|
|
if is_host_effect {
|
|
return self.var_for_effect(param);
|
|
}
|
|
let origin = ConstVariableOrigin {
|
|
kind: ConstVariableOriginKind::ConstParameterDefinition(
|
|
param.name,
|
|
param.def_id,
|
|
),
|
|
span,
|
|
};
|
|
let const_var_id = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
|
|
.vid;
|
|
ty::Const::new_var(
|
|
self.tcx,
|
|
const_var_id,
|
|
self.tcx
|
|
.type_of(param.def_id)
|
|
.no_bound_vars()
|
|
.expect("const parameter types cannot be generic"),
|
|
)
|
|
.into()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn var_for_effect(&self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
|
|
let effect_vid = self.inner.borrow_mut().effect_unification_table().new_key(None).vid;
|
|
let ty = self
|
|
.tcx
|
|
.type_of(param.def_id)
|
|
.no_bound_vars()
|
|
.expect("const parameter types cannot be generic");
|
|
debug_assert_eq!(self.tcx.types.bool, ty);
|
|
ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(effect_vid), ty).into()
|
|
}
|
|
|
|
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
|
|
/// type/region parameter to a fresh inference variable.
|
|
pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
|
|
GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
|
|
}
|
|
|
|
/// Returns `true` if errors have been reported since this infcx was
|
|
/// created. This is sometimes used as a heuristic to skip
|
|
/// reporting errors that often occur as a result of earlier
|
|
/// errors, but where it's hard to be 100% sure (e.g., unresolved
|
|
/// inference variables, regionck errors).
|
|
#[must_use = "this method does not have any side effects"]
|
|
pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
|
|
debug!(
|
|
"is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
|
|
tainted_by_errors={})",
|
|
self.dcx().err_count(),
|
|
self.err_count_on_creation,
|
|
self.tainted_by_errors.get().is_some()
|
|
);
|
|
|
|
if let Some(e) = self.tainted_by_errors.get() {
|
|
return Some(e);
|
|
}
|
|
|
|
if self.dcx().err_count() > self.err_count_on_creation {
|
|
// errors reported since this infcx was made
|
|
let e = self.dcx().has_errors().unwrap();
|
|
self.set_tainted_by_errors(e);
|
|
return Some(e);
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Set the "tainted by errors" flag to true. We call this when we
|
|
/// observe an error from a prior pass.
|
|
pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
|
|
debug!("set_tainted_by_errors(ErrorGuaranteed)");
|
|
self.tainted_by_errors.set(Some(e));
|
|
}
|
|
|
|
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let inner = &mut *inner;
|
|
inner.unwrap_region_constraints().var_origin(vid)
|
|
}
|
|
|
|
/// Clone the list of variable regions. This is used only during NLL processing
|
|
/// to put the set of region variables into the NLL region context.
|
|
pub fn get_region_var_origins(&self) -> VarInfos {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let (var_infos, data) = inner
|
|
.region_constraint_storage
|
|
// We clone instead of taking because borrowck still wants to use
|
|
// the inference context after calling this for diagnostics
|
|
// and the new trait solver.
|
|
.clone()
|
|
.expect("regions already resolved")
|
|
.with_log(&mut inner.undo_log)
|
|
.into_infos_and_data();
|
|
assert!(data.is_empty());
|
|
var_infos
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self), ret)]
|
|
pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
|
|
debug_assert_ne!(self.defining_use_anchor, DefiningAnchor::Error);
|
|
std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
|
|
}
|
|
|
|
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
|
|
self.resolve_vars_if_possible(t).to_string()
|
|
}
|
|
|
|
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
|
|
/// universe index of `TyVar(vid)`.
|
|
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
match self.inner.borrow_mut().type_variables().probe(vid) {
|
|
TypeVariableValue::Known { value } => Ok(value),
|
|
TypeVariableValue::Unknown { universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
/// Resolve any type variables found in `value` -- but only one
|
|
/// level. So, if the variable `?X` is bound to some type
|
|
/// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
|
|
/// itself be bound to a type).
|
|
///
|
|
/// Useful when you only need to inspect the outermost level of
|
|
/// the type and don't care about nested types (or perhaps you
|
|
/// will be resolving them as well, e.g. in a loop).
|
|
pub fn shallow_resolve<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
value.fold_with(&mut ShallowResolver { infcx: self })
|
|
}
|
|
|
|
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
|
|
self.inner.borrow_mut().type_variables().root_var(var)
|
|
}
|
|
|
|
pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
|
|
self.inner.borrow_mut().const_unification_table().find(var).vid
|
|
}
|
|
|
|
pub fn root_effect_var(&self, var: ty::EffectVid) -> ty::EffectVid {
|
|
self.inner.borrow_mut().effect_unification_table().find(var).vid
|
|
}
|
|
|
|
/// Resolves an int var to a rigid int type, if it was constrained to one,
|
|
/// or else the root int var in the unification table.
|
|
pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
if let Some(value) = inner.int_unification_table().probe_value(vid) {
|
|
value.to_type(self.tcx)
|
|
} else {
|
|
Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
|
|
}
|
|
}
|
|
|
|
/// Resolves a float var to a rigid int type, if it was constrained to one,
|
|
/// or else the root float var in the unification table.
|
|
pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
if let Some(value) = inner.float_unification_table().probe_value(vid) {
|
|
value.to_type(self.tcx)
|
|
} else {
|
|
Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
|
|
}
|
|
}
|
|
|
|
/// Where possible, replaces type/const variables in
|
|
/// `value` with their final value. Note that region variables
|
|
/// are unaffected. If a type/const variable has not been unified, it
|
|
/// is left as is. This is an idempotent operation that does
|
|
/// not affect inference state in any way and so you can do it
|
|
/// at will.
|
|
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
if !value.has_non_region_infer() {
|
|
return value;
|
|
}
|
|
let mut r = resolve::OpportunisticVarResolver::new(self);
|
|
value.fold_with(&mut r)
|
|
}
|
|
|
|
pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>>,
|
|
{
|
|
if !value.has_infer() {
|
|
return value; // Avoid duplicated subst-folding.
|
|
}
|
|
let mut r = InferenceLiteralEraser { tcx: self.tcx };
|
|
value.fold_with(&mut r)
|
|
}
|
|
|
|
pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
|
|
ConstVariableValue::Known { value } => Ok(value),
|
|
ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
pub fn probe_effect_var(&self, vid: EffectVid) -> Option<EffectVarValue<'tcx>> {
|
|
self.inner.borrow_mut().effect_unification_table().probe_value(vid)
|
|
}
|
|
|
|
/// Attempts to resolve all type/region/const variables in
|
|
/// `value`. Region inference must have been run already (e.g.,
|
|
/// by calling `resolve_regions_and_report_errors`). If some
|
|
/// variable was never unified, an `Err` results.
|
|
///
|
|
/// This method is idempotent, but it not typically not invoked
|
|
/// except during the writeback phase.
|
|
pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
|
|
match resolve::fully_resolve(self, value) {
|
|
Ok(value) => {
|
|
if value.has_non_region_infer() {
|
|
bug!("`{value:?}` is not fully resolved");
|
|
}
|
|
if value.has_infer_regions() {
|
|
let guar =
|
|
self.tcx.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
|
|
Ok(self.tcx.fold_regions(value, |re, _| {
|
|
if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
|
|
}))
|
|
} else {
|
|
Ok(value)
|
|
}
|
|
}
|
|
Err(e) => Err(e),
|
|
}
|
|
}
|
|
|
|
// Instantiates the bound variables in a given binder with fresh inference
|
|
// variables in the current universe.
|
|
//
|
|
// Use this method if you'd like to find some substitution of the binder's
|
|
// variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
|
|
// that corresponds to your use case, consider whether or not you should
|
|
// use [`InferCtxt::instantiate_binder_with_placeholders`] instead.
|
|
pub fn instantiate_binder_with_fresh_vars<T>(
|
|
&self,
|
|
span: Span,
|
|
lbrct: BoundRegionConversionTime,
|
|
value: ty::Binder<'tcx, T>,
|
|
) -> T
|
|
where
|
|
T: TypeFoldable<TyCtxt<'tcx>> + Copy,
|
|
{
|
|
if let Some(inner) = value.no_bound_vars() {
|
|
return inner;
|
|
}
|
|
|
|
struct ToFreshVars<'a, 'tcx> {
|
|
infcx: &'a InferCtxt<'tcx>,
|
|
span: Span,
|
|
lbrct: BoundRegionConversionTime,
|
|
map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
|
|
}
|
|
|
|
impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
|
|
fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
|
|
self.map
|
|
.entry(br.var)
|
|
.or_insert_with(|| {
|
|
self.infcx
|
|
.next_region_var(BoundRegion(self.span, br.kind, self.lbrct))
|
|
.into()
|
|
})
|
|
.expect_region()
|
|
}
|
|
fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
|
|
self.map
|
|
.entry(bt.var)
|
|
.or_insert_with(|| {
|
|
self.infcx
|
|
.next_ty_var(TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::MiscVariable,
|
|
span: self.span,
|
|
})
|
|
.into()
|
|
})
|
|
.expect_ty()
|
|
}
|
|
fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
|
|
self.map
|
|
.entry(bv)
|
|
.or_insert_with(|| {
|
|
self.infcx
|
|
.next_const_var(
|
|
ty,
|
|
ConstVariableOrigin {
|
|
kind: ConstVariableOriginKind::MiscVariable,
|
|
span: self.span,
|
|
},
|
|
)
|
|
.into()
|
|
})
|
|
.expect_const()
|
|
}
|
|
}
|
|
let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
|
|
self.tcx.replace_bound_vars_uncached(value, delegate)
|
|
}
|
|
|
|
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
|
|
pub fn verify_generic_bound(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
kind: GenericKind<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
bound: VerifyBound<'tcx>,
|
|
) {
|
|
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
|
|
|
|
self.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.verify_generic_bound(origin, kind, a, bound);
|
|
}
|
|
|
|
/// Obtains the latest type of the given closure; this may be a
|
|
/// closure in the current function, in which case its
|
|
/// `ClosureKind` may not yet be known.
|
|
pub fn closure_kind(&self, closure_args: GenericArgsRef<'tcx>) -> Option<ty::ClosureKind> {
|
|
let closure_kind_ty = closure_args.as_closure().kind_ty();
|
|
let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
|
|
closure_kind_ty.to_opt_closure_kind()
|
|
}
|
|
|
|
/// Clears the selection, evaluation, and projection caches. This is useful when
|
|
/// repeatedly attempting to select an `Obligation` while changing only
|
|
/// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
|
|
pub fn clear_caches(&self) {
|
|
self.selection_cache.clear();
|
|
self.evaluation_cache.clear();
|
|
self.inner.borrow_mut().projection_cache().clear();
|
|
}
|
|
|
|
pub fn universe(&self) -> ty::UniverseIndex {
|
|
self.universe.get()
|
|
}
|
|
|
|
/// Creates and return a fresh universe that extends all previous
|
|
/// universes. Updates `self.universe` to that new universe.
|
|
pub fn create_next_universe(&self) -> ty::UniverseIndex {
|
|
let u = self.universe.get().next_universe();
|
|
debug!("create_next_universe {u:?}");
|
|
self.universe.set(u);
|
|
u
|
|
}
|
|
|
|
pub fn try_const_eval_resolve(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
unevaluated: ty::UnevaluatedConst<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
span: Option<Span>,
|
|
) -> Result<ty::Const<'tcx>, ErrorHandled> {
|
|
match self.const_eval_resolve(param_env, unevaluated, span) {
|
|
Ok(Some(val)) => Ok(ty::Const::new_value(self.tcx, val, ty)),
|
|
Ok(None) => {
|
|
let tcx = self.tcx;
|
|
let def_id = unevaluated.def;
|
|
span_bug!(
|
|
tcx.def_span(def_id),
|
|
"unable to construct a constant value for the unevaluated constant {:?}",
|
|
unevaluated
|
|
);
|
|
}
|
|
Err(err) => Err(err),
|
|
}
|
|
}
|
|
|
|
/// Resolves and evaluates a constant.
|
|
///
|
|
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
|
|
/// substitutions and environment are used to resolve the constant. Alternatively if the
|
|
/// constant has generic parameters in scope the substitutions are used to evaluate the value of
|
|
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
|
|
/// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
|
|
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
|
|
/// returned.
|
|
///
|
|
/// This handles inferences variables within both `param_env` and `args` by
|
|
/// performing the operation on their respective canonical forms.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn const_eval_resolve(
|
|
&self,
|
|
mut param_env: ty::ParamEnv<'tcx>,
|
|
unevaluated: ty::UnevaluatedConst<'tcx>,
|
|
span: Option<Span>,
|
|
) -> EvalToValTreeResult<'tcx> {
|
|
let mut args = self.resolve_vars_if_possible(unevaluated.args);
|
|
debug!(?args);
|
|
|
|
// Postpone the evaluation of constants whose args depend on inference
|
|
// variables
|
|
let tcx = self.tcx;
|
|
if args.has_non_region_infer() {
|
|
if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
|
|
let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, args));
|
|
if let Err(e) = ct.error_reported() {
|
|
return Err(ErrorHandled::Reported(
|
|
e.into(),
|
|
span.unwrap_or(rustc_span::DUMMY_SP),
|
|
));
|
|
} else if ct.has_non_region_infer() || ct.has_non_region_param() {
|
|
return Err(ErrorHandled::TooGeneric(span.unwrap_or(rustc_span::DUMMY_SP)));
|
|
} else {
|
|
args = replace_param_and_infer_args_with_placeholder(tcx, args);
|
|
}
|
|
} else {
|
|
args = GenericArgs::identity_for_item(tcx, unevaluated.def);
|
|
param_env = tcx.param_env(unevaluated.def);
|
|
}
|
|
}
|
|
|
|
let param_env_erased = tcx.erase_regions(param_env);
|
|
let args_erased = tcx.erase_regions(args);
|
|
debug!(?param_env_erased);
|
|
debug!(?args_erased);
|
|
|
|
let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, args: args_erased };
|
|
|
|
// The return value is the evaluated value which doesn't contain any reference to inference
|
|
// variables, thus we don't need to substitute back the original values.
|
|
tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
|
|
}
|
|
|
|
/// The returned function is used in a fast path. If it returns `true` the variable is
|
|
/// unchanged, `false` indicates that the status is unknown.
|
|
#[inline]
|
|
pub fn is_ty_infer_var_definitely_unchanged<'a>(
|
|
&'a self,
|
|
) -> (impl Fn(TyOrConstInferVar) -> bool + Captures<'tcx> + 'a) {
|
|
// This hoists the borrow/release out of the loop body.
|
|
let inner = self.inner.try_borrow();
|
|
|
|
return move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
|
|
(TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
matches!(
|
|
inner.try_type_variables_probe_ref(ty_var),
|
|
Some(TypeVariableValue::Unknown { .. })
|
|
)
|
|
}
|
|
_ => false,
|
|
};
|
|
}
|
|
|
|
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
|
|
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
|
|
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
|
|
///
|
|
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
|
|
/// inlined, despite being large, because it has only two call sites that
|
|
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
|
|
/// inference variables), and it handles both `Ty` and `ty::Const` without
|
|
/// having to resort to storing full `GenericArg`s in `stalled_on`.
|
|
#[inline(always)]
|
|
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
|
|
match infer_var {
|
|
TyOrConstInferVar::Ty(v) => {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
// If `inlined_probe` returns a `Known` value, it never equals
|
|
// `ty::Infer(ty::TyVar(v))`.
|
|
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
|
|
TypeVariableValue::Unknown { .. } => false,
|
|
TypeVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
|
|
TyOrConstInferVar::TyInt(v) => {
|
|
// If `inlined_probe_value` returns a value it's always a
|
|
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
|
|
// `ty::Infer(_)`.
|
|
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
|
|
}
|
|
|
|
TyOrConstInferVar::TyFloat(v) => {
|
|
// If `probe_value` returns a value it's always a
|
|
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
|
|
}
|
|
|
|
TyOrConstInferVar::Const(v) => {
|
|
// If `probe_value` returns a `Known` value, it never equals
|
|
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(v) {
|
|
ConstVariableValue::Unknown { .. } => false,
|
|
ConstVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
|
|
TyOrConstInferVar::Effect(v) => {
|
|
// If `probe_value` returns `Some`, it never equals
|
|
// `ty::ConstKind::Infer(ty::InferConst::Effect(v))`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
self.probe_effect_var(v).is_some()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
|
|
pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
|
|
debug_assert!(
|
|
self.obligation_inspector.get().is_none(),
|
|
"shouldn't override a set obligation inspector"
|
|
);
|
|
self.obligation_inspector.set(Some(inspector));
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeErrCtxt<'_, 'tcx> {
|
|
// [Note-Type-error-reporting]
|
|
// An invariant is that anytime the expected or actual type is Error (the special
|
|
// error type, meaning that an error occurred when typechecking this expression),
|
|
// this is a derived error. The error cascaded from another error (that was already
|
|
// reported), so it's not useful to display it to the user.
|
|
// The following methods implement this logic.
|
|
// They check if either the actual or expected type is Error, and don't print the error
|
|
// in this case. The typechecker should only ever report type errors involving mismatched
|
|
// types using one of these methods, and should not call span_err directly for such
|
|
// errors.
|
|
pub fn type_error_struct_with_diag<M>(
|
|
&self,
|
|
sp: Span,
|
|
mk_diag: M,
|
|
actual_ty: Ty<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx>
|
|
where
|
|
M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
|
|
{
|
|
let actual_ty = self.resolve_vars_if_possible(actual_ty);
|
|
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
|
|
|
|
let mut err = mk_diag(self.ty_to_string(actual_ty));
|
|
|
|
// Don't report an error if actual type is `Error`.
|
|
if actual_ty.references_error() {
|
|
err.downgrade_to_delayed_bug();
|
|
}
|
|
|
|
err
|
|
}
|
|
|
|
pub fn report_mismatched_types(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
expected: Ty<'tcx>,
|
|
actual: Ty<'tcx>,
|
|
err: TypeError<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx> {
|
|
self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
|
|
}
|
|
|
|
pub fn report_mismatched_consts(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
expected: ty::Const<'tcx>,
|
|
actual: ty::Const<'tcx>,
|
|
err: TypeError<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx> {
|
|
self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
|
|
}
|
|
}
|
|
|
|
/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
|
|
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum TyOrConstInferVar {
|
|
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
|
|
Ty(TyVid),
|
|
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
|
|
TyInt(IntVid),
|
|
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
|
|
TyFloat(FloatVid),
|
|
|
|
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
|
|
Const(ConstVid),
|
|
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::EffectVar(_))`.
|
|
Effect(EffectVid),
|
|
}
|
|
|
|
impl<'tcx> TyOrConstInferVar {
|
|
/// Tries to extract an inference variable from a type or a constant, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
|
|
match arg.unpack() {
|
|
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
|
|
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
|
|
GenericArgKind::Lifetime(_) => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a type, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
|
|
fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
|
|
match *ty.kind() {
|
|
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
|
|
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
|
|
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a constant, returns `None`
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
|
|
match ct.kind() {
|
|
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
|
|
ty::ConstKind::Infer(InferConst::EffectVar(v)) => Some(TyOrConstInferVar::Effect(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Replace `{integer}` with `i32` and `{float}` with `f64`.
|
|
/// Used only for diagnostics.
|
|
struct InferenceLiteralEraser<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
|
|
fn interner(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
match ty.kind() {
|
|
ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
|
|
ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
|
|
_ => ty.super_fold_with(self),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ShallowResolver<'a, 'tcx> {
|
|
infcx: &'a InferCtxt<'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> {
|
|
fn interner(&self) -> TyCtxt<'tcx> {
|
|
self.infcx.tcx
|
|
}
|
|
|
|
/// If `ty` is a type variable of some kind, resolve it one level
|
|
/// (but do not resolve types found in the result). If `typ` is
|
|
/// not a type variable, just return it unmodified.
|
|
#[inline]
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty }
|
|
}
|
|
|
|
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
|
|
match ct.kind() {
|
|
ty::ConstKind::Infer(InferConst::Var(vid)) => self
|
|
.infcx
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.probe_value(vid)
|
|
.known()
|
|
.unwrap_or(ct),
|
|
ty::ConstKind::Infer(InferConst::EffectVar(vid)) => self
|
|
.infcx
|
|
.inner
|
|
.borrow_mut()
|
|
.effect_unification_table()
|
|
.probe_value(vid)
|
|
.map_or(ct, |val| val.as_const(self.infcx.tcx)),
|
|
_ => ct,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
|
|
// This is separate from `fold_ty` to keep that method small and inlinable.
|
|
#[inline(never)]
|
|
fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> {
|
|
match v {
|
|
ty::TyVar(v) => {
|
|
// Not entirely obvious: if `typ` is a type variable,
|
|
// it can be resolved to an int/float variable, which
|
|
// can then be recursively resolved, hence the
|
|
// recursion. Note though that we prevent type
|
|
// variables from unifying to other type variables
|
|
// directly (though they may be embedded
|
|
// structurally), and we prevent cycles in any case,
|
|
// so this recursion should always be of very limited
|
|
// depth.
|
|
//
|
|
// Note: if these two lines are combined into one we get
|
|
// dynamic borrow errors on `self.inner`.
|
|
let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
|
|
known.map(|t| self.fold_ty(t))
|
|
}
|
|
|
|
ty::IntVar(v) => self
|
|
.infcx
|
|
.inner
|
|
.borrow_mut()
|
|
.int_unification_table()
|
|
.probe_value(v)
|
|
.map(|v| v.to_type(self.infcx.tcx)),
|
|
|
|
ty::FloatVar(v) => self
|
|
.infcx
|
|
.inner
|
|
.borrow_mut()
|
|
.float_unification_table()
|
|
.probe_value(v)
|
|
.map(|v| v.to_type(self.infcx.tcx)),
|
|
|
|
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeTrace<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
self.cause.span
|
|
}
|
|
|
|
pub fn types(
|
|
cause: &ObligationCause<'tcx>,
|
|
a_is_expected: bool,
|
|
a: Ty<'tcx>,
|
|
b: Ty<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace {
|
|
cause: cause.clone(),
|
|
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
|
|
}
|
|
}
|
|
|
|
pub fn poly_trait_refs(
|
|
cause: &ObligationCause<'tcx>,
|
|
a_is_expected: bool,
|
|
a: ty::PolyTraitRef<'tcx>,
|
|
b: ty::PolyTraitRef<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace {
|
|
cause: cause.clone(),
|
|
values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
|
|
}
|
|
}
|
|
|
|
pub fn consts(
|
|
cause: &ObligationCause<'tcx>,
|
|
a_is_expected: bool,
|
|
a: ty::Const<'tcx>,
|
|
b: ty::Const<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace {
|
|
cause: cause.clone(),
|
|
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> SubregionOrigin<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
Subtype(ref a) => a.span(),
|
|
RelateObjectBound(a) => a,
|
|
RelateParamBound(a, ..) => a,
|
|
RelateRegionParamBound(a) => a,
|
|
Reborrow(a) => a,
|
|
ReferenceOutlivesReferent(_, a) => a,
|
|
CompareImplItemObligation { span, .. } => span,
|
|
AscribeUserTypeProvePredicate(span) => span,
|
|
CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
|
|
}
|
|
}
|
|
|
|
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
|
|
where
|
|
F: FnOnce() -> Self,
|
|
{
|
|
match *cause.code() {
|
|
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
|
|
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
|
|
}
|
|
|
|
traits::ObligationCauseCode::CompareImplItemObligation {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
kind: _,
|
|
} => SubregionOrigin::CompareImplItemObligation {
|
|
span: cause.span,
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
},
|
|
|
|
traits::ObligationCauseCode::CheckAssociatedTypeBounds {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
} => SubregionOrigin::CheckAssociatedTypeBounds {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
parent: Box::new(default()),
|
|
},
|
|
|
|
traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
|
|
SubregionOrigin::AscribeUserTypeProvePredicate(span)
|
|
}
|
|
|
|
_ => default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl RegionVariableOrigin {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
MiscVariable(a)
|
|
| PatternRegion(a)
|
|
| AddrOfRegion(a)
|
|
| Autoref(a)
|
|
| Coercion(a)
|
|
| RegionParameterDefinition(a, ..)
|
|
| BoundRegion(a, ..)
|
|
| UpvarRegion(_, a) => a,
|
|
Nll(..) => bug!("NLL variable used with `span`"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Replaces args that reference param or infer variables with suitable
|
|
/// placeholders. This function is meant to remove these param and infer
|
|
/// args when they're not actually needed to evaluate a constant.
|
|
fn replace_param_and_infer_args_with_placeholder<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
args: GenericArgsRef<'tcx>,
|
|
) -> GenericArgsRef<'tcx> {
|
|
struct ReplaceParamAndInferWithPlaceholder<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
idx: u32,
|
|
}
|
|
|
|
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
|
|
fn interner(&self) -> TyCtxt<'tcx> {
|
|
self.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
|
|
if let ty::Infer(_) = t.kind() {
|
|
let idx = {
|
|
let idx = self.idx;
|
|
self.idx += 1;
|
|
idx
|
|
};
|
|
Ty::new_placeholder(
|
|
self.tcx,
|
|
ty::PlaceholderType {
|
|
universe: ty::UniverseIndex::ROOT,
|
|
bound: ty::BoundTy {
|
|
var: ty::BoundVar::from_u32(idx),
|
|
kind: ty::BoundTyKind::Anon,
|
|
},
|
|
},
|
|
)
|
|
} else {
|
|
t.super_fold_with(self)
|
|
}
|
|
}
|
|
|
|
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
|
|
if let ty::ConstKind::Infer(_) = c.kind() {
|
|
let ty = c.ty();
|
|
// If the type references param or infer then ICE ICE ICE
|
|
if ty.has_non_region_param() || ty.has_non_region_infer() {
|
|
bug!("const `{c}`'s type should not reference params or types");
|
|
}
|
|
ty::Const::new_placeholder(
|
|
self.tcx,
|
|
ty::PlaceholderConst {
|
|
universe: ty::UniverseIndex::ROOT,
|
|
bound: ty::BoundVar::from_u32({
|
|
let idx = self.idx;
|
|
self.idx += 1;
|
|
idx
|
|
}),
|
|
},
|
|
ty,
|
|
)
|
|
} else {
|
|
c.super_fold_with(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
|
|
}
|