1
Fork 0
rust/src/librustc/traits/specialize/specialization_graph.rs
Nicholas Nethercote 00e48affde Replace FnvHasher use with FxHasher.
This speeds up compilation by 3--6% across most of rustc-benchmarks.
2016-11-08 15:14:59 +11:00

471 lines
16 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::rc::Rc;
use super::{OverlapError, specializes};
use hir::def_id::DefId;
use traits::{self, Reveal};
use ty::{self, TyCtxt, ImplOrTraitItem, TraitDef, TypeFoldable};
use ty::fast_reject::{self, SimplifiedType};
use syntax::ast::Name;
use util::nodemap::{DefIdMap, FxHashMap};
/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction, which implicitly checks for overlapping impls (i.e., impls
/// that overlap but where neither specializes the other -- an artifact of the
/// simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
/// parents of a given specializing impl, which is needed for extracting
/// default items amongst other thigns. In the simple "chain" rule, every impl
/// has at most one parent.
pub struct Graph {
// all impls have a parent; the "root" impls have as their parent the def_id
// of the trait
parent: DefIdMap<DefId>,
// the "root" impls are found by looking up the trait's def_id.
children: DefIdMap<Children>,
}
/// Children of a given impl, grouped into blanket/non-blanket varieties as is
/// done in `TraitDef`.
struct Children {
// Impls of a trait (or specializations of a given impl). To allow for
// quicker lookup, the impls are indexed by a simplified version of their
// `Self` type: impls with a simplifiable `Self` are stored in
// `nonblanket_impls` keyed by it, while all other impls are stored in
// `blanket_impls`.
//
// A similar division is used within `TraitDef`, but the lists there collect
// together *all* the impls for a trait, and are populated prior to building
// the specialization graph.
/// Impls of the trait.
nonblanket_impls: FxHashMap<fast_reject::SimplifiedType, Vec<DefId>>,
/// Blanket impls associated with the trait.
blanket_impls: Vec<DefId>,
}
/// The result of attempting to insert an impl into a group of children.
enum Inserted {
/// The impl was inserted as a new child in this group of children.
BecameNewSibling,
/// The impl replaced an existing impl that specializes it.
Replaced(DefId),
/// The impl is a specialization of an existing child.
ShouldRecurseOn(DefId),
}
impl<'a, 'gcx, 'tcx> Children {
fn new() -> Children {
Children {
nonblanket_impls: FxHashMap(),
blanket_impls: vec![],
}
}
/// Insert an impl into this set of children without comparing to any existing impls
fn insert_blindly(&mut self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
impl_def_id: DefId) {
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
if let Some(sty) = fast_reject::simplify_type(tcx, trait_ref.self_ty(), false) {
self.nonblanket_impls.entry(sty).or_insert(vec![]).push(impl_def_id)
} else {
self.blanket_impls.push(impl_def_id)
}
}
/// Attempt to insert an impl into this set of children, while comparing for
/// specialiation relationships.
fn insert(&mut self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
impl_def_id: DefId,
simplified_self: Option<SimplifiedType>)
-> Result<Inserted, OverlapError>
{
for slot in match simplified_self {
Some(sty) => self.filtered_mut(sty),
None => self.iter_mut(),
} {
let possible_sibling = *slot;
let tcx = tcx.global_tcx();
let (le, ge) = tcx.infer_ctxt(None, None, Reveal::ExactMatch).enter(|infcx| {
let overlap = traits::overlapping_impls(&infcx,
possible_sibling,
impl_def_id);
if let Some(impl_header) = overlap {
let le = specializes(tcx, impl_def_id, possible_sibling);
let ge = specializes(tcx, possible_sibling, impl_def_id);
if le == ge {
// overlap, but no specialization; error out
let trait_ref = impl_header.trait_ref.unwrap();
let self_ty = trait_ref.self_ty();
Err(OverlapError {
with_impl: possible_sibling,
trait_desc: trait_ref.to_string(),
// only report the Self type if it has at least
// some outer concrete shell; otherwise, it's
// not adding much information.
self_desc: if self_ty.has_concrete_skeleton() {
Some(self_ty.to_string())
} else {
None
}
})
} else {
Ok((le, ge))
}
} else {
Ok((false, false))
}
})?;
if le && !ge {
debug!("descending as child of TraitRef {:?}",
tcx.impl_trait_ref(possible_sibling).unwrap());
// the impl specializes possible_sibling
return Ok(Inserted::ShouldRecurseOn(possible_sibling));
} else if ge && !le {
debug!("placing as parent of TraitRef {:?}",
tcx.impl_trait_ref(possible_sibling).unwrap());
// possible_sibling specializes the impl
*slot = impl_def_id;
return Ok(Inserted::Replaced(possible_sibling));
} else {
// no overlap (error bailed already via ?)
}
}
// no overlap with any potential siblings, so add as a new sibling
debug!("placing as new sibling");
self.insert_blindly(tcx, impl_def_id);
Ok(Inserted::BecameNewSibling)
}
fn iter_mut(&'a mut self) -> Box<Iterator<Item = &'a mut DefId> + 'a> {
let nonblanket = self.nonblanket_impls.iter_mut().flat_map(|(_, v)| v.iter_mut());
Box::new(self.blanket_impls.iter_mut().chain(nonblanket))
}
fn filtered_mut(&'a mut self, sty: SimplifiedType)
-> Box<Iterator<Item = &'a mut DefId> + 'a> {
let nonblanket = self.nonblanket_impls.entry(sty).or_insert(vec![]).iter_mut();
Box::new(self.blanket_impls.iter_mut().chain(nonblanket))
}
}
impl<'a, 'gcx, 'tcx> Graph {
pub fn new() -> Graph {
Graph {
parent: Default::default(),
children: Default::default(),
}
}
/// Insert a local impl into the specialization graph. If an existing impl
/// conflicts with it (has overlap, but neither specializes the other),
/// information about the area of overlap is returned in the `Err`.
pub fn insert(&mut self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
impl_def_id: DefId)
-> Result<(), OverlapError> {
assert!(impl_def_id.is_local());
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
let trait_def_id = trait_ref.def_id;
debug!("insert({:?}): inserting TraitRef {:?} into specialization graph",
impl_def_id, trait_ref);
// if the reference itself contains an earlier error (e.g., due to a
// resolution failure), then we just insert the impl at the top level of
// the graph and claim that there's no overlap (in order to supress
// bogus errors).
if trait_ref.references_error() {
debug!("insert: inserting dummy node for erroneous TraitRef {:?}, \
impl_def_id={:?}, trait_def_id={:?}",
trait_ref, impl_def_id, trait_def_id);
self.parent.insert(impl_def_id, trait_def_id);
self.children.entry(trait_def_id).or_insert(Children::new())
.insert_blindly(tcx, impl_def_id);
return Ok(());
}
let mut parent = trait_def_id;
let simplified = fast_reject::simplify_type(tcx, trait_ref.self_ty(), false);
// Descend the specialization tree, where `parent` is the current parent node
loop {
use self::Inserted::*;
let insert_result = self.children.entry(parent).or_insert(Children::new())
.insert(tcx, impl_def_id, simplified)?;
match insert_result {
BecameNewSibling => {
break;
}
Replaced(new_child) => {
self.parent.insert(new_child, impl_def_id);
let mut new_children = Children::new();
new_children.insert_blindly(tcx, new_child);
self.children.insert(impl_def_id, new_children);
break;
}
ShouldRecurseOn(new_parent) => {
parent = new_parent;
}
}
}
self.parent.insert(impl_def_id, parent);
Ok(())
}
/// Insert cached metadata mapping from a child impl back to its parent.
pub fn record_impl_from_cstore(&mut self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
parent: DefId,
child: DefId) {
if self.parent.insert(child, parent).is_some() {
bug!("When recording an impl from the crate store, information about its parent \
was already present.");
}
self.children.entry(parent).or_insert(Children::new()).insert_blindly(tcx, child);
}
/// The parent of a given impl, which is the def id of the trait when the
/// impl is a "specialization root".
pub fn parent(&self, child: DefId) -> DefId {
*self.parent.get(&child).unwrap()
}
}
/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
#[derive(Debug, Copy, Clone)]
pub enum Node {
Impl(DefId),
Trait(DefId),
}
impl<'a, 'gcx, 'tcx> Node {
pub fn is_from_trait(&self) -> bool {
match *self {
Node::Trait(..) => true,
_ => false,
}
}
/// Iterate over the items defined directly by the given (impl or trait) node.
pub fn items(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> NodeItems<'a, 'gcx> {
NodeItems {
tcx: tcx.global_tcx(),
items: tcx.impl_or_trait_items(self.def_id()),
idx: 0,
}
}
pub fn def_id(&self) -> DefId {
match *self {
Node::Impl(did) => did,
Node::Trait(did) => did,
}
}
}
/// An iterator over the items defined within a trait or impl.
pub struct NodeItems<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
items: Rc<Vec<DefId>>,
idx: usize
}
impl<'a, 'tcx> Iterator for NodeItems<'a, 'tcx> {
type Item = ImplOrTraitItem<'tcx>;
fn next(&mut self) -> Option<ImplOrTraitItem<'tcx>> {
if self.idx < self.items.len() {
let item_def_id = self.items[self.idx];
let items_table = self.tcx.impl_or_trait_items.borrow();
let item = items_table[&item_def_id].clone();
self.idx += 1;
Some(item)
} else {
None
}
}
}
pub struct Ancestors<'a, 'tcx: 'a> {
trait_def: &'a TraitDef<'tcx>,
current_source: Option<Node>,
}
impl<'a, 'tcx> Iterator for Ancestors<'a, 'tcx> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
let cur = self.current_source.take();
if let Some(Node::Impl(cur_impl)) = cur {
let parent = self.trait_def.specialization_graph.borrow().parent(cur_impl);
if parent == self.trait_def.def_id() {
self.current_source = Some(Node::Trait(parent));
} else {
self.current_source = Some(Node::Impl(parent));
}
}
cur
}
}
pub struct NodeItem<T> {
pub node: Node,
pub item: T,
}
impl<T> NodeItem<T> {
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> NodeItem<U> {
NodeItem {
node: self.node,
item: f(self.item),
}
}
}
pub struct TypeDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::AssociatedType<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for TypeDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::AssociatedType<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub struct FnDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::Method<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for FnDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::Method<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub struct ConstDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::AssociatedConst<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for ConstDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::AssociatedConst<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
impl<'a, 'gcx, 'tcx> Ancestors<'a, 'tcx> {
/// Search the items from the given ancestors, returning each type definition
/// with the given name.
pub fn type_defs(self, tcx: TyCtxt<'a, 'gcx, 'tcx>, name: Name) -> TypeDefs<'a, 'gcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::TypeTraitItem(assoc_ty) = item {
if assoc_ty.name == name {
return Some(NodeItem {
node: node,
item: assoc_ty,
});
}
}
None
})
});
TypeDefs { iter: Box::new(iter) }
}
/// Search the items from the given ancestors, returning each fn definition
/// with the given name.
pub fn fn_defs(self, tcx: TyCtxt<'a, 'gcx, 'tcx>, name: Name) -> FnDefs<'a, 'gcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::MethodTraitItem(method) = item {
if method.name == name {
return Some(NodeItem {
node: node,
item: method,
});
}
}
None
})
});
FnDefs { iter: Box::new(iter) }
}
/// Search the items from the given ancestors, returning each const
/// definition with the given name.
pub fn const_defs(self, tcx: TyCtxt<'a, 'gcx, 'tcx>, name: Name) -> ConstDefs<'a, 'gcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::ConstTraitItem(konst) = item {
if konst.name == name {
return Some(NodeItem {
node: node,
item: konst,
});
}
}
None
})
});
ConstDefs { iter: Box::new(iter) }
}
}
/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
pub fn ancestors<'a, 'tcx>(trait_def: &'a TraitDef<'tcx>,
start_from_impl: DefId)
-> Ancestors<'a, 'tcx> {
Ancestors {
trait_def: trait_def,
current_source: Some(Node::Impl(start_from_impl)),
}
}