
Add the new `amx` target features and the `movrs` target feature Adds 5 new `amx` target features included in LLVM20. These are guarded under `x86_amx_intrinsics` (#126622) - `amx-avx512` - `amx-fp8` - `amx-movrs` - `amx-tf32` - `amx-transpose` Adds the `movrs` target feature (from #137976). `@rustbot` label O-x86_64 O-x86_32 T-compiler A-target-feature r? `@Amanieu`
819 lines
34 KiB
Rust
819 lines
34 KiB
Rust
use std::collections::VecDeque;
|
|
use std::ffi::{CStr, CString};
|
|
use std::fmt::Write;
|
|
use std::path::Path;
|
|
use std::sync::Once;
|
|
use std::{ptr, slice, str};
|
|
|
|
use libc::c_int;
|
|
use rustc_codegen_ssa::base::wants_wasm_eh;
|
|
use rustc_codegen_ssa::codegen_attrs::check_tied_features;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_data_structures::unord::UnordSet;
|
|
use rustc_fs_util::path_to_c_string;
|
|
use rustc_middle::bug;
|
|
use rustc_session::Session;
|
|
use rustc_session::config::{PrintKind, PrintRequest};
|
|
use rustc_span::Symbol;
|
|
use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport};
|
|
use rustc_target::target_features::{RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES};
|
|
|
|
use crate::back::write::create_informational_target_machine;
|
|
use crate::errors::{
|
|
FixedX18InvalidArch, ForbiddenCTargetFeature, PossibleFeature, UnknownCTargetFeature,
|
|
UnknownCTargetFeaturePrefix, UnstableCTargetFeature,
|
|
};
|
|
use crate::llvm;
|
|
|
|
static INIT: Once = Once::new();
|
|
|
|
pub(crate) fn init(sess: &Session) {
|
|
unsafe {
|
|
// Before we touch LLVM, make sure that multithreading is enabled.
|
|
if llvm::LLVMIsMultithreaded() != 1 {
|
|
bug!("LLVM compiled without support for threads");
|
|
}
|
|
INIT.call_once(|| {
|
|
configure_llvm(sess);
|
|
});
|
|
}
|
|
}
|
|
|
|
fn require_inited() {
|
|
if !INIT.is_completed() {
|
|
bug!("LLVM is not initialized");
|
|
}
|
|
}
|
|
|
|
unsafe fn configure_llvm(sess: &Session) {
|
|
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
|
|
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
|
|
let mut llvm_args = Vec::with_capacity(n_args + 1);
|
|
|
|
unsafe {
|
|
llvm::LLVMRustInstallErrorHandlers();
|
|
}
|
|
// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
|
|
// box for the purpose of launching a debugger. However, on CI this will
|
|
// cause it to hang until it times out, which can take several hours.
|
|
if std::env::var_os("CI").is_some() {
|
|
unsafe {
|
|
llvm::LLVMRustDisableSystemDialogsOnCrash();
|
|
}
|
|
}
|
|
|
|
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
|
|
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
|
|
}
|
|
|
|
let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
|
|
let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
|
|
let sess_args = cg_opts.chain(tg_opts);
|
|
|
|
let user_specified_args: FxHashSet<_> =
|
|
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
|
|
|
|
{
|
|
// This adds the given argument to LLVM. Unless `force` is true
|
|
// user specified arguments are *not* overridden.
|
|
let mut add = |arg: &str, force: bool| {
|
|
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
|
|
let s = CString::new(arg).unwrap();
|
|
llvm_args.push(s.as_ptr());
|
|
llvm_c_strs.push(s);
|
|
}
|
|
};
|
|
// Set the llvm "program name" to make usage and invalid argument messages more clear.
|
|
add("rustc -Cllvm-args=\"...\" with", true);
|
|
if sess.opts.unstable_opts.time_llvm_passes {
|
|
add("-time-passes", false);
|
|
}
|
|
if sess.opts.unstable_opts.print_llvm_passes {
|
|
add("-debug-pass=Structure", false);
|
|
}
|
|
if sess.target.generate_arange_section
|
|
&& !sess.opts.unstable_opts.no_generate_arange_section
|
|
{
|
|
add("-generate-arange-section", false);
|
|
}
|
|
|
|
match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
|
|
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
|
|
MergeFunctions::Aliases => {
|
|
add("-mergefunc-use-aliases", false);
|
|
}
|
|
}
|
|
|
|
if wants_wasm_eh(sess) {
|
|
add("-wasm-enable-eh", false);
|
|
}
|
|
|
|
if sess.target.os == "emscripten"
|
|
&& !sess.opts.unstable_opts.emscripten_wasm_eh
|
|
&& sess.panic_strategy() == PanicStrategy::Unwind
|
|
{
|
|
add("-enable-emscripten-cxx-exceptions", false);
|
|
}
|
|
|
|
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
|
|
// during inlining. Unfortunately these may block other optimizations.
|
|
add("-preserve-alignment-assumptions-during-inlining=false", false);
|
|
|
|
// Use non-zero `import-instr-limit` multiplier for cold callsites.
|
|
add("-import-cold-multiplier=0.1", false);
|
|
|
|
if sess.print_llvm_stats() {
|
|
add("-stats", false);
|
|
}
|
|
|
|
for arg in sess_args {
|
|
add(&(*arg), true);
|
|
}
|
|
|
|
match (
|
|
sess.opts.unstable_opts.small_data_threshold,
|
|
sess.target.small_data_threshold_support(),
|
|
) {
|
|
// Set up the small-data optimization limit for architectures that use
|
|
// an LLVM argument to control this.
|
|
(Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
|
|
add(&format!("--{arg}={threshold}"), false)
|
|
}
|
|
_ => (),
|
|
};
|
|
}
|
|
|
|
if sess.opts.unstable_opts.llvm_time_trace {
|
|
unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
|
|
}
|
|
|
|
rustc_llvm::initialize_available_targets();
|
|
|
|
unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
|
|
}
|
|
|
|
pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
|
|
unsafe {
|
|
let file_name = path_to_c_string(file_name);
|
|
llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
|
|
}
|
|
}
|
|
|
|
enum TargetFeatureFoldStrength<'a> {
|
|
// The feature is only tied when enabling the feature, disabling
|
|
// this feature shouldn't disable the tied feature.
|
|
EnableOnly(&'a str),
|
|
// The feature is tied for both enabling and disabling this feature.
|
|
Both(&'a str),
|
|
}
|
|
|
|
impl<'a> TargetFeatureFoldStrength<'a> {
|
|
fn as_str(&self) -> &'a str {
|
|
match self {
|
|
TargetFeatureFoldStrength::EnableOnly(feat) => feat,
|
|
TargetFeatureFoldStrength::Both(feat) => feat,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct LLVMFeature<'a> {
|
|
llvm_feature_name: &'a str,
|
|
dependency: Option<TargetFeatureFoldStrength<'a>>,
|
|
}
|
|
|
|
impl<'a> LLVMFeature<'a> {
|
|
fn new(llvm_feature_name: &'a str) -> Self {
|
|
Self { llvm_feature_name, dependency: None }
|
|
}
|
|
|
|
fn with_dependency(
|
|
llvm_feature_name: &'a str,
|
|
dependency: TargetFeatureFoldStrength<'a>,
|
|
) -> Self {
|
|
Self { llvm_feature_name, dependency: Some(dependency) }
|
|
}
|
|
|
|
fn contains(&self, feat: &str) -> bool {
|
|
self.iter().any(|dep| dep == feat)
|
|
}
|
|
|
|
fn iter(&'a self) -> impl Iterator<Item = &'a str> {
|
|
let dependencies = self.dependency.iter().map(|feat| feat.as_str());
|
|
std::iter::once(self.llvm_feature_name).chain(dependencies)
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for LLVMFeature<'a> {
|
|
type Item = &'a str;
|
|
type IntoIter = impl Iterator<Item = &'a str>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let dependencies = self.dependency.into_iter().map(|feat| feat.as_str());
|
|
std::iter::once(self.llvm_feature_name).chain(dependencies)
|
|
}
|
|
}
|
|
|
|
// WARNING: the features after applying `to_llvm_features` must be known
|
|
// to LLVM or the feature detection code will walk past the end of the feature
|
|
// array, leading to crashes.
|
|
//
|
|
// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
|
|
// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
|
|
//
|
|
// Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/.
|
|
// The commit in use can be found via the `llvm-project` submodule in
|
|
// https://github.com/rust-lang/rust/tree/master/src Though note that Rust can also be build with
|
|
// an external precompiled version of LLVM which might lead to failures if the oldest tested /
|
|
// supported LLVM version doesn't yet support the relevant intrinsics.
|
|
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
|
|
let arch = if sess.target.arch == "x86_64" {
|
|
"x86"
|
|
} else if sess.target.arch == "arm64ec" {
|
|
"aarch64"
|
|
} else if sess.target.arch == "sparc64" {
|
|
"sparc"
|
|
} else if sess.target.arch == "powerpc64" {
|
|
"powerpc"
|
|
} else {
|
|
&*sess.target.arch
|
|
};
|
|
match (arch, s) {
|
|
("x86", "sse4.2") => Some(LLVMFeature::with_dependency(
|
|
"sse4.2",
|
|
TargetFeatureFoldStrength::EnableOnly("crc32"),
|
|
)),
|
|
("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
|
|
("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
|
|
("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
|
|
("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
|
|
("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
|
|
("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
|
|
("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
|
|
("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
|
|
("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
|
|
("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
|
|
("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
|
|
("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
|
|
("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
|
|
("aarch64", "pauth-lr") if get_version().0 < 19 => None,
|
|
// Before LLVM 20 those two features were packaged together as b16b16
|
|
("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
|
|
// Rust ties fp and neon together.
|
|
("aarch64", "neon") => {
|
|
Some(LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8")))
|
|
}
|
|
// In LLVM neon implicitly enables fp, but we manually enable
|
|
// neon when a feature only implicitly enables fp
|
|
("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
|
|
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("aarch64", "fpmr") if get_version().0 != 18 => None,
|
|
("arm", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
|
// In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single
|
|
// feature called `fast-unaligned-access`. In LLVM 19, it was split back out.
|
|
("riscv32" | "riscv64", "unaligned-scalar-mem" | "unaligned-vector-mem")
|
|
if get_version().0 == 18 =>
|
|
{
|
|
Some(LLVMFeature::new("fast-unaligned-access"))
|
|
}
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("riscv32" | "riscv64", "zaamo") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zabha") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zalrsc") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zama16b") if get_version().0 < 19 => None,
|
|
("riscv32" | "riscv64", "zacas") if get_version().0 < 20 => None,
|
|
// Enable the evex512 target feature if an avx512 target feature is enabled.
|
|
("x86", s) if s.starts_with("avx512") => {
|
|
Some(LLVMFeature::with_dependency(s, TargetFeatureFoldStrength::EnableOnly("evex512")))
|
|
}
|
|
// Support for `wide-arithmetic` will first land in LLVM 20 as part of
|
|
// llvm/llvm-project#111598
|
|
("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None,
|
|
("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")),
|
|
// In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used".
|
|
// https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28
|
|
// Before LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available".
|
|
// https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26
|
|
("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")),
|
|
("sparc", "v8plus") if get_version().0 < 19 => None,
|
|
("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")),
|
|
// These new `amx` variants and `movrs` were introduced in LLVM20
|
|
("x86", "amx-avx512" | "amx-fp8" | "amx-movrs" | "amx-tf32" | "amx-transpose")
|
|
if get_version().0 < 20 =>
|
|
{
|
|
None
|
|
}
|
|
("x86", "movrs") if get_version().0 < 20 => None,
|
|
(_, s) => Some(LLVMFeature::new(s)),
|
|
}
|
|
}
|
|
|
|
/// Used to generate cfg variables and apply features.
|
|
/// Must express features in the way Rust understands them.
|
|
///
|
|
/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
|
|
pub(crate) fn target_features_cfg(sess: &Session) -> (Vec<Symbol>, Vec<Symbol>) {
|
|
// Add base features for the target.
|
|
// We do *not* add the -Ctarget-features there, and instead duplicate the logic for that below.
|
|
// The reason is that if LLVM considers a feature implied but we do not, we don't want that to
|
|
// show up in `cfg`. That way, `cfg` is entirely under our control -- except for the handling of
|
|
// the target CPU, that is still expanded to target features (with all their implied features)
|
|
// by LLVM.
|
|
let target_machine = create_informational_target_machine(sess, true);
|
|
// Compute which of the known target features are enabled in the 'base' target machine. We only
|
|
// consider "supported" features; "forbidden" features are not reflected in `cfg` as of now.
|
|
let mut features: FxHashSet<Symbol> = sess
|
|
.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter(|(feature, _, _)| {
|
|
// skip checking special features, as LLVM may not understand them
|
|
if RUSTC_SPECIAL_FEATURES.contains(feature) {
|
|
return true;
|
|
}
|
|
if let Some(feat) = to_llvm_features(sess, feature) {
|
|
for llvm_feature in feat {
|
|
let cstr = SmallCStr::new(llvm_feature);
|
|
// `LLVMRustHasFeature` is moderately expensive. On targets with many
|
|
// features (e.g. x86) these calls take a non-trivial fraction of runtime
|
|
// when compiling very small programs.
|
|
if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
})
|
|
.map(|(feature, _, _)| Symbol::intern(feature))
|
|
.collect();
|
|
|
|
// Add enabled and remove disabled features.
|
|
for (enabled, feature) in
|
|
sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() {
|
|
Some('+') => Some((true, Symbol::intern(&s[1..]))),
|
|
Some('-') => Some((false, Symbol::intern(&s[1..]))),
|
|
_ => None,
|
|
})
|
|
{
|
|
if enabled {
|
|
// Also add all transitively implied features.
|
|
|
|
// We don't care about the order in `features` since the only thing we use it for is the
|
|
// `features.contains` below.
|
|
#[allow(rustc::potential_query_instability)]
|
|
features.extend(
|
|
sess.target
|
|
.implied_target_features(feature.as_str())
|
|
.iter()
|
|
.map(|s| Symbol::intern(s)),
|
|
);
|
|
} else {
|
|
// Remove transitively reverse-implied features.
|
|
|
|
// We don't care about the order in `features` since the only thing we use it for is the
|
|
// `features.contains` below.
|
|
#[allow(rustc::potential_query_instability)]
|
|
features.retain(|f| {
|
|
if sess.target.implied_target_features(f.as_str()).contains(&feature.as_str()) {
|
|
// If `f` if implies `feature`, then `!feature` implies `!f`, so we have to
|
|
// remove `f`. (This is the standard logical contraposition principle.)
|
|
false
|
|
} else {
|
|
// We can keep `f`.
|
|
true
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// Filter enabled features based on feature gates.
|
|
let f = |allow_unstable| {
|
|
sess.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter_map(|(feature, gate, _)| {
|
|
// The `allow_unstable` set is used by rustc internally to determined which target
|
|
// features are truly available, so we want to return even perma-unstable
|
|
// "forbidden" features.
|
|
if allow_unstable
|
|
|| (gate.in_cfg()
|
|
&& (sess.is_nightly_build() || gate.requires_nightly().is_none()))
|
|
{
|
|
Some(Symbol::intern(feature))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.filter(|feature| features.contains(&feature))
|
|
.collect()
|
|
};
|
|
|
|
let target_features = f(false);
|
|
let unstable_target_features = f(true);
|
|
(target_features, unstable_target_features)
|
|
}
|
|
|
|
pub(crate) fn print_version() {
|
|
let (major, minor, patch) = get_version();
|
|
println!("LLVM version: {major}.{minor}.{patch}");
|
|
}
|
|
|
|
pub(crate) fn get_version() -> (u32, u32, u32) {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
|
|
}
|
|
}
|
|
|
|
pub(crate) fn print_passes() {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
llvm::LLVMRustPrintPasses();
|
|
}
|
|
}
|
|
|
|
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
|
|
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
|
|
let mut ret = Vec::with_capacity(len);
|
|
for i in 0..len {
|
|
unsafe {
|
|
let mut feature = ptr::null();
|
|
let mut desc = ptr::null();
|
|
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
|
|
if feature.is_null() || desc.is_null() {
|
|
bug!("LLVM returned a `null` target feature string");
|
|
}
|
|
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
ret.push((feature, desc));
|
|
}
|
|
}
|
|
ret
|
|
}
|
|
|
|
pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
|
|
require_inited();
|
|
let tm = create_informational_target_machine(sess, false);
|
|
match req.kind {
|
|
PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out),
|
|
PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out),
|
|
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
|
|
}
|
|
}
|
|
|
|
fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let cpu_names = llvm::build_string(|s| unsafe {
|
|
llvm::LLVMRustPrintTargetCPUs(&tm, s);
|
|
})
|
|
.unwrap();
|
|
|
|
struct Cpu<'a> {
|
|
cpu_name: &'a str,
|
|
remark: String,
|
|
}
|
|
// Compare CPU against current target to label the default.
|
|
let target_cpu = handle_native(&sess.target.cpu);
|
|
let make_remark = |cpu_name| {
|
|
if cpu_name == target_cpu {
|
|
// FIXME(#132514): This prints the LLVM target string, which can be
|
|
// different from the Rust target string. Is that intended?
|
|
let target = &sess.target.llvm_target;
|
|
format!(
|
|
" - This is the default target CPU for the current build target (currently {target})."
|
|
)
|
|
} else {
|
|
"".to_owned()
|
|
}
|
|
};
|
|
let mut cpus = cpu_names
|
|
.lines()
|
|
.map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
|
|
.collect::<VecDeque<_>>();
|
|
|
|
// Only print the "native" entry when host and target are the same arch,
|
|
// since otherwise it could be wrong or misleading.
|
|
if sess.host.arch == sess.target.arch {
|
|
let host = get_host_cpu_name();
|
|
cpus.push_front(Cpu {
|
|
cpu_name: "native",
|
|
remark: format!(" - Select the CPU of the current host (currently {host})."),
|
|
});
|
|
}
|
|
|
|
let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
|
|
writeln!(out, "Available CPUs for this target:").unwrap();
|
|
for Cpu { cpu_name, remark } in cpus {
|
|
// Only pad the CPU name if there's a remark to print after it.
|
|
let width = if remark.is_empty() { 0 } else { max_name_width };
|
|
writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
|
|
}
|
|
}
|
|
|
|
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let mut llvm_target_features = llvm_target_features(tm);
|
|
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
|
|
let mut rustc_target_features = sess
|
|
.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter_map(|(feature, gate, _implied)| {
|
|
if !gate.in_cfg() {
|
|
// Only list (experimentally) supported features.
|
|
return None;
|
|
}
|
|
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
|
|
// strings.
|
|
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
|
|
let desc =
|
|
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
|
|
Some(index) => {
|
|
known_llvm_target_features.insert(llvm_feature);
|
|
llvm_target_features[index].1
|
|
}
|
|
None => "",
|
|
};
|
|
|
|
Some((*feature, desc))
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Since we add this at the end ...
|
|
rustc_target_features.extend_from_slice(&[(
|
|
"crt-static",
|
|
"Enables C Run-time Libraries to be statically linked",
|
|
)]);
|
|
// ... we need to sort the list again.
|
|
rustc_target_features.sort();
|
|
|
|
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
|
|
|
|
let max_feature_len = llvm_target_features
|
|
.iter()
|
|
.chain(rustc_target_features.iter())
|
|
.map(|(feature, _desc)| feature.len())
|
|
.max()
|
|
.unwrap_or(0);
|
|
|
|
writeln!(out, "Features supported by rustc for this target:").unwrap();
|
|
for (feature, desc) in &rustc_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
|
|
for (feature, desc) in &llvm_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
if llvm_target_features.is_empty() {
|
|
writeln!(out, " Target features listing is not supported by this LLVM version.")
|
|
.unwrap();
|
|
}
|
|
writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
|
|
writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
|
|
.unwrap();
|
|
writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
|
|
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
|
|
}
|
|
|
|
/// Returns the host CPU name, according to LLVM.
|
|
fn get_host_cpu_name() -> &'static str {
|
|
let mut len = 0;
|
|
// SAFETY: The underlying C++ global function returns a `StringRef` that
|
|
// isn't tied to any particular backing buffer, so it must be 'static.
|
|
let slice: &'static [u8] = unsafe {
|
|
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
|
|
assert!(!ptr.is_null());
|
|
slice::from_raw_parts(ptr, len)
|
|
};
|
|
str::from_utf8(slice).expect("host CPU name should be UTF-8")
|
|
}
|
|
|
|
/// If the given string is `"native"`, returns the host CPU name according to
|
|
/// LLVM. Otherwise, the string is returned as-is.
|
|
fn handle_native(cpu_name: &str) -> &str {
|
|
match cpu_name {
|
|
"native" => get_host_cpu_name(),
|
|
_ => cpu_name,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn target_cpu(sess: &Session) -> &str {
|
|
let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
|
|
handle_native(cpu_name)
|
|
}
|
|
|
|
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
|
|
/// `--target` and similar).
|
|
pub(crate) fn global_llvm_features(
|
|
sess: &Session,
|
|
diagnostics: bool,
|
|
only_base_features: bool,
|
|
) -> Vec<String> {
|
|
// Features that come earlier are overridden by conflicting features later in the string.
|
|
// Typically we'll want more explicit settings to override the implicit ones, so:
|
|
//
|
|
// * Features from -Ctarget-cpu=*; are overridden by [^1]
|
|
// * Features implied by --target; are overridden by
|
|
// * Features from -Ctarget-feature; are overridden by
|
|
// * function specific features.
|
|
//
|
|
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
|
|
// through LLVM TargetMachine implementation.
|
|
//
|
|
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
|
|
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
|
|
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
|
|
// the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
|
|
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
|
|
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
|
|
// should be taken in cases like these.
|
|
let mut features = vec![];
|
|
|
|
// -Ctarget-cpu=native
|
|
match sess.opts.cg.target_cpu {
|
|
Some(ref s) if s == "native" => {
|
|
// We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
|
|
// that for LLVM, so the features implied by that CPU name will be available everywhere.
|
|
// However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
|
|
// some of the instructions are available or not. So we have to also explicitly ask for
|
|
// the exact set of features available on the host, and enable all of them.
|
|
let features_string = unsafe {
|
|
let ptr = llvm::LLVMGetHostCPUFeatures();
|
|
let features_string = if !ptr.is_null() {
|
|
CStr::from_ptr(ptr)
|
|
.to_str()
|
|
.unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 features string: {}", e);
|
|
})
|
|
.to_owned()
|
|
} else {
|
|
bug!("could not allocate host CPU features, LLVM returned a `null` string");
|
|
};
|
|
|
|
llvm::LLVMDisposeMessage(ptr);
|
|
|
|
features_string
|
|
};
|
|
features.extend(features_string.split(',').map(String::from));
|
|
}
|
|
Some(_) | None => {}
|
|
};
|
|
|
|
// Features implied by an implicit or explicit `--target`.
|
|
features.extend(
|
|
sess.target
|
|
.features
|
|
.split(',')
|
|
.filter(|v| !v.is_empty())
|
|
// Drop +v8plus feature introduced in LLVM 20.
|
|
.filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0))
|
|
.map(String::from),
|
|
);
|
|
|
|
if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
|
|
features.push("+exception-handling".into());
|
|
}
|
|
|
|
// -Ctarget-features
|
|
if !only_base_features {
|
|
let known_features = sess.target.rust_target_features();
|
|
// Will only be filled when `diagnostics` is set!
|
|
let mut featsmap = FxHashMap::default();
|
|
|
|
// Compute implied features
|
|
let mut all_rust_features = vec![];
|
|
for feature in sess.opts.cg.target_feature.split(',') {
|
|
if let Some(feature) = feature.strip_prefix('+') {
|
|
all_rust_features.extend(
|
|
UnordSet::from(sess.target.implied_target_features(feature))
|
|
.to_sorted_stable_ord()
|
|
.iter()
|
|
.map(|&&s| (true, s)),
|
|
)
|
|
} else if let Some(feature) = feature.strip_prefix('-') {
|
|
// FIXME: Why do we not remove implied features on "-" here?
|
|
// We do the equivalent above in `target_features_cfg`.
|
|
// See <https://github.com/rust-lang/rust/issues/134792>.
|
|
all_rust_features.push((false, feature));
|
|
} else if !feature.is_empty() {
|
|
if diagnostics {
|
|
sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature });
|
|
}
|
|
}
|
|
}
|
|
// Remove features that are meant for rustc, not LLVM.
|
|
all_rust_features.retain(|(_, feature)| {
|
|
// Retain if it is not a rustc feature
|
|
!RUSTC_SPECIFIC_FEATURES.contains(feature)
|
|
});
|
|
|
|
// Check feature validity.
|
|
if diagnostics {
|
|
for &(enable, feature) in &all_rust_features {
|
|
let feature_state = known_features.iter().find(|&&(v, _, _)| v == feature);
|
|
match feature_state {
|
|
None => {
|
|
let rust_feature =
|
|
known_features.iter().find_map(|&(rust_feature, _, _)| {
|
|
let llvm_features = to_llvm_features(sess, rust_feature)?;
|
|
if llvm_features.contains(feature)
|
|
&& !llvm_features.contains(rust_feature)
|
|
{
|
|
Some(rust_feature)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
let unknown_feature = if let Some(rust_feature) = rust_feature {
|
|
UnknownCTargetFeature {
|
|
feature,
|
|
rust_feature: PossibleFeature::Some { rust_feature },
|
|
}
|
|
} else {
|
|
UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None }
|
|
};
|
|
sess.dcx().emit_warn(unknown_feature);
|
|
}
|
|
Some((_, stability, _)) => {
|
|
if let Err(reason) = stability.toggle_allowed() {
|
|
sess.dcx().emit_warn(ForbiddenCTargetFeature {
|
|
feature,
|
|
enabled: if enable { "enabled" } else { "disabled" },
|
|
reason,
|
|
});
|
|
} else if stability.requires_nightly().is_some() {
|
|
// An unstable feature. Warn about using it. It makes little sense
|
|
// to hard-error here since we just warn about fully unknown
|
|
// features above.
|
|
sess.dcx().emit_warn(UnstableCTargetFeature { feature });
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME(nagisa): figure out how to not allocate a full hashset here.
|
|
featsmap.insert(feature, enable);
|
|
}
|
|
}
|
|
|
|
// Translate this into LLVM features.
|
|
let feats = all_rust_features
|
|
.iter()
|
|
.filter_map(|&(enable, feature)| {
|
|
let enable_disable = if enable { '+' } else { '-' };
|
|
// We run through `to_llvm_features` when
|
|
// passing requests down to LLVM. This means that all in-language
|
|
// features also work on the command line instead of having two
|
|
// different names when the LLVM name and the Rust name differ.
|
|
let llvm_feature = to_llvm_features(sess, feature)?;
|
|
|
|
Some(
|
|
std::iter::once(format!(
|
|
"{}{}",
|
|
enable_disable, llvm_feature.llvm_feature_name
|
|
))
|
|
.chain(llvm_feature.dependency.into_iter().filter_map(
|
|
move |feat| match (enable, feat) {
|
|
(_, TargetFeatureFoldStrength::Both(f))
|
|
| (true, TargetFeatureFoldStrength::EnableOnly(f)) => {
|
|
Some(format!("{enable_disable}{f}"))
|
|
}
|
|
_ => None,
|
|
},
|
|
)),
|
|
)
|
|
})
|
|
.flatten();
|
|
features.extend(feats);
|
|
|
|
if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) {
|
|
sess.dcx().emit_err(rustc_codegen_ssa::errors::TargetFeatureDisableOrEnable {
|
|
features: f,
|
|
span: None,
|
|
missing_features: None,
|
|
});
|
|
}
|
|
}
|
|
|
|
// -Zfixed-x18
|
|
if sess.opts.unstable_opts.fixed_x18 {
|
|
if sess.target.arch != "aarch64" {
|
|
sess.dcx().emit_fatal(FixedX18InvalidArch { arch: &sess.target.arch });
|
|
} else {
|
|
features.push("+reserve-x18".into());
|
|
}
|
|
}
|
|
|
|
features
|
|
}
|
|
|
|
pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
|
|
let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
|
|
Some(handle_native(name))
|
|
}
|