//! Handles codegen of callees as well as other call-related //! things. Callees are a superset of normal rust values and sometimes //! have different representations. In particular, top-level fn items //! and methods are represented as just a fn ptr and not a full //! closure. use rustc_codegen_ssa::common; use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt}; use rustc_middle::ty::{self, Instance, TypeVisitableExt}; use tracing::debug; use crate::context::CodegenCx; use crate::llvm; use crate::value::Value; /// Codegens a reference to a fn/method item, monomorphizing and /// inlining as it goes. pub(crate) fn get_fn<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>, instance: Instance<'tcx>) -> &'ll Value { let tcx = cx.tcx(); debug!("get_fn(instance={:?})", instance); assert!(!instance.args.has_infer()); assert!(!instance.args.has_escaping_bound_vars()); if let Some(&llfn) = cx.instances.borrow().get(&instance) { return llfn; } let sym = tcx.symbol_name(instance).name; debug!( "get_fn({:?}: {:?}) => {}", instance, instance.ty(cx.tcx(), ty::ParamEnv::reveal_all()), sym ); let fn_abi = cx.fn_abi_of_instance(instance, ty::List::empty()); let llfn = if let Some(llfn) = cx.get_declared_value(sym) { llfn } else { let instance_def_id = instance.def_id(); let llfn = if tcx.sess.target.arch == "x86" && let Some(dllimport) = crate::common::get_dllimport(tcx, instance_def_id, sym) { // When calling functions in generated import libraries, MSVC needs // the fully decorated name (as would have been in the declaring // object file), but MinGW wants the name as exported (as would be // in the def file) which may be missing decorations. let mingw_gnu_toolchain = common::is_mingw_gnu_toolchain(&tcx.sess.target); let llfn = cx.declare_fn( &common::i686_decorated_name( dllimport, mingw_gnu_toolchain, true, !mingw_gnu_toolchain, ), fn_abi, Some(instance), ); // Fix for https://github.com/rust-lang/rust/issues/104453 // On x86 Windows, LLVM uses 'L' as the prefix for any private // global symbols, so when we create an undecorated function symbol // that begins with an 'L' LLVM misinterprets that as a private // global symbol that it created and so fails the compilation at a // later stage since such a symbol must have a definition. // // To avoid this, we set the Storage Class to "DllImport" so that // LLVM will prefix the name with `__imp_`. Ideally, we'd like the // existing logic below to set the Storage Class, but it has an // exemption for MinGW for backwards compatibility. unsafe { llvm::LLVMSetDLLStorageClass(llfn, llvm::DLLStorageClass::DllImport); } llfn } else { cx.declare_fn(sym, fn_abi, Some(instance)) }; debug!("get_fn: not casting pointer!"); // Apply an appropriate linkage/visibility value to our item that we // just declared. // // This is sort of subtle. Inside our codegen unit we started off // compilation by predefining all our own `MonoItem` instances. That // is, everything we're codegenning ourselves is already defined. That // means that anything we're actually codegenning in this codegen unit // will have hit the above branch in `get_declared_value`. As a result, // we're guaranteed here that we're declaring a symbol that won't get // defined, or in other words we're referencing a value from another // codegen unit or even another crate. // // So because this is a foreign value we blanket apply an external // linkage directive because it's coming from a different object file. // The visibility here is where it gets tricky. This symbol could be // referencing some foreign crate or foreign library (an `extern` // block) in which case we want to leave the default visibility. We may // also, though, have multiple codegen units. It could be a // monomorphization, in which case its expected visibility depends on // whether we are sharing generics or not. The important thing here is // that the visibility we apply to the declaration is the same one that // has been applied to the definition (wherever that definition may be). llvm::set_linkage(llfn, llvm::Linkage::ExternalLinkage); unsafe { let is_generic = instance.args.non_erasable_generics().next().is_some(); let is_hidden = if is_generic { // This is a monomorphization of a generic function. if !cx.tcx.sess.opts.share_generics() { // When not sharing generics, all instances are in the same // crate and have hidden visibility. true } else { if let Some(instance_def_id) = instance_def_id.as_local() { // This is a monomorphization of a generic function // defined in the current crate. It is hidden if: // - the definition is unreachable for downstream // crates, or // - the current crate does not re-export generics // (because the crate is a C library or executable) cx.tcx.is_unreachable_local_definition(instance_def_id) || !cx.tcx.local_crate_exports_generics() } else { // This is a monomorphization of a generic function // defined in an upstream crate. It is hidden if: // - it is instantiated in this crate, and // - the current crate does not re-export generics instance.upstream_monomorphization(tcx).is_none() && !cx.tcx.local_crate_exports_generics() } } } else { // This is a non-generic function. It is hidden if: // - it is instantiated in the local crate, and // - it is defined an upstream crate (non-local), or // - it is not reachable cx.tcx.is_codegened_item(instance_def_id) && (!instance_def_id.is_local() || !cx.tcx.is_reachable_non_generic(instance_def_id)) }; if is_hidden { llvm::set_visibility(llfn, llvm::Visibility::Hidden); } // MinGW: For backward compatibility we rely on the linker to decide whether it // should use dllimport for functions. if cx.use_dll_storage_attrs && let Some(library) = tcx.native_library(instance_def_id) && library.kind.is_dllimport() && !matches!(tcx.sess.target.env.as_ref(), "gnu" | "uclibc") { llvm::LLVMSetDLLStorageClass(llfn, llvm::DLLStorageClass::DllImport); } if cx.should_assume_dso_local(llfn, true) { llvm::LLVMRustSetDSOLocal(llfn, true); } } llfn }; cx.instances.borrow_mut().insert(instance, llfn); llfn }