//! Code shared by trait and projection goals for candidate assembly. pub(super) mod structural_traits; use derive_where::derive_where; use rustc_type_ir::fold::TypeFoldable; use rustc_type_ir::inherent::*; use rustc_type_ir::lang_items::TraitSolverLangItem; use rustc_type_ir::solve::inspect; use rustc_type_ir::visit::TypeVisitableExt as _; use rustc_type_ir::{self as ty, Interner, Upcast as _, elaborate}; use tracing::{debug, instrument}; use crate::delegate::SolverDelegate; use crate::solve::inspect::ProbeKind; use crate::solve::{ BuiltinImplSource, CandidateSource, CanonicalResponse, Certainty, EvalCtxt, Goal, GoalSource, MaybeCause, NoSolution, QueryResult, SolverMode, }; /// A candidate is a possible way to prove a goal. /// /// It consists of both the `source`, which describes how that goal would be proven, /// and the `result` when using the given `source`. #[derive_where(Clone, Debug; I: Interner)] pub(super) struct Candidate { pub(super) source: CandidateSource, pub(super) result: CanonicalResponse, } /// Methods used to assemble candidates for either trait or projection goals. pub(super) trait GoalKind::Interner>: TypeFoldable + Copy + Eq + std::fmt::Display where D: SolverDelegate, I: Interner, { fn self_ty(self) -> I::Ty; fn trait_ref(self, cx: I) -> ty::TraitRef; fn with_self_ty(self, cx: I, self_ty: I::Ty) -> Self; fn trait_def_id(self, cx: I) -> I::DefId; /// Try equating an assumption predicate against a goal's predicate. If it /// holds, then execute the `then` callback, which should do any additional /// work, then produce a response (typically by executing /// [`EvalCtxt::evaluate_added_goals_and_make_canonical_response`]). fn probe_and_match_goal_against_assumption( ecx: &mut EvalCtxt<'_, D>, source: CandidateSource, goal: Goal, assumption: I::Clause, then: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult, ) -> Result, NoSolution>; /// Consider a clause, which consists of a "assumption" and some "requirements", /// to satisfy a goal. If the requirements hold, then attempt to satisfy our /// goal by equating it with the assumption. fn probe_and_consider_implied_clause( ecx: &mut EvalCtxt<'_, D>, parent_source: CandidateSource, goal: Goal, assumption: I::Clause, requirements: impl IntoIterator)>, ) -> Result, NoSolution> { Self::probe_and_match_goal_against_assumption(ecx, parent_source, goal, assumption, |ecx| { for (nested_source, goal) in requirements { ecx.add_goal(nested_source, goal); } ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) }) } /// Consider a clause specifically for a `dyn Trait` self type. This requires /// additionally checking all of the supertraits and object bounds to hold, /// since they're not implied by the well-formedness of the object type. fn probe_and_consider_object_bound_candidate( ecx: &mut EvalCtxt<'_, D>, source: CandidateSource, goal: Goal, assumption: I::Clause, ) -> Result, NoSolution> { Self::probe_and_match_goal_against_assumption(ecx, source, goal, assumption, |ecx| { let cx = ecx.cx(); let ty::Dynamic(bounds, _, _) = goal.predicate.self_ty().kind() else { panic!("expected object type in `probe_and_consider_object_bound_candidate`"); }; ecx.add_goals( GoalSource::ImplWhereBound, structural_traits::predicates_for_object_candidate( ecx, goal.param_env, goal.predicate.trait_ref(cx), bounds, ), ); ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) }) } /// Assemble additional assumptions for an alias that are not included /// in the item bounds of the alias. For now, this is limited to the /// `implied_const_bounds` for an associated type. fn consider_additional_alias_assumptions( ecx: &mut EvalCtxt<'_, D>, goal: Goal, alias_ty: ty::AliasTy, ) -> Vec>; fn consider_impl_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, impl_def_id: I::DefId, ) -> Result, NoSolution>; /// If the predicate contained an error, we want to avoid emitting unnecessary trait /// errors but still want to emit errors for other trait goals. We have some special /// handling for this case. /// /// Trait goals always hold while projection goals never do. This is a bit arbitrary /// but prevents incorrect normalization while hiding any trait errors. fn consider_error_guaranteed_candidate( ecx: &mut EvalCtxt<'_, D>, guar: I::ErrorGuaranteed, ) -> Result, NoSolution>; /// A type implements an `auto trait` if its components do as well. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_auto_trait`]. fn consider_auto_trait_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A trait alias holds if the RHS traits and `where` clauses hold. fn consider_trait_alias_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A type is `Sized` if its tail component is `Sized`. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_sized_trait`]. fn consider_builtin_sized_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_copy_clone_trait`]. fn consider_builtin_copy_clone_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A type is `PointerLike` if we can compute its layout, and that layout /// matches the layout of `usize`. fn consider_builtin_pointer_like_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A type is a `FnPtr` if it is of `FnPtr` type. fn consider_builtin_fn_ptr_trait_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn` /// family of traits where `A` is given by the signature of the type. fn consider_builtin_fn_trait_candidates( ecx: &mut EvalCtxt<'_, D>, goal: Goal, kind: ty::ClosureKind, ) -> Result, NoSolution>; /// An async closure is known to implement the `AsyncFn` family of traits /// where `A` is given by the signature of the type. fn consider_builtin_async_fn_trait_candidates( ecx: &mut EvalCtxt<'_, D>, goal: Goal, kind: ty::ClosureKind, ) -> Result, NoSolution>; /// Compute the built-in logic of the `AsyncFnKindHelper` helper trait, which /// is used internally to delay computation for async closures until after /// upvar analysis is performed in HIR typeck. fn consider_builtin_async_fn_kind_helper_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// `Tuple` is implemented if the `Self` type is a tuple. fn consider_builtin_tuple_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// `Pointee` is always implemented. /// /// See the projection implementation for the `Metadata` types for all of /// the built-in types. For structs, the metadata type is given by the struct /// tail. fn consider_builtin_pointee_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A coroutine (that comes from an `async` desugaring) is known to implement /// `Future`, where `O` is given by the coroutine's return type /// that was computed during type-checking. fn consider_builtin_future_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A coroutine (that comes from a `gen` desugaring) is known to implement /// `Iterator`, where `O` is given by the generator's yield type /// that was computed during type-checking. fn consider_builtin_iterator_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A coroutine (that comes from a `gen` desugaring) is known to implement /// `FusedIterator` fn consider_builtin_fused_iterator_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; fn consider_builtin_async_iterator_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// A coroutine (that doesn't come from an `async` or `gen` desugaring) is known to /// implement `Coroutine`, given the resume, yield, /// and return types of the coroutine computed during type-checking. fn consider_builtin_coroutine_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; fn consider_builtin_discriminant_kind_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; fn consider_builtin_async_destruct_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; fn consider_builtin_destruct_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; fn consider_builtin_transmute_candidate( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Result, NoSolution>; /// Consider (possibly several) candidates to upcast or unsize a type to another /// type, excluding the coercion of a sized type into a `dyn Trait`. /// /// We return the `BuiltinImplSource` for each candidate as it is needed /// for unsize coercion in hir typeck and because it is difficult to /// otherwise recompute this for codegen. This is a bit of a mess but the /// easiest way to maintain the existing behavior for now. fn consider_structural_builtin_unsize_candidates( ecx: &mut EvalCtxt<'_, D>, goal: Goal, ) -> Vec>; } impl EvalCtxt<'_, D> where D: SolverDelegate, I: Interner, { pub(super) fn assemble_and_evaluate_candidates>( &mut self, goal: Goal, ) -> Vec> { let Ok(normalized_self_ty) = self.structurally_normalize_ty(goal.param_env, goal.predicate.self_ty()) else { // FIXME: We register a fake candidate when normalization fails so that // we can point at the reason for *why*. I'm tempted to say that this // is the wrong way to do this, though. let result = self.probe(|&result| inspect::ProbeKind::RigidAlias { result }).enter(|this| { let normalized_ty = this.next_ty_infer(); let alias_relate_goal = Goal::new( this.cx(), goal.param_env, ty::PredicateKind::AliasRelate( goal.predicate.self_ty().into(), normalized_ty.into(), ty::AliasRelationDirection::Equate, ), ); this.add_goal(GoalSource::AliasWellFormed, alias_relate_goal); this.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) }); assert_eq!(result, Err(NoSolution)); return vec![]; }; if normalized_self_ty.is_ty_var() { debug!("self type has been normalized to infer"); return self.forced_ambiguity(MaybeCause::Ambiguity).into_iter().collect(); } let goal: Goal = goal.with(self.cx(), goal.predicate.with_self_ty(self.cx(), normalized_self_ty)); // Vars that show up in the rest of the goal substs may have been constrained by // normalizing the self type as well, since type variables are not uniquified. let goal = self.resolve_vars_if_possible(goal); let mut candidates = vec![]; if self.solver_mode() == SolverMode::Coherence { if let Ok(candidate) = self.consider_coherence_unknowable_candidate(goal) { return vec![candidate]; } } self.assemble_impl_candidates(goal, &mut candidates); self.assemble_builtin_impl_candidates(goal, &mut candidates); self.assemble_alias_bound_candidates(goal, &mut candidates); self.assemble_object_bound_candidates(goal, &mut candidates); self.assemble_param_env_candidates(goal, &mut candidates); if self.solver_mode() == SolverMode::Normal { self.discard_impls_shadowed_by_env(goal, &mut candidates); } candidates } pub(super) fn forced_ambiguity( &mut self, cause: MaybeCause, ) -> Result, NoSolution> { // This may fail if `try_evaluate_added_goals` overflows because it // fails to reach a fixpoint but ends up getting an error after // running for some additional step. // // cc trait-system-refactor-initiative#105 let source = CandidateSource::BuiltinImpl(BuiltinImplSource::Misc); let certainty = Certainty::Maybe(cause); self.probe_trait_candidate(source) .enter(|this| this.evaluate_added_goals_and_make_canonical_response(certainty)) } #[instrument(level = "trace", skip_all)] fn assemble_impl_candidates>( &mut self, goal: Goal, candidates: &mut Vec>, ) { let cx = self.cx(); cx.for_each_relevant_impl( goal.predicate.trait_def_id(cx), goal.predicate.self_ty(), |impl_def_id| { // For every `default impl`, there's always a non-default `impl` // that will *also* apply. There's no reason to register a candidate // for this impl, since it is *not* proof that the trait goal holds. if cx.impl_is_default(impl_def_id) { return; } match G::consider_impl_candidate(self, goal, impl_def_id) { Ok(candidate) => candidates.push(candidate), Err(NoSolution) => (), } }, ); } #[instrument(level = "trace", skip_all)] fn assemble_builtin_impl_candidates>( &mut self, goal: Goal, candidates: &mut Vec>, ) { let cx = self.cx(); let trait_def_id = goal.predicate.trait_def_id(cx); // N.B. When assembling built-in candidates for lang items that are also // `auto` traits, then the auto trait candidate that is assembled in // `consider_auto_trait_candidate` MUST be disqualified to remain sound. // // Instead of adding the logic here, it's a better idea to add it in // `EvalCtxt::disqualify_auto_trait_candidate_due_to_possible_impl` in // `solve::trait_goals` instead. let result = if let Err(guar) = goal.predicate.error_reported() { G::consider_error_guaranteed_candidate(self, guar) } else if cx.trait_is_auto(trait_def_id) { G::consider_auto_trait_candidate(self, goal) } else if cx.trait_is_alias(trait_def_id) { G::consider_trait_alias_candidate(self, goal) } else { match cx.as_lang_item(trait_def_id) { Some(TraitSolverLangItem::Sized) => G::consider_builtin_sized_candidate(self, goal), Some(TraitSolverLangItem::Copy | TraitSolverLangItem::Clone) => { G::consider_builtin_copy_clone_candidate(self, goal) } Some(TraitSolverLangItem::Fn) => { G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::Fn) } Some(TraitSolverLangItem::FnMut) => { G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::FnMut) } Some(TraitSolverLangItem::FnOnce) => { G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::FnOnce) } Some(TraitSolverLangItem::AsyncFn) => { G::consider_builtin_async_fn_trait_candidates(self, goal, ty::ClosureKind::Fn) } Some(TraitSolverLangItem::AsyncFnMut) => { G::consider_builtin_async_fn_trait_candidates( self, goal, ty::ClosureKind::FnMut, ) } Some(TraitSolverLangItem::AsyncFnOnce) => { G::consider_builtin_async_fn_trait_candidates( self, goal, ty::ClosureKind::FnOnce, ) } Some(TraitSolverLangItem::PointerLike) => { G::consider_builtin_pointer_like_candidate(self, goal) } Some(TraitSolverLangItem::FnPtrTrait) => { G::consider_builtin_fn_ptr_trait_candidate(self, goal) } Some(TraitSolverLangItem::AsyncFnKindHelper) => { G::consider_builtin_async_fn_kind_helper_candidate(self, goal) } Some(TraitSolverLangItem::Tuple) => G::consider_builtin_tuple_candidate(self, goal), Some(TraitSolverLangItem::PointeeTrait) => { G::consider_builtin_pointee_candidate(self, goal) } Some(TraitSolverLangItem::Future) => { G::consider_builtin_future_candidate(self, goal) } Some(TraitSolverLangItem::Iterator) => { G::consider_builtin_iterator_candidate(self, goal) } Some(TraitSolverLangItem::FusedIterator) => { G::consider_builtin_fused_iterator_candidate(self, goal) } Some(TraitSolverLangItem::AsyncIterator) => { G::consider_builtin_async_iterator_candidate(self, goal) } Some(TraitSolverLangItem::Coroutine) => { G::consider_builtin_coroutine_candidate(self, goal) } Some(TraitSolverLangItem::DiscriminantKind) => { G::consider_builtin_discriminant_kind_candidate(self, goal) } Some(TraitSolverLangItem::AsyncDestruct) => { G::consider_builtin_async_destruct_candidate(self, goal) } Some(TraitSolverLangItem::Destruct) => { G::consider_builtin_destruct_candidate(self, goal) } Some(TraitSolverLangItem::TransmuteTrait) => { G::consider_builtin_transmute_candidate(self, goal) } _ => Err(NoSolution), } }; candidates.extend(result); // There may be multiple unsize candidates for a trait with several supertraits: // `trait Foo: Bar + Bar` and `dyn Foo: Unsize>` if cx.is_lang_item(trait_def_id, TraitSolverLangItem::Unsize) { candidates.extend(G::consider_structural_builtin_unsize_candidates(self, goal)); } } #[instrument(level = "trace", skip_all)] fn assemble_param_env_candidates>( &mut self, goal: Goal, candidates: &mut Vec>, ) { for (i, assumption) in goal.param_env.caller_bounds().into_iter().enumerate() { candidates.extend(G::probe_and_consider_implied_clause( self, CandidateSource::ParamEnv(i), goal, assumption, [], )); } } #[instrument(level = "trace", skip_all)] fn assemble_alias_bound_candidates>( &mut self, goal: Goal, candidates: &mut Vec>, ) { let () = self.probe(|_| ProbeKind::NormalizedSelfTyAssembly).enter(|ecx| { ecx.assemble_alias_bound_candidates_recur(goal.predicate.self_ty(), goal, candidates); }); } /// For some deeply nested `::A::B::C::D` rigid associated type, /// we should explore the item bounds for all levels, since the /// `associated_type_bounds` feature means that a parent associated /// type may carry bounds for a nested associated type. /// /// If we have a projection, check that its self type is a rigid projection. /// If so, continue searching by recursively calling after normalization. // FIXME: This may recurse infinitely, but I can't seem to trigger it without // hitting another overflow error something. Add a depth parameter needed later. fn assemble_alias_bound_candidates_recur>( &mut self, self_ty: I::Ty, goal: Goal, candidates: &mut Vec>, ) { let (kind, alias_ty) = match self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Pat(_, _) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(..) | ty::Dynamic(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Error(_) => return, ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => { panic!("unexpected self type for `{goal:?}`") } ty::Infer(ty::TyVar(_)) => { // If we hit infer when normalizing the self type of an alias, // then bail with ambiguity. We should never encounter this on // the *first* iteration of this recursive function. if let Ok(result) = self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) { candidates.push(Candidate { source: CandidateSource::AliasBound, result }); } return; } ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty), ty::Alias(ty::Inherent | ty::Weak, _) => { self.cx().delay_bug(format!("could not normalize {self_ty:?}, it is not WF")); return; } }; for assumption in self.cx().item_bounds(alias_ty.def_id).iter_instantiated(self.cx(), alias_ty.args) { candidates.extend(G::probe_and_consider_implied_clause( self, CandidateSource::AliasBound, goal, assumption, [], )); } candidates.extend(G::consider_additional_alias_assumptions(self, goal, alias_ty)); if kind != ty::Projection { return; } // Recurse on the self type of the projection. match self.structurally_normalize_ty(goal.param_env, alias_ty.self_ty()) { Ok(next_self_ty) => { self.assemble_alias_bound_candidates_recur(next_self_ty, goal, candidates) } Err(NoSolution) => {} } } #[instrument(level = "trace", skip_all)] fn assemble_object_bound_candidates>( &mut self, goal: Goal, candidates: &mut Vec>, ) { let cx = self.cx(); if !cx.trait_may_be_implemented_via_object(goal.predicate.trait_def_id(cx)) { return; } let self_ty = goal.predicate.self_ty(); let bounds = match self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Pat(_, _) | ty::Slice(_) | ty::RawPtr(_, _) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(..) | ty::Alias(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Error(_) => return, ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => panic!("unexpected self type for `{goal:?}`"), ty::Dynamic(bounds, ..) => bounds, }; // Do not consider built-in object impls for dyn-incompatible types. if bounds.principal_def_id().is_some_and(|def_id| !cx.trait_is_dyn_compatible(def_id)) { return; } // Consider all of the auto-trait and projection bounds, which don't // need to be recorded as a `BuiltinImplSource::Object` since they don't // really have a vtable base... for bound in bounds.iter() { match bound.skip_binder() { ty::ExistentialPredicate::Trait(_) => { // Skip principal } ty::ExistentialPredicate::Projection(_) | ty::ExistentialPredicate::AutoTrait(_) => { candidates.extend(G::probe_and_consider_object_bound_candidate( self, CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), goal, bound.with_self_ty(cx, self_ty), )); } } } // FIXME: We only need to do *any* of this if we're considering a trait goal, // since we don't need to look at any supertrait or anything if we are doing // a projection goal. if let Some(principal) = bounds.principal() { let principal_trait_ref = principal.with_self_ty(cx, self_ty); for (idx, assumption) in elaborate::supertraits(cx, principal_trait_ref).enumerate() { candidates.extend(G::probe_and_consider_object_bound_candidate( self, CandidateSource::BuiltinImpl(BuiltinImplSource::Object(idx)), goal, assumption.upcast(cx), )); } } } /// In coherence we have to not only care about all impls we know about, but /// also consider impls which may get added in a downstream or sibling crate /// or which an upstream impl may add in a minor release. /// /// To do so we return a single ambiguous candidate in case such an unknown /// impl could apply to the current goal. #[instrument(level = "trace", skip_all)] fn consider_coherence_unknowable_candidate>( &mut self, goal: Goal, ) -> Result, NoSolution> { self.probe_trait_candidate(CandidateSource::CoherenceUnknowable).enter(|ecx| { let cx = ecx.cx(); let trait_ref = goal.predicate.trait_ref(cx); if ecx.trait_ref_is_knowable(goal.param_env, trait_ref)? { Err(NoSolution) } else { // While the trait bound itself may be unknowable, we may be able to // prove that a super trait is not implemented. For this, we recursively // prove the super trait bounds of the current goal. // // We skip the goal itself as that one would cycle. let predicate: I::Predicate = trait_ref.upcast(cx); ecx.add_goals( GoalSource::Misc, elaborate::elaborate(cx, [predicate]) .skip(1) .map(|predicate| goal.with(cx, predicate)), ); ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) } }) } /// If there's a where-bound for the current goal, do not use any impl candidates /// to prove the current goal. Most importantly, if there is a where-bound which does /// not specify any associated types, we do not allow normalizing the associated type /// by using an impl, even if it would apply. /// /// // FIXME(@lcnr): The current structure here makes me unhappy and feels ugly. idk how // to improve this however. However, this should make it fairly straightforward to refine // the filtering going forward, so it seems alright-ish for now. #[instrument(level = "debug", skip(self, goal))] fn discard_impls_shadowed_by_env>( &mut self, goal: Goal, candidates: &mut Vec>, ) { let cx = self.cx(); let trait_goal: Goal> = goal.with(cx, goal.predicate.trait_ref(cx)); let mut trait_candidates_from_env = vec![]; self.probe(|_| ProbeKind::ShadowedEnvProbing).enter(|ecx| { ecx.assemble_param_env_candidates(trait_goal, &mut trait_candidates_from_env); ecx.assemble_alias_bound_candidates(trait_goal, &mut trait_candidates_from_env); }); if !trait_candidates_from_env.is_empty() { let trait_env_result = self.merge_candidates(trait_candidates_from_env); match trait_env_result.unwrap().value.certainty { // If proving the trait goal succeeds by using the env, // we freely drop all impl candidates. // // FIXME(@lcnr): It feels like this could easily hide // a forced ambiguity candidate added earlier. // This feels dangerous. Certainty::Yes => { candidates.retain(|c| match c.source { CandidateSource::Impl(_) | CandidateSource::BuiltinImpl(_) => { debug!(?c, "discard impl candidate"); false } CandidateSource::ParamEnv(_) | CandidateSource::AliasBound => true, CandidateSource::CoherenceUnknowable => panic!("uh oh"), }); } // If it is still ambiguous we instead just force the whole goal // to be ambig and wait for inference constraints. See // tests/ui/traits/next-solver/env-shadows-impls/ambig-env-no-shadow.rs Certainty::Maybe(cause) => { debug!(?cause, "force ambiguity"); *candidates = self.forced_ambiguity(cause).into_iter().collect(); } } } } /// If there are multiple ways to prove a trait or projection goal, we have /// to somehow try to merge the candidates into one. If that fails, we return /// ambiguity. #[instrument(level = "debug", skip(self), ret)] pub(super) fn merge_candidates(&mut self, candidates: Vec>) -> QueryResult { // First try merging all candidates. This is complete and fully sound. let responses = candidates.iter().map(|c| c.result).collect::>(); if let Some(result) = self.try_merge_responses(&responses) { return Ok(result); } else { self.flounder(&responses) } } }