Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
As a workaround for the full `#[refine]` semantics not being implemented
yet, forbit returning a concrete future type like `Box<dyn Future>` or a
manually implemented Future.
`-> impl Future` is still permitted; while that can also cause
accidental refinement, that's behind a different feature gate
(`return_position_impl_trait_in_trait`) and that problem exists
regardless of whether the trait method is async, so will have to be
solved more generally.
Fixes#102745
This ensures that the error is printed even for unused variables,
as well as unifying the handling between the LLVM and GCC backends.
This also fixes unusual behavior around exported Rust-defined variables
with linkage attributes. With the previous behavior, it appears to be
impossible to define such a variable such that it can actually be imported
and used by another crate. This is because on the importing side, the
variable is required to be a pointer, but on the exporting side, the
type checker rejects static variables of pointer type because they do
not implement `Sync`. Even if it were possible to import such a type, it
appears that code generation on the importing side would add an unexpected
additional level of pointer indirection, which would break type safety.
This highlighted that the semantics of linkage on Rust-defined variables
is different to linkage on foreign items. As such, we now model the
difference with two different codegen attributes: linkage for Rust-defined
variables, and import_linkage for foreign items.
This change gives semantics to the test
src/test/ui/linkage-attr/auxiliary/def_illtyped_external.rs which was
previously expected to fail to compile. Therefore, convert it into a
test that is expected to successfully compile.
The update to the GCC backend is speculative and untested.
Change #[suggestion_*] attributes to use style="..."
As discussed [on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20tool_only_span_suggestion), this changes `#[(multipart_)suggestion_{short,verbose,hidden}(...)]` attributes to plain `#[(multipart_)suggestion(...)]` attributes with a `style = "{short,verbose,hidden}"` parameter.
It also adds a new style, `tool-only`, that corresponds to `tool_only_span_suggestion`/`tool_only_multipart_suggestion` and causes the suggestion to not be shown in human-readable output at all.
Best reviewed commit-by-commit, there's a bit of noise in there.
cc #100717 `@compiler-errors`
r? `@davidtwco`
Track where diagnostics were created.
This implements the `-Ztrack-diagnostics` flag, which uses `#[track_caller]` to track where diagnostics are created. It is meant as a debugging tool much like `-Ztreat-err-as-bug`.
For example, the following code...
```rust
struct A;
struct B;
fn main(){
let _: A = B;
}
```
...now emits the following error message:
```
error[E0308]: mismatched types
--> src\main.rs:5:16
|
5 | let _: A = B;
| - ^ expected struct `A`, found struct `B`
| |
| expected due to this
-Ztrack-diagnostics: created at compiler\rustc_infer\src\infer\error_reporting\mod.rs:2275:31
```
Note scope of TAIT more accurately
This maybe explains why the person was confused in #101897, since we say "same module" but really should've said "same impl".
r? ``@oli-obk``
In #102306, `rustc_typeck` was renamed to `rustc_hir_analysis` but the
diagnostic resources were not renamed - which is what this commit
changes.
Signed-off-by: David Wood <david.wood@huawei.com>