There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Modify MIR building to drop repeat expressions with length zero
Closes#74836 .
Previously, when a user wrote `[foo; 0]` we used to simply leak `foo`. The goal is to fix that. This PR changes MIR building to make `[foo; 0]` equivalent to `{ drop(foo); [] }` in all cases. Of course, this is a breaking change (see below). A crater run did not indicate any regressions though, and given that the previous behavior was almost definitely not what any user wanted, it seems unlikely that anyone was relying on this.
Note that const generics are in general unaffected by this. Inserting the extra `drop` is only meaningful/necessary when `foo` is of a non-`Copy` type, and array repeat expressions with const generic repetition count must always be `Copy`.
Besides the obvious change to behavior associated with the additional drop, there are three categories of examples where this also changes observable behavior. In all of these cases, the new behavior is consistent with what you would get by replacing `[foo; 0]` with `{ drop(foo); [] }`. As such, none of these give the user new powers to express more things.
**No longer allowed in const (breaking)**:
```rust
const _: [String; 0] = [String::new(); 0];
```
This compiles on stable today. Because we now introduce the drop of `String`, this no longer compiles as `String` may not be dropped in a const context.
**Reduced dataflow (non-breaking)**:
```rust
let mut x: i32 = 0;
let r = &x;
let a = [r; 0];
x = 5;
let _b = a;
```
Borrowck rejects this code on stable because it believes there is dataflow between `a` and `r`, and so the lifetime of `r` has to extend to the last statement. This change removes the dataflow and the above code is allowed to compile.
**More const promotion (non-breaking)**:
```rust
let _v: &'static [String; 0] = &[String::new(); 0];
```
This does not compile today because `String` having drop glue keeps it from being const promoted (despite that drop glue never being executed). After this change, this is allowed to compile.
### Alternatives
A previous attempt at this tried to reduce breakage by various tricks. This is still a possibility, but given that crater showed no regressions it seems unclear why we would want to introduce this complexity.
Disallowing `[foo; 0]` completely is also an option, but obviously this is more of a breaking change. I do not know how often this is actually used though.
r? `@oli-obk`
In some cases, we emit borrowcheck diagnostics pointing
at a particular field expression in a struct expression
(e.g. `MyStruct { field: my_expr }`). However, this
behavior currently relies on us choosing the
`ConstraintCategory::Boring` with the 'correct' span.
When adding additional variants to `ConstraintCategory`,
(or changing existing usages away from `ConstraintCategory::Boring`),
the current behavior can easily get broken, since a non-boring
constraint will get chosen over a boring one.
To make the diagnostic output less fragile, this commit
adds a `ConstraintCategory::Usage` variant. We use this variant
for the temporary assignments created for each field of
an aggregate we are constructing.
Using this new variant, we can emit a message mentioning
"this usage", emphasizing the fact that the error message
is related to the specific use site (in the struct expression).
This is preparation for additional work on improving NLL error messages
(see #57374)
readd capture disjoint fields gate
This readds a feature gate guard that was added in PR #83521. (Basically, there were unintended consequences to the code exposed by removing the feature gate guard.)
The root bug still remains to be resolved, as discussed in issue #85561. This is just a band-aid suitable for a beta backport.
Cc issue #85435
Note that the latter issue is unfixed until we backport this (or another fix) to 1.53 beta
Implement (but don't use) valtree and refactor in preparation of use
This PR does not cause any functional change. It refactors various things that are needed to make valtrees possible. This refactoring got big enough that I decided I'd want it reviewed as a PR instead of trying to make one huge PR with all the changes.
cc `@rust-lang/wg-const-eval` on the following commits:
* 2027184 implement valtree
* eeecea9 fallible Scalar -> ScalarInt
* 042f663 ScalarInt convenience methods
cc `@eddyb` on ef04a6d
cc `@rust-lang/wg-mir-opt` for cf1700c (`mir::Constant` can now represent either a `ConstValue` or a `ty::Const`, and it is totally possible to have two different representations for the same value)