This span records the declaration of the metavariable in the LHS of the macro.
It's used in a couple of error messages. Unfortunately, it gets in the way of
the long-term goal of removing `TokenKind::Interpolated`. So this commit
removes it, which degrades a couple of (obscure) error messages but makes
things simpler and enables the next commit.
Implement macro-based deref!() syntax for deref patterns
Stop using `box PAT` syntax for deref patterns, and instead use a perma-unstable macro.
Blocked on #122222
r? `@Nadrieril`
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
Be more careful about interpreting a label/lifetime as a mistyped char literal.
Currently the parser interprets any label/lifetime in certain positions as a mistyped char literal, on the assumption that the trailing single quote was accidentally omitted. In such cases it gives an error with a suggestion to add the trailing single quote, and then puts the appropriate char literal into the AST. This behaviour was introduced in #101293.
This is reasonable for a case like this:
```
let c = 'a;
```
because `'a'` is a valid char literal. It's less reasonable for a case like this:
```
let c = 'abc;
```
because `'abc'` is not a valid char literal.
Prior to #120329 this could result in some sub-optimal suggestions in error messages, but nothing else. But #120329 changed `LitKind::from_token_lit` to assume that the char/byte/string literals it receives are valid, and to assert if not. This is reasonable because the lexer does not produce invalid char/byte/string literals in general. But in this "interpret label/lifetime as unclosed char literal" case the parser can produce an invalid char literal with contents such as `abc`, which triggers an assertion failure.
This PR changes the parser so it's more cautious about interpreting labels/lifetimes as unclosed char literals.
Fixes#120397.
r? `@compiler-errors`
Currently the parser will interpret any label/lifetime in certain
positions as a mistyped char literal, on the assumption that the
trailing single quote was accidentally omitted. This is reasonable for a
something like 'a (because 'a' would be valid) but not reasonable for a
something like 'abc (because 'abc' is not valid).
This commit restricts this behaviour only to labels/lifetimes that would
be valid char literals, via the new `could_be_unclosed_char_literal`
function. The commit also augments the `label-is-actually-char.rs` test
in a couple of ways:
- Adds testing of labels/lifetimes with identifiers longer than one
char, e.g. 'abc.
- Adds a new match with simpler patterns, because the
`recover_unclosed_char` call in `parse_pat_with_range_pat` was not
being exercised (in this test or any other ui tests).
Fixes#120397, an assertion failure, which was caused by this behaviour
in the parser interacting with some new stricter char literal checking
added in #120329.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Clairify `ast::PatKind::Struct` presese of `..` by using an enum instead of a bool
The bool is mainly used for when a `..` is present, but it is also set on recovery to avoid errors. The doc comment not describes both of these cases.
See cee794ee98/compiler/rustc_parse/src/parser/pat.rs (L890-L897) for the only place this is constructed.
r? ``@compiler-errors``
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Because a macro invocation can expand to a never pattern, we can't rule
out a `arm!(),` arm at parse time. Instead we detect that case at
expansion time, if the macro tries to output a pattern followed by `=>`.
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
More detail when expecting expression but encountering bad macro argument
On nested macro invocations where the same macro fragment changes fragment type from one to the next, point at the chain of invocations and at the macro fragment definition place, explaining that the change has occurred.
Fix#71039.
```
error: expected expression, found pattern `1 + 1`
--> $DIR/trace_faulty_macros.rs:49:37
|
LL | (let $p:pat = $e:expr) => {test!(($p,$e))};
| ------- -- this is interpreted as expression, but it is expected to be pattern
| |
| this macro fragment matcher is expression
...
LL | (($p:pat, $e:pat)) => {let $p = $e;};
| ------ ^^ expected expression
| |
| this macro fragment matcher is pattern
...
LL | test!(let x = 1+1);
| ------------------
| | |
| | this is expected to be expression
| in this macro invocation
|
= note: when forwarding a matched fragment to another macro-by-example, matchers in the second macro will see an opaque AST of the fragment type, not the underlying tokens
= note: this error originates in the macro `test` (in Nightly builds, run with -Z macro-backtrace for more info)
```
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.